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If one knot is fashioned into another, by replacing each strand with
g strands, then something gets multiplied by g . What? The answer
should not be overly dependent on how these strands are intertwined.
We show that an invariant called the braid index is an answer. This
proposition is apparently new. Another answer covered by our proof is
the bridge number, though this was proved by Shubert in 1954, It was
only with the advent of the Jones polynomial and its relatives in the
mid 1980s, that much attention has been given to the braid index. For
example, the knots obtained by repeated period doubling were shown
to obey the multiplication rule, though no one seems to have thought
of it this way. Their braid indices are powers of 2. We first considered
the current proposition in trying to show that a certain knot, known
to have braid index 5, could not be a two-cabling of anything.

DEerINITIONS. It is a classical result of Alexander [A] that any link,
that is, a finite collection of smooth oriented simple closed curves
embedded in Euclidian 3-space, can be isotoped into the (closure) of
a braid on some number of strands, say n. By the braid index of a
link we mean the least such number 7.

The bridge number is the minimal number of local maxima for any
smooth isotopic copy of a link L. See Shubert [S1; Satz 9, p. 283].
Our result follows as a corollary to Shubert’s theorem in those cases for
which these invariants are equal, since the bridge number is trivially
seen to be less than or equal to the braid index.

We use b(L) to denote the braid index (respectively bridge number)
of an oriented link L. In the theorem below, we assume that each
component of our link is knotted; this assumption is necessary in that
(for example) any (p, g) torus link is both a p-fold and a g-fold
cabling of the unknot. For p # ¢ its braid index cannot be both p
and ¢g. In fact its braid index is the lesser of p and ¢ as can be
seen, €.g., by the theorem of Morton [M] and Franks-Williams [FW].
That is, if L is the closure of a positive braid on p strands which
has a full twist, then L has braid index p. But, any (p, gq) torus
link is a positive braid on p strands as follows: denote the generators
of the braid group B, by 2,3,...,p. The (p, q) torus link L,
is the closure of the braid g = (2, 3, ..., p)?. Since the full twist
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FIGURE 1. A 2-cabling of the Hopf link

is (2,3,...,p)?, B contains a full twist, in case p < g. For as the
closure of a braid in B, the (p, q) torus link is positive, and if p < ¢
it contains a full twist. Another example: the Hopf link (i.e., the link
consisting of two simply linked circles) has a 2-cabling of braid index
3. For example, cable one component by 2 parallel circles, the other
by the unknot, just as one “doubles” a rubber band. The resulting
2-cabling has braid index < 3, as one sees by relaxing the “rubber
band.” Having 3 components, its braid index is > 3, and thus 3.

Start with the Hopf link, the first diagram in Figure 1. Next, 2-cable
it getting the second diagram. Then the long arc from A4 to B in the
second diagram is moved to the short diagonal stretch in the final pic-
ture. In terms of the braid generators 1, 2, 3 of By, 213212312 —
213121312 — 211323112 — 211232112 — 211221112.

Below we work with generalized cablings of knots in R3. By a
generalized q-cabling of a link L we mean a link L’ contained in the
interior of a tubular neighborhood L x D? of L such that

(a) each fiber D? intersects L’ transversely in ¢ points; and

(b) all strands of L’ are oriented in the same direction as L itself.

Note that any link which is arranged as a braid on p strands, is
a generalized p cabling of the unknot, since it can be put inside the
unknotted torus, always travelling in the same direction. Thus the
figure eight knot is a generalized 3-cabling of the unknot, which cannot
be a cabling of the unknot, as it is easily seen to not be a torus knot.

We shorten this phrase to g-cabling or g-g-cabling below. The term
cabling is reserved for the g-cablings which are actually on the bound-
ary torus itself. Part of the interest in our proof is its simplicity and
the fact that it works for both invariants with no change at all. It is a
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pleasure to thank my colleagues, John Berge, Cameron Gordon, Ray
Lickorish, and John Luecke for helpful conversations. We would like
to thank the referee for bringing to our attention a related result of
Schubert [S2, Satz 1, p. 275], reviewed by R. Fox, in Math. Reviews
17, p. 298.

THEOREM 1. The braid index (respectively bridge number) is multi-
plicative under generalized cabling. In detail, if L is a link with each
component a non-trivial knot and L' is a generalized q-cabling of L
then

b(L") = gb(L).

Proof. Clearly
b(L") < gb(L),

since the obvious cabling of L is a braid of gb(L) strands. (Respec-
tively, is a plat with bridge number gb(L).) We proceed to prove the
other inequality, and to simplify notation, prove it first in the case
that our link L has only one component and thus is a knot, K, with
generalized g-cabling K’. Assume on the contrary that

b(K') = b < gb(K).

We work in the smooth setting, and assume K’ is presented as a
g-g-cabling of K in a small tubular neighborhood N of K. This
neighborhood is a solid torus neighborhood N of the knot K. Under
our assumption, we know there is a global diffeomorphism ®: R3 —
R3 of compact support such that

(a) @(K’) has exactly b maxima and b minima which are non-
degenerate and no other singularities;

(b) the “height” function 4: bdry®(N) — R is a Morse function,
i.e., h has finitely many singularities, all non-degenerate.

We are given condition (a). But since this condition is generic, by
a small perturbation, we may assume (b).

Let T2 = bdry®(N). By (b) the intersection of horizontal planes
with our torus 72 consists mostly of disjoint simple closed curves.
The finitely many exceptional intersections are at singularities of /4
and have in addition, an isolated point or “figure eight.” These latter
consist of two simple closed curves, which intersect in a single point.

A simple closed curve in 72 which bounds a disk in 72 will be
called trivial. For a non-trivial J c T2, we follow tradition and say
J is a meridian, provided J bounds a disk in ®(N). Note that for
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a meridian J the linking number /(K, J) = 1 and that for our g¢-
g-cabling XK', I(K’, J) = q, these numbers being determined up to
sign.

REMARK 1. If J is a simple closed curve lying in 72N =, where ©
a horizontal plane, then J is either a meridian of T2 or is trivial in
T?.

Proof. Since J bounds a disk in the plane, it bounds a disk in R3.
But the only such simple closed curves on 72 are meridians or those
that bound disks in 72, because K is knotted.

REMARK 2. There is a horizontal plane intersecting 72 in a merid-
ian.

Proof. This is Morse theory at its simplest: let 7'(x) consist of all
those points p € T? of height h(p) > x, for x € R. Then T(x) is
empty, for x large. As we decrease x, T(x) first becomes a point,
then a disk, changing its topological type only at singularities of 4.
Thus under the assumption that we never meet a meridian, only three
things can happen: a new disk is added, two disks are joined making
one less disk, or (a priori, only) an old disk is capped off with a new
disk, forming a sphere. Thus, for small x we get 72 = T(x) is the
union of finitely many disjoint disks and disjoint spheres, which is
absurd.

Let J be a meridian of T? lying on a horizontal plane 7. We can
and do assume 77 is transverse to z and that J is innermost among
meridia. Then J bounds a disk d C # and by our remarks above,
d separates K’ into a number of components {C;}. Some C;’s are
non-trivial, in that there is an arc D; in the interior of J such that

C;U D; U{end points} = K;

traverses ®(N), the interior of T2, longitudinally. Others may be
trivial in that such a K; bounds a disk in ®(N). However

REMARK 3. There are (at least) ¢ non-trivial K;.
Proof . The signed linking number of L with J is g. The trivial I?i

add nothing as they bound in ®(N) and each non-trivial K; counts
+1.
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Discard the trivial K;. The remaining K; are not presented as
braids (respectively plats) only because the D; are horizontal. How-
ever, this is easy to remedy. Choose another plane 7’ just below 7 so
that together they cut an annulus 4 off of 72 whose other boundary
curve J' is essentially parallel to J. Then form

(C; — C)U D; U {end points} = K;,
where Dj is a rising arc lying between the planes replacing a small arc
C c C;, which is discarded. It is clear that the D] can be taken to be
disjoint, so that the K; are disjoint as well. See Figure 2.
Thus we have determined ¢ knots K|, K5, ..., K, each isotopic
to K. Now compute

g

Z{number of max of K;} < {number of max of K’}

i=1

=b(K') =b < qb(K).

But the K; are mutually disjoint. It follows that one of the K; has
fewer than b5(K) maxima and thus is a braid on fewer than b(K)
strands (respectively, plat with fewer than b(K) bridges). This con-
tradicts the fact that each K; is isotopic to K and hence has the same
braid index (respectively bridge number) as K. This completes the
proof, in case of a simple knot, K .

We turn to the general case in which our link consists of several
knots. We introduce notation as follows: L is a link whose com-
ponents are knots (each is knotted) K;, K»,..., Ky, and L' is a
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g-g-cabling of L. We then assume for contradiction that
b(L") =b < qb(L).

Then L' = KjUK;U---UK; where for each j, Kj is a g-g-cabling
of K; lying in a small tubular neighborhood N; of K;. Under our
assumption, there is a global diffeomorphism ®: R3 — R3, with com-
pact support, so that ®(L’) is represented by a braid (respectively, a
plat) with b maxima.

As before, we may adjust the neighborhoods ®(N;) slightly, so
that the torus, 9®(N;) = T; has a Morse height function, for j =
1,2,..., k. We must deal with all of the 7; simultaneously, since
neither the braid index nor the bridge number is additive over com-
ponents. Fix j. Then just as before there is a plane #; so that
T; n=m; is a meridian of T;. Proceeding as before, construct g
knots, K;;, Kj3, ..., K;; C ®(K;), which are disjoint, and except
for short rising arcs, are subsets of ®(K;). Having done this for each
j=1,..., k, define

Li=K1iUK2iU"'UKkia i=1,...,q.

Now compute

q
Z{number of max of L;} < {number of max of L'}
i=1

= b(L') = b < gb(L).

But the L; are mutually disjoint. It follows that one of the L; has
fewer than b(L) maxima and thus is a braid on fewer than b(L)
strands (respectively, plat with fewer than b(L) bridges). This con-
tradicts the fact that each L; is isotopic to L and hence has the same
braid index (respectively bridge number) as L. This completes the
proof, in case of a simple knot, L.
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