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Let BMOY be the space of functions on the open unit ball in C"
with bounded mean oscillation in the Bergman metric defined us-
ing the volume L’ integral (see Introduction for precise definition).
This paper studies the structure of BMOZ . In particular, we show
how BMO; depends on p. We also characterize BMOY in terms of
certain Hankel operators acting on weighted Bergman L? spaces. A
parallel study is made on the companion space VMO) .

1. Introduction. By a well-known theorem of John-Nirenberg [4],
[5], the classical BMO of the unit circle is independent of the L7
norm used to define it (usually the L' norm is used for the definition
of BMO on the circle). It is also well known [12] that a function f on
the circle is in BMO if and only if the Hankel operators with symbol
f and f are both bounded on the Hardy space H? of the circle.

A new type of BMO, denoted BMO;(Q), is introduced in [1], [2]
for any bounded domain Q in the complex space C”. The space
is defined in terms of the Bergman metric using the L? norm with
respect to the volume measure. It is proved in [1] that an L? function
f on a bounded symmetric domain Q is in BMO,;(Q) if and only
if the Hankel operators (defined in terms of the Bergman projection)
with symbol f and f are both bounded on the Bergman L2 space.

In this paper we show that BMO in the Bergman metric actually
depends on the L” norm used to define it (in contrast with the John-
Nirenberg phenomenon). We will precisely describe the dependence
of BMO in the Bergman metric on p. The BMO in the Bergman
metric defined using the volume L? norm will be used to characterize
certain bounded Hankel operators acting on weighted Bergman L?
spaces.

We need to introduce some notation in order to state our results
precisely. For some technical reasons, we will content ourselves with
the open unit ball in C". Some of the results and analysis here also
hold for bounded symmetric domains (for example, all the results in
§2 with some obvious changes).

Let B, be the open unit ball in C" with normalized volume mea-
sure dv(z). We will also need the following measures:
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dva(z) = Co(1 — |2)?) dv(z),
where o > —1 and C, is a positive normalizing constant so that

dv, is a probability measure. Let f(z, w) be the Bergman distance
function on B, . Forany z€ B, and r > 0 let

D(z,r)={we€By: p(z,w)<r}
be the Bergman metric ball with center z and radius 7. The (normal-
ized) volume of D(z, r) will be denoted by |D(z, r)|. For a locally

dv integrable function f on B, we define a function f, on B, as
follows:

A 1
Hiz) = m/mz,,)f(w’d“(“’)’ zEB,.

fr(z) is the integral mean of f over D(z,r). Fix r>0 and p > 1,
let BMO? denote the space of all locally L? integrable functions f
on B, such that

1 A 1/p
p = SUp | f(w) = fr(2)P dv(w < 400.
1715 = sup lID(z, 5 oo, @) = (P du(w)

It is easy to see that BMO? depends on p. For example, if p < g
and f is a function with compact support in B, such that f is in
L?(B,, dv) but not in L4(B,, dv), then f is in BMO? but not in
BMO? . In general, BMO? c BMO? for p < q. The inclusion is
proper if p <gq.

Our first result shows that BMO? is independent of r and it tells
how BMO? depends on p.

THEOREM A. BMO? is independent of r. Moreover, a locally LP
integrable function f on B, belongs to BMO? if and only if f =
fi + f2, where

sup/ 1y 0 92(w)|? dva(w) < +00
zEB" Bn

for all (for some) a > —1 and

|/2(2) = fo(w)] £ C(B(z, w) + 1)
for some constant C >0 andall z, w € B,,. Here ¢, is the canonical
involution on B, described in 2.2 of [6].

By the above theorem, we can write BMOS for BMOF . The symbol
0 here stresses the fact that being in BMOY, is essentially a “boundary
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condition.” It follows easily from the above theorem that BMO) is
contained in LP(B,, dv,) forall a > —1.

BMO¥ can be described in terms of certain Hankel operators acting
on weighted Bergman L? spaces. Recall that for a > —1, dv,(z) =
Co(1 = |z|*)*dv(z), where C, is a normalizing constant. For p > 1
and a > -1, the weighted Bergman space Lf(dv,) is the subspace
of L?(B,, dv,) consisting of holomorphic functions. L} (dv,) is the
closed subspace of L?(B,, dv,) generated by polynomials.

Let P, denote the orthogonal projection from L2(B,, dv,) onto
L2(dv,). P, is an integral operator given by

P.f(z) = /B K@(z, w)f(w) dva(w),

where
1

(1—(z, w))rti+e
is the reproducing kernel of L2(dv,). It is well known [3] that for
p>1and a, A> -1, P, is abounded projection from L?(B,, dv;)
onto L5(dv;) if and only if p(a+1) >4+ 1.

Given a function f on B,, let M, denote the multiplication op-
erator induced by f. For o > —1 and f on B, we define two
operators T}a) and H}") as follows:

K@(z, w)=

T\ = PaMyPy, H{ = (I — P.)MyPs,

where I is the identity operator. T }"‘) and H](f’) are called the Toeplitz
and Hankel operator, respectively, with symbol f. Note that these op-
erators are densely defined (but unbounded in general) on L?(B,, dv;)
as long as f isin L?(B,, dv;). We can now state our second result.

THEOREM B. Suppose p > 1, pla+1)>A+1>0, and f isin
L?(By, dv,). Then f belongs to BMO? if and only if the two Hankel

operators H}o‘) and H](rf’) are both bounded on LP(B,, dv;).

When o = 0, we will write dv for dv,, P for P,, K(z, w) for
K@(z,w), L§ for Li(dv,), Ty for T}O‘), and H, for H}"‘). We
state two corollaries to Theorem B.

CoRrOLLARY 1. If p>1 and o> -1, then f € BMO if and only
if H}a) and H%a) are both bounded on LP(B,, dv,).
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The above corollary is proved in [1] in the special case p = 2 and
a = 0. However, all results in [1] are proved in the context of a
bounded symmetric domain in C”.

COROLLARY 2. If a > A > —1, then f € BMO} if and only if H}a)
and H}“) are both bounded on L'(B,, dv;).

The above corollary is partially proved in [11] in the special case
a =n+1 and A = 0; but again the setting in [11] is a bounded
symmetric domain. The projection P,,; is frequently used in the
study of the Bergman space L} (see [7], [12]).

A similar study will be made on the corresponding VMO? and com-
pactness of Hankel operators on L5(dv,;). Holomorphic functions in
BMO¥ (or VMO¥) are precisely the functions in the Bloch space (or
the little Bloch space) of B, .

In the first version of the paper Theorem B was proved under the ad-
ditional assumption p(n+1+a) = 2(n+1+24). (The proof was based
on a method introduced in [8].) Daniel Luecking read the preprint and
found a way of getting around this condition. I am grateful to Profes-
sor Luecking for allowing me to use his proof and obtain Theorem B in
its present form. I also wish to thank the referee for carefully reading
the manuscript and making several useful suggestions for improve-
ment (and in some instances corrections) of the paper. In particular,
the referee significantly simplified the proof of Lemma 9 and part of
the proof of Theorem 5.

2. The structure of BMOY . In this section we study the structure of
the space BMO? , consisting of functions f on B, with

1

Zsélgm o) |f(w) = f(2)IP dv(w) < +o00,
where {
fr(z) = m Dz f(w)dv(w)

is the dv integral mean of f over D(z, r).

LEMMA 1. f isin BMO? ifand only if there exists a constant C > 0
such that for any z € B, there is a constant A, with

1

[D(z, N Jpz,n [f(w) = 2P dv(w) < C.
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Proof. The “only if” part follows by taking A, = f;(z). To prove
the “if” part, assume that the above inequality holds for all z € B, .
By the triangle inequality for the L? integral,

1/p
1 .
[m e |f(w) = fr(2)IP dv(w)]
1 1/p
- P
< [I B oy 1) =21 dv(w)}
+1/(2) = 4]
But
N 1
1fr(2) =4z = Im D(Z’r)(f(w) —ﬂz)dv(w)l
1 1/p
- P
Therefore,
1/p
1 .
[——l 5 o L )= fp dv(w)]
1 1/p
- P
52[ID(z,r)l D(z,7) 7 (w) = 4| dv(w)] ’

completing the proof of the lemma. O

For any r > 0, let BO, denote the space of continuous functions
f on B, such that

@r(f)(z) = sup{|f(z) - f(w)|: w € D(z, r)}

is a bounded function on B,. w,(f)(z) is the oscillation of f at z
in the Bergman metric.

LEMMA 2. BO, is independent of r. Moreover, a continuous func-
tion f on B, isin BO, if and only if there is a constant C > 0 such
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that
|f(2) = f(w)| £ C(B(z, w)+ 1)

forall z and w in B,.

Proof. See [1]. O

We will simply write BO for BO,. The initials BO stand for

“bounded oscillation.” We will put the following semi-norm on BO:
/1l = sup{|f(z) — f(w)|: B(z, w) < 1}.

Let BAi’/genote the space of all functions f on B, with the prop-
erty that |f|?(z) € L>*(B,). The initials BA stand for “bounded
average.” The next lemma describes the functions in BA? .

LeEMMA 3. BA? is independent of r. Moreover, the following con-
ditions are all equivalent:

(1) feBA4?;

(2) supep Iz | fopz(w)|P dvy(w) < +oo for all (or some) A > —1;

(3) M;: LY(dv;) — LP(B,, dvy) is bounded for all (or some) A >
-1.

Proof. See Theorem A in [10]. O

We will simply write BA? for BA?. We will use the following
norms on BA?:

11 = sup [ 1 o pa(w)P? dvs(uw).
zeB" Bn
For A> —1 and f on B, we will write
Bif(z) = /B foo.(w)dv(w),  ze€B,.

This is called the Berezin transform of f with respect to the measure
dv; . It is easy to check that the following change of variable formula
holds for all 1 > —1:

B, f(z) = /B S (w) [ dvy(w),

where
KM (w, z)

VKWN(z, z)

are the normalized reproducing kernels for LZ(dv;).

KD (w) =
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LeEMMA 4. Suppose r, s, and R are positive constants;, then there
exists a constant C > 0 such that

(1) C1 <Dz, N)l/ID(w, )| < C,

(2) €1 < (1-|zP)/|1 - (z, w)| < 201~ |zP)/(1 - jwP) £ C,

(3) C1<|D(z, n)l/(1 - |z < C,
forall z,w e B, with B(z, w) <R.

Proof. See Lemmas 6 and 8 in [2]. ]

We can now prove the main result of this section.

THEOREM 5. Suppose r > 0 and p > 1. Then the following are
equivalent:

(1) feBMO?;

(2) f€e BO+ BAP,

(3) sup,ep fB" |fop.(w)—B;f(z)]P dvy(w) < +oo for all (or some)
A>—1;

(4) For any (or some) A > —1, there exists a constant C > 0 such
that for any z € B, there is a constant A, with

/B |fopz(w) = AP dv;(w) < C.

Proof. (1) = (2): Since r is arbitrary, it suffices to show that BMO%,
C BO+ BA4? . Given fe€ BMO%, and B(z,w) <r, we have

151(2) = Fr(w)] < 1/1(2) = For(2)] + | far(2) = Fr(w))
ID z, r|/ D(z.7) | f(u) f2r z)|dv(u)
i WV_)I /D(w,r) £ () = for(2)] dv(u).

By Lemma 4, |D(z, r)| ~ |D(w, r)| ~ |D(z, 2r)| forall w e D(z,r).
Now the first term above is bounded because of Holder’s inequality,
D(z,r)c D(z,2r),and f € BMO} . That the second term above is
bounded follows from Hoélder’s inequality, D(w, r) C D(z, 2r), and
f € BMO?, . This proves that £, belongs to BO, (and hence BO) if
f e BMO;, .

Let g = f — f, with f € BMO? , we show that g € BA?. It is
rather easy to see that if f isin BMO} , then f isin BMO? . By the
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triangle inequality,

r 11/p
P = | L o
PN = | 3y /00— 0P )
R X 1/p
- — P
< o IR0 dv(w)
1 X X 1/p
[ — — 14
+[|D(Z,,)| [ V=@ dew

< | fllr,p + w,(f)(z).

Since f, isin BO,, we see that g = f — f( isin BAP. Thus we have
shown that f € BMO}, implies that f = f, + (f — f,) € BO+ BA?.
(2)=(3): Fix A> —1 and write || ||, for || ||zr(4y - First note that

1f o0z = Bif(2)llp S NIf 0 @zllp + [Bif(2) < 2[f 0 9l -

By Lemma 3, ||fo ¢, — B;f(z)||, is bounded in z if f isin BA”.
On the other hand,

If o0z — Bif (2 = /B |f 0 92(w) — By f (2)[P duy(w)
< /B | /B 10 9:(w) = f 09l dus(w) dusu).

If f € BO, then Lemma 2 shows that there is a constant C > 0 such
that |f(z) — f(w)| < C(B(z,w)+ 1) forall z, w € B,. This, along
with the Mobius invariance of the Bergman metric, implies that

If o0z — Bif(2)|2 < C” /B /B (B(w, u) + 1) dv,(w) dvy(u).

The right side of the above inequality is a finite constant; this follows
from the triangle inequality f(w, u) < (0, w) + (0, u) and the
following explicit formula for the Bergman distance:

n+ 1\ 1+|z|
ﬂ(o,Z)—(T) lo —1—:|_Z_|

We see that f € BO implies that || f o ¢, — B; f(z)|, is bounded in
z.

The proof of the equivalence of (3) and (4) is similar to that of
Lemma 1. We omit the details.
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(3)=(1): By Lemma 4, there is a constant C > 0 such that
1 < CGID(z, N kP (w) (1 = [w]*)
for all z€ B, and w € D(z, r). It follows that

1
D& o | f(w) — B,f(2)P dv(w)

<cC . )If(w)—Blf(Z)l"lk?)(w)lzdva(w)

<cC /B \f 0 p2(w) — B f(2) duvy(w).

The desired result now follows from Lemma 1. a

Theorem 5 shows that BMO? is independent of the radius r. We
will write BMOS for BMO? . A canonical semi-norm on BMO} is

1Az = sup |If o ¢z = By f(2)ll 2 av,) »
Z€B,

where 4 > —1. It is easy to check that the above semi-norm is com-
plete and invariant under Mobius transformations.

COROLLARY 6. If A > —1 and f € BMOY, then B,f € BO and
f-B,feBAP.

Proof. By Lemma 4, we can choose a constant C > 0 such that
1< CCGID(z, ) kP (w)P(1 - |w]?)?
for all z € B, and w € D(z, r). It follows that

A 1
BS(2) - 1) < 5z /D @) = Bfldvew)
<cC / f(w) — B,f (2)] kP ()2 dvy(w)
D(z,r)

<cC / \f 0 02(w) — B, f(2)| dv(w)
Bn
<Clfop,— Blf(z)“L"(dvl) .

This shows that B;f — £, is bounded on B, if f isin BMO}. Since
bounded continuous functions are both in BO and BA?, the desired
result now follows from the proof of the implication (1) =>(2) in the
above theorem. o
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REMARK. It follows from the proof of the above corollary that if
f € BMO}, then B,;f(z) — B,f(z) is bounded on B, for all o,
A > —1. This, together with Theorem 5, easily implies that f € BMO}
if and only if

wp/lfow@w—lhﬂﬂwdww0<+w
zeBn Bn

for all (or some) a, A > —1 (not necessarily the same!).
Recall that the Bloch space % (B,) of B, consists of holomorphic
functions f on B, such that

u—uﬂ§£u> (1<k<n)

are bounded on B,,. The little Bloch space %,(B,) of B, isthe space
of all holomorphic functions f on B, such that

0

u—um—éw»ao Iz — 17)

0z
for all 1 <k < n. See [9] for the theory of Bloch functions in several
complex variables.

THEOREM 7. Let H(B,) denote the space of all holomorphic func-
tions in B,. Then BMOS N H(By,) = %(By) forall p>1.

Proof. 1t is shown in [1] that BON H(B,) = #(B,). Thus % (B,)
C BMOj, N H(By). On the other hand, if f is a holomorphic func-
tion in BMOY, then B,f = f for all o > —1 and hence f is in
BON H(B,) = %(B,) by Corollary 6. ]

ReEMARK. The dependence of BMOg on p is on the “bounded part”
of BMO}, BAP; the “smooth part” of BMO}, BO, is independent
of p. In this sense, the dependence of BMOg on p is not heavy.

3. Bounded Hankel operators on Bergman spaces. This section is
devoted to the proof of Theorem B. Recall that for any A > —1,
(1 _ |Z|2)(n+1+1)/2

) -
kZ (w)_(l_(w’z>)n+l+l> Za'weBn;

are the normalized reproducing kernels of L2(dv,). Forany p > 1,
(k?)2/P are unit vectors in L?(B,, dv;).
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LEMMA 8. For —1 < s+ A < a there exists a constant C > 0 such
that

_ 2\s
[ AT dww) < €1 - zpyi-e

forall ze€B,.

Proof. Given t > —1 and ¢ < 0 we can choose a positive integer
k such that

c c
t+E>_1, C—E<0.

By the explicit formula for f we can find a constant C; > 0 satisfying
B0, w) < Cy(1 — |w}?)rk, wEB,.
Using 1.4.10 of [6] we see that there exists a constant C > 0 with
BO, w)(1 - wP)

B '1 _ <Z, w)|n+l+t+c

v(w)

(1 — |w|2)t+(,’/k
=¢ /B |1 = (z, w)|rti+t+e/k)+(e—c/k) dv(w) < C

for all z € B, . The desired result now follows easily from the change
of variables w — ¢,(w). O

LEMMA 9. Let T and S be the operators defined by

_ PAY:S
Tfe) = [ B ) duw),

— (Z, w>|n+1+a
_ 2\a
$£@) = [ e w) dv(w).

Then T and S are both bounded on LP(B,,dv;) provided that
pla+1)>4A+1>0.

Proof. We prove the boundedness of 7. The boundedness of S
can be proved similarly (see [3]).

The case p = 1 follows directly from Fubini’s theorem and Lemma
8. So we assume 1 < p < +oo0 and 4+ 1 =1. Write

Bz, w)(1 - Jw?)**
C'1 11— (z, w)|r+l+a

f(w) dvy(w).
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By Schur’s theorem [12], T is bounded on L?(B,, dv,) if we can find
a number ¢ and a positive constant C > 0 such that the function
h(z) = (1—|z|?)? satisfies

_ 2ya—A
8 ﬂﬁ’—uz)z(lmlﬁuﬂlla h(w)? dvy(w) < Ch(z)?

for all z € B, and

B(z, w)(1 — jw}?)>*
s |1—(z, w)rtite

n

h(z)? dv;(z) < Ch(w)?

for all w € B,. By Lemma 8 this is possible provided that

-l<a+go<a, -1<Ai+po<a,
o 1 A+1 A
et cs <o, ——; << 2,

Clearly such a number o exists if and only if

(_A+1’a—l)n(_a+l’0)
4 p q

is nonempty. The desired result now follows easily from the assump-
tion p(a+1) > A+ 1> 0 and the observation that (4, B)N(C, D)
is nonempty when C < B and A< D. o

LEMMA 10. For each p > 1 and 2 > —1 there exists a constant
C > 0 such that

[ f@pdune < [ u@pdu)
Bn B’l

Jor all holomorphic functions f on B, with f(0) =0, where u is the
real part of f.

Proof. By using a limit argument, we may as well assume that f is
holomorphic in a neighborhood of B, . Choose « so that p(a+1) >
A+ 1> 0; then P, is bounded on L?(B,, dv;). Thus there is a
constant C > 0 such that

[ 1P dviz) < € [ ()P dvi(z)

Bn Bn

for all functions # on B, . Now if u is the real part of a holomorphic
function f on B, with f(0) =0, then

_f+f

U=
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and hence
Pu=

[+Pf _f+10) _f
2 - 2 2°
It follows that

[ 1@ du(z) =2 / |Puu(z)[? dvj(2)
Bn Bn

<2C /B u(2)[? duy(z),

completing the proof of Lemma 10. O

We can now prove the main result of this section. Recall that
for @« > —1 and f on B,, the Hankel operator H}a) is defined

by Hj(,o‘) = (I — P,)M¢P,, where I is the identity operator, M, is
the multiplication operator induced by f, and P, is the orthogonal

projection from L2(B,, dv,) onto L2(dv,).

THEOREM 11. Suppose p > 1 and p(a+1)>A+1>0. Then a

function f on B, belongs to BMOY if and only if the Hankel operators
H}“) and H%a) are both bounded on L?(B,, dv,).

Proof. First assume that f € BMOS. We show that H}a) and

H%") are both bounded on LP(B,, dv,). Since BMO) = BO + BA?

(by Theorem A) and H depends on f linearly, it suffices to show
that Hf and H fa) are bounded on L?(B,, dv;) for f € BO and
feBAP,

If f € BAP, then Lemma 3 implies that M, and M7 are both
bounded as operators from L5(dv,;) into LP(B,,dv;). Since
pla+1)>41+1>0, P, is a bounded projection from L?(B,, dv;)
onto LZ(dv;). Thus H("‘) (I~ Po)M/P, and Hy ) = (I - P,)M3P,
are both bounded on LP(Bn , dvy).

On the other hand, the integral formula for P, gives

H8(2) = [ ()= Kz, w)g(w) dv,w),

n

g € Lg(d?)l) .

Since P, maps L?(B,, dv;) boundedly onto L5(dv;), the bounded-

ness of H}"): LP(B,, dv;) — LP(B,, dv;) is equivalent to the bound-

edness of H}O‘): Li(dv;) — LP(B,, dv;). Now if f € BO, then
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Lemma 2 shows that there is a constant C > 0 such that

|f(2) - f(w)] £ C(B(z, w)+ 1)

for all z and w in B, . It follows that
HPg(2) < C / (B(z, w) + DIK®(z, w)||g(w)] dva(w)

(/? (z, w)+ D~ |wP)

=CCa |1 — (z, w)|r+i+a

|g(w)|dv(w

for all g € L(dv;) and z € By, . It follows from Lemma 9 that H; (a)-
is bounded on LP(B,, dv;). Similarly, f € BO implies that Hi)

f
is bounded on LP(B,, dv;). Thus we have proved that f € BMO}

implies that both H}"‘) and H7a) are bounded on L?(B,, dv;).

Next we assume that H}"’) and H%a) are bounded on L?(B,, dv,).
We show that f € BMOY . By considering the real and imaginary parts

of f, we may as well assume that f is real-valued. Since (k{V)%/P
are unit vectors in L”(B,,, dv,), there is a constant C > 0 such that

IHO EP)r) < C
for all z € B,. | || in this paragraph always means the norm in
LP(B,, dv;). Using the definition of Hj(,“) , we have
I = P)(f KPP < C.

Note that each k;’l) is a nonzero holomorphic function on B, and
|k§’1)(w)|2 is the Jacobian determinant of the change of variable w —
@-(w) with respect to the measure dv;. Thus for each z € B, there
is a holomorphic function g, on B, with

|fop:—gl<C.
In fact, g, can be chosen as follows:
g:(w) = Pa(£(k")/P) (92 (w)) (k) 2P (92 (w)).
Since f is real-valued, ||fo ¢, — g;|| < C implies that
[Img;||<C,  z€B,.
By Lemma 10, there exists another constant A/ > 0 such that
le: — g:(0)| < M
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for all z € B, . It follows from the triangle inequality that
|fop.—g(0)|<C+M

for all z € B,. By the equivalence of (1) and (4) in Theorem 5, we
have f € BMO) . This completes the proof of Theorem 11. 0

COROLLARY 12. Forany p > 1 and a > —1 we have f € BMO} if
and only if H}"‘) and H}a) are both bounded on LP (B, dv,).

Proof . This follows from Theorem 11 by setting a = 4. O

COROLLARY 13. Suppose o > A > —1. Then f € BMO)} if and only
if Hj(,a) and H_}a) are both bounded on L'(B,, dv,).

Proof. This is just the special case p = 1 in Theorem 11. 0

COROLLARY 14. Suppose p > 1, p(a+1)>A+1>0, and f is
holomorphic in B,. Then H%a) is bounded on LP(B,,dv;) if and

only if f € #, the Bloch space of B, .

Proof. This follows from Theorems 7 and 11 and the fact that

H}C’) =0 if f is holomorphic. 0

4. VMOg and compact Hankel operators. In this section we study
the companion space VMO’ and its relationship to compact Hankel
operators on L”(B,,dv;). When 1 < p < 400, any two reason-
able definitions for compact operators on L?(B,, dv;) are equivalent.
However, when p = 1, the space L!(B,, dv;) is no longer reflexive,
and hence the definition for compact operators on L!(B,, dv;) will
surely make a difference. In this section we will think of the Hankel
operators H](f’) as acting on the Bergman spaces L5 (dv;). We first
clarify the notion of compact operators on L% (dv;).

When 1 < p < 400, L5(dv;) is the dual of Li(dv;). LL(By, dvy)
is the dual of the little Bloch space %, (see [3]). The dualities just
mentioned are given by

(f, &= lirfl_ i (rz)g(rz)dvy(z).
r—

(The above limit can be taken inside the integral when 1 < p < +00.)

For 1 < p < 400, we equip L5(dv;) with the weak-star topol-

ogy induced by the above dualities. We say that a linear operator
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T: L5(dv;) — LP(B,, dv,) is compact if Tf, — 0 (in norm) in
L?(B,, dv;) whenever f, — 0 in the weak-star topology of L}(dv;).
If 1 < p < 400, then the weak-star compactness defined above is
equivalent to the usual compactness of operators on Banach spaces.

LEMMA 15. Forany 1 < p < 400 and A > —1, a sequence {f,}
in L(dv;) converges to zero in the weak-star topology if and only if
fa(z) — O uniformly on compact sets and || fu|| >4y, < C for some
constant C >0 andall n> 1.

Proof. The proof is similar to that of Lemma 11 in [11]. O

COROLLARY 16. Forany p > 1 and 4> —1 we have (k;’”)z/l’ -0
(|z| = 17) in the weak-star topology of L%(dv;).

Proof. This follows directly from Lemma 15. m

Forany p > 1 and r > 0, let VMO! denote the subspace of BMO)
consisting of functions f such that

lim / P dv(w 0.
Jim |D2r| Zr) F(z)lF dv(w) =

To describe the structure of VMO?P , we introduce two subspaces of
VMO? .
Recall that

@r(f)(2) = sup{|f(2) - f(w)|: w € D(z, 1)}

is the oscillation of a continuous function f at z in the Bergman
metric. Let VO, be the space of all continuous functions f on B,
such that w,(f)(z) — 0 (|]z|] — 0). The initials VO here stand for
vanishing oscillation.

LEMMA 17. VO, is independent of r. Moreover, VO, is the closure
of C(B,) in BO, where C(B,) is the space of all functions on B,
which are continuous up to the boundary of B, .

Proof. The proof here is similar to that in the case n» = 1 given in
§7.2 of [12]. We omit the details here. O

We will simply write VO for VO, .
For r >0 and p > 1, let V4? denote the space of functions f

on B, such that [fZ(z) » 0 (|z| — 1-). The initials V4 stand for
vanishing average. We have
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LEMMA 18. VA? is independent of r. Moreover, VAL is the closure
in BAP of the set of functions with compact support in B, .

Proof. The proof is similar to that of the special case p = 2 and
n = 1 given in §7.2 of [12]. We omit the details here. See also
[10]. 0
The above lemma enables us to write VA4? for VA? . Note that a

similar version of Lemma 3 can also be proved for V4?7 . We can now
describe the structure of the space VMOF .

THEOREM 19. The space VMO? is independent of r. Moreover, the
Jollowing conditions are equivalent:

(1) feVMO?;

(2) feVO+ VAP,

(3) For any € > 0, there exists a constant é € (0, 1) such that for
any 0 < |z| <1 in B, there is a constant A, with

1
'D(Z’ r)l D(z,r)
(4) lim, ;- [|fop: =B, f(2)llrr(av,) = O for all (or some) 2> —1;
(5) Forany ¢ >0 and A > —1, there exists 6 € (0, 1) such that for

any 6 < |z| <1 in B, there is a constant i, with ||f°¢z—'12”L”(dv1) <
€.

|f(w) - 4|7 dv(w) < &;

Proof. The proof for the theorem is similar to that of the corre-
sponding statements for BMO? in §2. We omit the details here. 0O

We will write VMO5 for VMO¥ . By the above theorem and Lem-
mas 17 and 18, VMOY is the subspace of BMO) generated by func-

tions in C(B,) and functions with compact support.

THEOREM 20. Suppose p > 1 and p(a+1) >A+1>0. Thena
function f on B, belongs to VMO? if and only if HJ(,") and H}a) are

both compact on L5(dv,).

Proof. 1t is easy to show that H}") and H%a) are both compact on
L?(B,, dv;) if f € C(B,). Also if f € BAP has compact support in
B, , then Hj(,") and H}") are both compact on L?(B,, dv;). Since

VMOg is generated by C(B,) and functions with compact support, we
see that H}") and H}a) are compact on L?(B,, dv;) for f € VMO}.



394 KEHE ZHU

Conversely, if H}") and H}a) are both compact on L?(B,, dv,),
then

|HP D)~ 0, HO D2 ~0 (2] - 17)

since (k)27 0 (Jz| — 17) in the weak-star topology of LZ(dv;),
where | | denotes the norm in L?(B,, dv;). By the second part
of the proof of Theorem 11, we have ||fo ¢, — g:(0)] - 0 (|z| —
17). By Theorem 19, f € VMog , completing the proof of Theorem
20. O

The following two corollaries are immediate consequences of The-
orem 20.

COROLLARY 21. If p > 1 and o> -1, then f € VMOY if and only
if H}a) and H}"‘) are both compact in LP(By, dv,).

COROLLARY 22. If @ > —A > —1, then f € VMO)} if and only if

Hj(f") and H}a) are compact in L'(B,, dv;).

Finally, we show that holomorphic functions in VMO? are precisely
the functions in the little Bloch space. Recall that H(B,) is the space
of all holomorphic functions on B, and %,(B,) is the little Bloch
space of B, .

LEMMa 23. VMOZ N H(B,) = By(B).

Proof. 1t is shown in [1] that YONH(B,) = %y(B,) . Thus %y(B,)
C VMO} N H(By). On the other hand, it is easy to see that if f €
VMOY , then B,f € VO forall a > —1 (see the proof of Corollary 6).
Thus if f is a holomorphic function in ¥MO¥ , then f = B,f € VO,
and hence f € %y(B,). 0

CoROLLARY 24. Suppose p > 1, p(a+1)>A+1>0, and f is
holomorphic in B, . Then H%a) is compact on L5(dv;) if and only if

f € '@O(Bn) .

Proof. This follows from Lemma 23 and Theorem 20. O
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