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It was proved by Vinogradov that every sufficiently large odd inte-
ger can be written as the sum of three primes. We show that this re-
mains the case when the primes so utilized are restricted to an explicit
thin set. One may take, for example, the "Piatetski-Shapiro primes"
p = [nιlγ] with any γ > 20/21. By a similar argument it would
follow that, for arbitrary θ, 0 < θ < 1, and suitable λ = λ(θ) > 0 ,
one may take the set of primes for which {pθ} < p~λ .

1. Introduction, The ternary Goldbach problem was solved by Vino-
gradov [Vi] who gave an asymptotic formula for the number of repre-
sentations of the (sufficiently large) odd integer N as the sum of three
primes. We state this in the form, cf. [Va],

(1.1) R(N) d=lf

valid for arbitrary A > 0, where &(N) is the singular series

(CT)
Wirsing [Wi], motivated by earlier work of Erdόs and Nathanson

[EN] on sums of squares, considered the question of whether one
could find thin subsets S of primes which were still sufficient to ob-
tain all sufficiently large odd integers as sums of three of them. He
obtained the very satisfactory answer that there exist such sets S with
the property that Σp<x,Pes 1 ^ (*log*) 1 / 3 This result was later re-
discovered by Ruzsa. Wirsing's result, which is obviously best possible
apart from the logarithmic factor, is based on probabilistic considera-
tions and does not lead to a subset of the primes which is constructive
or recognizable.

It was Wolke who suggested the problem of finding more familiar
thin sets of primes which serve this purpose and he announced his
results on one such construction at an Oberwolfach meeting in 1986.
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46 ANTAL BALOG AND JOHN FRIEDLANDER

There are not many thin sets of primes about which we have very
much information. One may expect for example that we should first
be able to obtain an asymptotic estimate for the counting function of
such a set and this already bars many sets from consideration. An
exception is provided by a theorem of Piatetski-Shapiro.

We fix a real number c and consider the number of n < x such
that the integer part [nc] is a prime. In the case that 0 < c < 1 every
prime < xc occurs in this fashion and it is a simple consequence
of the prime number theorem that we have the expected asymptotic
formula

( 1 . 3 ) J2 I = ( I + 0 ( 1 ) ) .
^ clogx
n<x

[n]=P

Piatetski-Shapiro [PS] proved the much more difficult result that
the asymptotic formula (1.3) still holds in the range 1 < c < 12/11.
This range for c has been improved since by a number of authors;
more recently Heath-Brown [HB] has extended it to 1 < c < 1.14
and Kolesnik [Ko] further to 1 < c < 39/34.

We let γ = 1/c, so that in the interesting case we have 0 < γ < 1,
and note that by (1.3)

p<x

so that this set Pγ of "Piatetski-Shapiro primes of type γ " form a
thin set of primes. In this paper we show that, provided γ is not too
much smaller than 1, this thin set Pγ suffices for the ternary Goldbach
problem.

THEOREM 1. Let γ\, y-χ, γ^ be fixed subject to 0 < yι < 1 and

(1.4)

(1.5)

(1.6) 9(1 - y i ) + 6(1 - y2) + 6(1 - y3) <
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Then for any A>0 and with &(N) defined by (1.2) we have

(1.7) T(N) d^f — ] —
7 1 7 2 7 3 P

This means in particular that we may require the three summands
to be Piatetski-Shapiro primes of different type. However, choosing

7\ = 72 — 73 = 7 w e obtain

COROLLARY 1. For any fixed 20/21 < γ < 1 the primes p of the
form [nιly] have the property that every sufficiently large odd integer
can be written as the sum of three of them.

Also, choosing y\ = γ2 = 1 we obtain

COROLLARY 2. For any fixed 8/9 < γ < 1 every sufficiently large
odd integer can be written as the sum of three primes one of which is
of the form [n1

Note that 8/9 < γ is not much worse than the best known results
for the existence of Piatetski-Shapiro primes.

We find it somewhat more convenient to weight the primes in (1.7);
the unweighted version is given by

THEOREM 2. With 7\, 72, 73 and &(N) as in Theorem 1, we have

log3iV

The condition that p be a Piatetski-Shapiro prime of type γ is
roughly speaking equivalent to the fact that the fractional part {pγ}
is < p~λ with λ = 1 — γ. The method we give here works also for
the more general situation and with tiny modifications the proof of
Theorem 1 gives in particular

THEOREM 3. For any fixed 22/25 < γ < 1 the set of primes p
satisfying {ργ} < p-2^-^/3 has the property that every sufficiently
large odd integer is the sum of three of them.
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We note that the number of primes < x in the above set is <

χ(\+2y)β m a k i n g it a thinner set (in the best case, density

χ23/25+ε) than that given by Corollary 1. The choice λ = 2(1 - γ)/3
seems to be the optimal one in this regard from the point of view of
our method.

For the proof of Theorem 1 we do not directly use the Hardy-
Littlewood method. The fact that we are dealing with a thin set of
primes would require us to save a fixed power in the minor arc es-
timates and this would necessitate a choice of the major arcs so nu-
merous as to require information about the distribution of primes in
arithmetic progressions which is currently unavailable. Instead we are
able to reduce the problem of estimating (1.7) to the Vinogradov re-
sult (1.1). In the same fashion Theorem 2, whose proof we do not
give, can be reduced to a weighted version of (1.1) which seems not to
have appeared in the literature but which can be proved by the same
classical method [Va] that gives (1.1).

We may remark that the error term in (1.7) comes not from the
reduction to (1.1) but rather from the proof of (1.1) itself; in fact
we prove that for a suitable 0 < ε = ε(γ), we have T(N) = R(N) +

o(N2~η.

2. Preliminaries. The reduction of Theorem 1 to the Vinogradov
estimate (1.1) is by means of the identity

(2.1) /1/2/3 - g\g2g3 = C/i - £0/2/3

+ g\{fi -

We let g\ = g2 = gi = g(a) = Σp<χe(ap)\ogp so that the sum in
(1.1) is given by

R(N)= / g\a)e(-Na)da.
Jo

We let, for 1 < i < 3,

[»P y Ί-[-(p+l) y ])
" p<N

so that the sum in (1.7) is given by

T(N)= fl fi(a)f2(a)f3(a)e(-Na)da.
Jo
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Thus, by (2.1), we have T(N) = R(N) + E, where

/ \ rι ( \ rι

(2.2) l s < ί sup |/i — ^| J / \fih\da+ ί sup|/> - g\ j / \gh\da
\ a /JO \ ex. J JO

ί \ ίl 2
+ sup I/3 - g\ / 1̂ 1 «α.

\ a J Jo
We estimate the integrals in (2.2) by Cauchy's inequality and Par-

seval's identity. We appeal to a sieve bound of Deshouillers [De] by
which, for any y

log*
p<x

(Actually, for our range of γ, even the asymptotic formula is available,
and the result follows also from Theorem 4 below.) Inserting these we
find

ί1 2

Jo
if1 \ι/2 ί ίι V/2

/ \fih\da < N2-v*l2-

so that we require, for 1 < i < 3, an estimate

for some ε > 0, where £3 = 0, £2 = 5(1 -~ ft) > a n ( l 1̂ == j ( l ~ 72) +

i ( i -73) .
By (1.4)—(1.6) we see that Theorem 1 follows from

THEOREM 4. Let γ, δ satisfy 0 < γ < 1, 0 < <J

(2.3) 9(1 -γ) + \2δ < 1.

Then, uniformly in a, we have

(2.4) I
^ p<N p<N

P=[nυγ]

where the implied constant may depend on γ and δ only.
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From now on implied constants may depend on ε, γ, δ but not
on a. The special case a = 0 gives a Piatetski-Shapiro theorem and
indeed the following arguments are, to a large extent, based on the
proof of that theorem given in [HB].

Denoting the left-hand side of (2.4) by f{ά), we have

f(a) = - Σ e(ap)pι-nogp([-py] - [~(p + 1)0)
p<N

and

/(α) - *(α) = i ]Γ ̂ (αpjp1^ log/>M-(p + 1)0 - ψ(-pγ))
γ p<N

+ <9(log7V)

where ^(ί) — {ί} - 5 . The error term is admissible since 2(1 - γ) +
2δ < 1.

We introduce the notation n ~ N to signify that n runs through
the integers N < n < Nf for some Nr < IN. The actual choice of N'
may change as we proceed. The same is ture of the positive constant
ε . On the other hand, nx N means N < n < N .

Theorem 4 will follow if we prove for each 1 < x < N the estimate

(2.5) ]Γ A(k)e(ak)kι-γ(ψ(-(k + 1)0 - y(

We use the well-known expansions

0<\h\<H0

mm
V ' Hι\\\t\\ I

h——oo

where \\t\\ = min({ί}, 1 - W) a n d

We insert (2.6) into (2.5) and estimate first the contribution of the
error term. For this purpose and also for later use we recall a familiar
estimate of van der Corput (see, for instance, [Ti, Theorem 5.9]).
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LEMMA 1. // Δ > 0 and F"{t) x Δ {or -F"(t) x Δ) for N < t <
2N then

(2.7) e(F(n)) <£ NA1'2 + A~1'2.
n~N

Using (2.7) and trivial estimates we find that the contribution to
(2.5) from the error term in (2.6) is bounded as

(2.8) \bh\

h=-c

h=\

We fix the choice HQ = χι-y+δ+ε and find that this contribution is
< xι~δ as required since 2(1 - γ) + 3δ < 1. As for the sum over
h occurring in (2.6) we may partition it into Ĉ logx subsums of
the type h ~ H for various H < HQ. (We shall ignore negative H
which may be treated in the same fashion; in fact they give the same
contribution in absolute value as do the positive H for — a.) The
proof of (2.5) thus reduces to showing that, for each such H, we have

Σih A(k)kι-γe{ak)(e(h(k - e(hkγ))
k~x

Λ-δ-ε

When H < Hx = f xι~? we write

e{h(k +l)γ)- e(hkγ) = 2πiγh / (k + uγ-χe{h(k + u)γ) du.
Jo

When H > Hi we treat these two terms separately. After partial
summation, we reduce the proof of (2.9) to the problem of showing
that for each 1 <x <N9 0 < K < 1, H <H0,

(2.10)
k~x

Λ-δ-ε

3. Some combinatorics. A special case of the identity of Heath-
Brown [HB2] is given by

"f = -j(i - ZO3 - Σ
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where Z = Z(s) = Σm<χiβ μ(m)m~s. From this we can decompose
A(k) for k ~ x as

7=1 mr m2j=k

For any arithmetic function G(k) we can express
in terms of sums

Σ " " Σ
j '"WI2 ^

mι~Mι

^ l θ g m2

where 7 < 3, Mλ Λf2; ~ x and M\, ... , Mj < x 1 / 3 . By dividing
the Mj into two groups we have

(3.2)
k~x

where the maximum is taken over all bilinear forms with coefficients
satisfying one of

(3.3) K I < 1 , \bn\<l

or

(3.4) \am\<l, bn = l

or

(3.5) \am\<\9 bn = logn

and also satisfying in all cases

(3.6) M < x.

We refer to the case (3.3) as being a Type II sum and to the other
cases as being Type I sums.

By dividing the Mj into two groups in a judicious fashion we are
able to reduce the range of M from (3.6).

PROPOSITION 1. If we have real numbers 0 < a < 1, 0 < b < c < t j
satisfying

(3.7)

(3.8) 1 - c < c - b ,
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and

(3.9) \-a<\c

then (3.2) still holds when (3.6) is replaced by the conditions

(3.10) M <xa for Type I sums,

(3.11) xb <M <xc for Type II sums.

To prove this first notice that if there is an Mt satisfying xι~c <
M( < xι~b then we are done by taking a Type II sum with M equal
to the product to the other factors. (The possibility that log mij > 1
is unimportant, due to the presence of xε in (3.2).) In case not, let
Mo be the product of those M, < xι~c. If Mo > xι~c then by (3.8)
there is a subproduct between xι~c and xι~b. Choosing M to be the
product of the other factors we get an admissible Type II sum. If, on
the other hand, MQ < xι~c we use the fact that, because \-b> \ by
(3.7) we have at most two additional AT/ not in MQ and these occur
with coefficient 1 or logn. Then by (3.9) we have an admissible Type
I sum where M is the product of all Mi but the largest. This yields
Proposition 1.

For the application of Proposition 1 to our situation we write

- h(mn + u)y)

where the coefficients satisfy (3.3) and M is in the range (3.11) while
we write S\ when the coefficients satisfy (3.4) or (3.5) and M is in
the range (3.10).

4. Type II bilinear forms. For any fixed 0 < u < 1, H < HQ we
choose the coefficients Cu, h ~ H such that

ambne(amn + h(mn + u)y)

ambne(amn +1

Obviously \c^\ = 1. Let Q > 1 be a parameter to be chosen later
optimally and we preselect the pairs (h, n) according to the size of
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hnγ precisely for q ~ Q

Wg = {(h,n), h~H, n~x/m,

Hxy(q - \)IQ < hnyMy < Hxγq/Q}.

From the Cauchy inequality we have

h{mn + u)y)
h~H

Σ h(mn + u)y)

(h,n)ewa

Σ (a{nx -ni)m

h\(mn\ + M)3' - u)y)

<QM Σ V

My\hχn\-h2n
γ

2\<Hxγ I
, n2~x/M

iainx -n2)m

h\{mnχ + w)7 - h2(mn2 + u)y)

where the innermost sum over m is taken in an interval defined by
m ~ M, m ~ x/ni, m ~ x/«2. We are going to apply Lemma 1.
Writing

F(m) = a(nx - n2)m + hx(mnx + u)y -

we can quickly calculate that for m ~ M

F"{m) = γ(γ - \)hxn\{mnx + u)y~2 - γ(γ -

= γ(γ - l)my-2(hxn
y - h2n\) + 0

u)y

u) y~2

, ~ M2

whenever \V < My\hxn\ - h2n\\ < V and H/Hx < V < Hxy/Q. -^
Let S(V) be the number of quadruples (hx, h2, nx, n2) satisfying

hx~ H, h2~ H, nx ~x/M, n2 ~ x/M and My\hxή[ - h2n
y

2\ < V.
The sum over m is bounded trivially by M for quadruples corre-

sponding either to V < 1 or to V < H/Hx, and we use (2.7) for the
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others. We distinguish the cases H < H\ and H\ < H < Ho. We
arrive at

1 / 2

QM2S(\) + QM Σ s ^ ( v l β

V<Hxγ/Q ^V<HxγIQ

for H<HX and

(4.2) Sn < ̂ jr ί QM2S (^f)

1/2

+ βM
///#,< V<Hxγ/Q

for /ίj < H < HQ. Note that in these sums F runs through powers
of 2. The necessary bound for S(V) is contained in the next lemma
due to Heath-Brown [HB].

LEMMA 2. Let H > 1, N > 1, V > 0 αn /̂ γ φ 0. ^ /save

j
< VH2N2 + HNlog{2HN).

This immediately gives that

Inserting (4.3) into (4.1) and (4.2) we get that, in the case of H < Hx,

(4.4) Sn « MWQWHWXV** +

while, in the case of H\ < H < HQ ,

( 4 5 ) Sn

In case of (4.4) we choose Q = xι~2S~e/MH. Then, under the
assumptions xb < M < JCC, where 6 > 5(1 - γ) + 6S and c <



56 ANTAL BALOG AND JOHN FRIEDLANDER

1 - (1 - γ) - 2δ, we have Q > 1, and Sn < x{-δ~ε. Similarly, in
case of (4.5) we choose Q — Hxι~2δ~ε/H2M and find that we have

Q > 1 and Su <C x
ι~δ~ε

under the same assumptions. Summarizing
the results of this section we have

PROPOSITION 2. Let M satisfy xb < M < xc where

(4.6) b> 5(1 -γ) + 6δ

and

(4.7) c<l-(l-γ)-2δ.

Then, for all sufficiently small positive ε,

5. Type I bilinear forms. We treat (3.4). For any fixed 0 < u < 1,
H < HQ we trivially have

(5 D
h~H

cιme(amnJrh(mnJru)γ)

Σ e(amn + h(mn + u)y)
h~H m~M n~x/m

We are going to use two different methods to estimate this. In the first
we simply apply Lemma 1 to the innermost sum. Writing F(n) =
amn + h(mn + u)γ we can calculate for n ~ x/m ~ x/M, h ~ H

F"{n) = γ{γ - \)hm2{mn + u)y~2 x xγ~2HM2.

Insertion of (2.7) in (5.1) gives that

Sι min , Q

Thus we have S\ < .
provided that

(5.2)

and 1 < M < xaι where

(5.3) ax

for all sufficiently small positive ε

1

< ^ -y
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Our second method for the estimation of S\ is considerably more
complicated. We begin by fixing h ~ H so that

(5.4)

where

(5.5) Kh =

m-Af

e(amn + h(mn

n~x/m

We apply a translation in the variable n together with Cauchy's
inequality, a classic technique [Ti, Lemma 5.10] which we use in the
form

LEMMA 3 (see Lemma 5 of [HB]). Let I be a sub-interval of (N, 2N)
and let J be a positive integer. Then, for any complex zn we have

2

nel

Applied to this yields

(5.6)

m~M

n,n+jel

e(amn + h(mn + u)y)
n~x/m

where

EJ = _

n+j~x/m

and where we have ignored the negative values of j , which may be
treated in the same manner. Now

h(m(n + j) + u)y - h(mn + u)y

= h(m(n + j))γ - h(mή)y

+ γh Γ((m(n + j) + ί)7""1 - (mn + tγ~ι)dt
Jo

= h(m(n + j))y - h(mn)y + γh Γ mj(γ - l)(ξ(t)Y~2dt,
Jo
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for some ξ ~ x. Thus

(5.7) e{G{m,n))
n~xjm

n+j~x/m
m n

where G(m, n) = ajm + hmγ((n + j)y - ny) and the second double
sum is <^HjMxγ~ι.

To the first double sum we are going to apply Poisson summation in
the variable n, followed by an application of van der Corput's method
(Lemma 1) to the sum in m. In [HB] the same methods were applied
but with the variables reversed and with Lemma 1 replaced by a more
sophisticated exponent pair. In our case, we need an estimate uniform
in a and this forces the change of strategy and the weaker result.

We need the following result which may be proved by replacing /
by - / in [HB, Lemma 6].

LEMMA 4. Let 0 < a < b < 2a. Let f(z/a) be holomorphic on
an open convex set R containing the real line segment [1, b/a] and
satisfy \f"(z/a)\ < A on R. let f(x) be real when x is real and let
f"(x) > cA with c > 0. For every integer v with f'(a) <v< f(b)
define nv by f{nv) = v. Then

e(f(n)) = e(-
a<n<b v

+ ^(Δ-1/2) + O(log(2 + A(b - a))),

where the implied constants depend only on c and R.

For given m we take f(n) = G(m,n). We have

Γ dG/dn = γhmmn + jγ~ι - n^~ι) x -hjM2χy~2,
( ' * \d2G/dn2 = γ(γ-l)hm?((n + jγ-2-n?-2)>;hjM3χy-3,

provided that we assume, as we henceforth do, that

JM <xi~ε.

Applying Lemma 4 to the first double sum in (5.7) we get from thne
error terms in Lemma 4 a contribution which is bounded by

(5.9) ]Γ(log.x + {hjM3xγ~3)-1/2) < xε(M
m
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For a given integer v x -hjM2xγ~2 we define nv = nv{m) by

(5.10) γhmy((n,+jγ-ι-nl-ι) = u,

and consider the function

g(m) = G(m, nu(m)) - vnv{m).

Combining (5.7), (5.9), (5.10) in Lemma 4, we have

(5.11) Ej < hjMxγ~ι+Mxε + (hjM)-ιl2

where, for given v, one may check that the summation over m de-
termined by the conditions m ~ M, mn ~ x , m(n + j) — x ,
| ~ ( m , fl(m)) < ̂  < | 2 ( m ? fc(m)) is summation over an interval.

We intend to apply Lemma 1 to Σm

 a n c * ^ 0 Γ ^ ^ P u r P ° s e w e shall
need to calculate g"{m). We should also like to remove the factor
(§"~τ(m> nv))~χ/2 by Abel summation, which we may do provided
that we show that it is monotonic in m. We have

(5.12) Aλ

 ά±{ {nv + j)λ -ni=λ \\nv + t)λ~ι

Jo

= λjnϊ-{+λ(λ-l) ίJ l\nv
Jo Jo

~ι dt

A computation shows that

(5.13) n>Λm) = -—l

and, using this, we further compute that

d_ (d^G_, Λ _ y2hmy-χ _ 2

and, by (5.12), this is

= γ2(γ - )j

Recalling the assumption JM < xι~ε, this is negative, so that

fd2G λ~1/2

(5.14) —^-(m, nv)\ is monotonic increasing in m.
\dnz )



60 ANTAL BALOG AND JOHN FRIEDLANDER

Using (5.13) we also compute

g'(m) = aj + γhmγ-1Aγ

and

g"(m) = γ(γ - \)hmγ-2Aγ + γ2hmγ-iAγ.ι

_γh((γ-l)2AγAγ_2-γ2A2_{)

(γ-ί)m2-yAγ_2

By (5.12) we have

and since JM < xι~€, we have

(5.15) g'\m)^

We use (5.8), (5.14), (5.15) to apply Abel summation and then
Lemma 1 to the sum in (5.11). These yield

, < -77-.
v m

From (5.6) and (5.11) this gives, for JM < xι~ε,

K2 < J-ιx1+ε(x

and so, by (5.4),

xe (min (l > §-

We choose / = [H~ι/2M-ι/2x{-^2] and note that 1 <
M-χxx~ε as required, provided that M < xx~δ, M < χ i - ( i
With this choice of / , we have

xe (min (l, §-

+
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and this is < xι~δ~ε provided that xai < M < xa where

(5.16) a2> - 1 + 8(1-7) + 85

and

(5.17) a< 1-4(1 - γ) -5(5.

Comparing (5.3) and (5.16) we see that, under the condition

(5.18) 6(1-y) +(19/3)5 < 1,

the upper bound for a,\ exceeds the lower bound for α2 and the two
methods overlap. Summarizing the results of this section we have

PROPOSITION 3. Assume that (5.18) holds. Let M satisfy 1 < M <
xa where a satisfies (5.17). Then, for all sufficiently small positive ε,

6. Conclusion. In this section we combine Propositions 1, 2, 3 to
complete the proof of (2.10), hence of Theorem 4, and hence of The-
orem 1. By these three propositions it remains only to show that the
constants

α= 1 -4(l-γ)-5δ-ε,

which obviously satisfy (5.17), (4.6), and (4.7), also satisfy, provided
e is sufficiently small, the conditions (3.7), (3.8), (3.9).

The condition (3.7), b < 2/3 follows for all sufficiently small ε
since (15/2)(1 - γ) + 9δ < 1. The condition (3.8), 1 - c < c - b
similarly follows since 7(1 — y ) + 1 0 < J < 1. The condition (3.9),
1 - a < c/2, which is the most difficult to satisfy, follows since
9(1 - γ) + 12<J < 1. This completes the proof.
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