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ON SIX-CONNECTED FINITE H-SPACES
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In this note we shall prove the following theorem.

MAIN THEOREM. Let X be a 6-connected finite H-space with
associative mod 2 homology. Further, suppose that Sq*H' (X ; Z,) =
0 and Sq"H"Y(X;Z,) = 0. Then X is either contractible or has
the homotopy type of a product of seven-spheres.

0. Introduction. It should be noted that there are several results
related to this theorem. Lin showed that any finite H-space with
associative mod 2 homology has its first nonvanishing homotopy in
degrees 1, 3, 7, or 15 (or is contractible). A seven-sphere is an H-
space, but not a mod 2 homotopy-associative one [4, 10]. Further
work of Hubbuck [5], Sigrist and Suter [12], and others has shown
that spaces whose mod 2 cohomology has the form

A(x7, x11) or A(x7, X1, X13)

are not realizable as H-spaces. (Here x; denotes an element of degree
i.) One is led to conjecture that

Conjecture 1. Every two-torsion-free 6-connected finite H-space is
homotopy equivalent to a product of seven-spheres (or is acyclic).

Conjecture 2. Every two-torsion-free homotopy-associative 6-con-
nected finite H-space is acyclic.

Conjecture 1 implies Conjecture 2 by [4, 11].

Henceforth, X will denote an H-space that satisfies the hypotheses
of the Main Theorem, and H*(X) will denote H*(X ; Z,). The proof
of the Main Theorem will be accomplished in a series of steps, which
we record here. Our goal is to show that under the hypotheses, X has
mod 2 cohomology an exterior algebra on 7-dimensional generators.
This relies heavily on the following theorem.

Steenrod Connections [8]. Let X be a finite simply-connected H-
space with associative mod 2 homology. Then for r >0, k > 0,

185



186 JAMES P. LIN AND FRANK WILLIAMS

QHY+¥kN(X 5 7)) = Sq¥KQH+*1(X ; Z,), and
qurQH2r+2'+‘k_l(X; Z,)=0.

(Here QH™* denotes the indecomposable quotient.)

In §1 we shall use a relation in the Steenrod algebra and the methods
of [1] to produce a new factorization of Sq'®. We then apply this
factorization to show that H23(X) = 0. This implies that H*(X)
is an exterior algebra on generators in degrees of the form 24 — 1,
d > 3, with trivial action of the Steenrod algebra. In §2 we use
the Cartan formula for secondary operations, [7], and a particular
factorization of the cube of a certain 8-dimensional cohomology class,
[10], to show that H'3(X) = 0. In §3 we turn to the c-invariant, [14],
to complete our calculations by showing that no algebra generators for
H*(X) exist in degrees greater than seven. Once it is shown that the
mod 2 cohomology is exterior on 7-dimensional generators, it follows
by the Bockstein spectral sequence that the rational cohomology has
the same form. But since the rational cohomology is isomorphic to
the E,, term of the mod p Bockstein spectral for any prime p, it
follows by [2] that H*(X ; Z) has no odd torsion. Thus H*(X ; Z)
is torsion-free, and we may use the Hurewicz map together with the
multiplication in X to obtain a homotopy equivalence

STx.- xS = X.

1. H?}(X). In this section we prove that there are no 23-dimen-
sional generators in H*(X). We will also show that H*(X) is an
exterior algebra with trivial action of the Steenrod algebra. We shall
use the notation Sq’*/ to denote Sq’Sq’ .

THEOREM 1.1. Let Y be a space and x € H*(Y) be the reduc-
tion of an integral class. If x is in the intersection of the kernels
of Sa%, Sq’, Sq®, and Sq®'*, then there exist classes v; € HF (Y),
i=3,7,8,10,12, 13, 14, 15, such that

(L.1) 8q'%x = Sq'"?v3 + (Sq”* + 8¢°%)vy
+ (Sq® + Sq® H)vg + Sq* 2v19 + Sq*vy,
+ Sq3’013 + Sq2v14 + Sq11115.
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Proof. Consider the following matrix of relations:

U3 ( Sq? 0 0 0

V7 0 Sqg! 0 0

vg 0 S Sq! © Sq?

V10 Sq® Sqg* Sq¥ O Sq’ | _

(1.2) ip Sqb-2! 0 0 sq st | = 0.

V13 Sq12 0 Sq4,2 0 Sq8,4

via | Sq*+Sq'%! Sq¢® 0 Sg?

v \ Sq'* 0 Sq¢® sq*

15 q q q

Let
w:K(Z,n)—K(Zy;n+2,n+7,n+8,n+12) =K,
be defined by

W* (ny2) = SQ%1n s W*(tny7) = Sq"tn ;
W (1y48) = SQ%1n ; W (tns12) = SQ® *1n.
If E is the fiber of w, we have the following diagram
QK
|/
(1.3) E
|
K(Z,n) —2— K
and there exist elements v; € PH"*/(E; Z,) defined by the relations

(1.2).
A calculation shows that the element

z=Sq""%v3 + (Sq”? + Sq® )v7 + (Sq® + Sq® ?)vg
+Sq*2v10 + Sq*v2 + Sg3v13 + Sq?v14 + Sqlvys

lies in PH'$t"(E) Nker(j*) = p*PH'%t"(K(Z,, n)). It follows that
z = cp*(Sqwzn), where ¢ € Z,. For n = 16 there is a commutative
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diagram

K(Z,2) L kz,n) -2 K,

where f*(116) = 1§. Now consider W:K(Z;, 16) — Ko x K(Z,, 17)
given by the same formulas as w on the fundamental classes in Kj
and such that W*(1;7) = Sq'1;6. Let E be the fiber of .

There exists a commutative diagram

QKO _— QKQ X K(Zz s 16)

i|
E B
(1.4) / l
KZ,2) L kz,16) —~  K(Z,, 16)
KO —_ K()XK(Zz, 17)

Further, there is another lifting 5:K(Z,2) — E of hf that has its
H-deviation

Dh:K(Z,2) xK(Z,2) — K(Z,, 16)
given by [Dh] = 14 ® 1} . This holds because
B(hf)*Bw*(115) = Sq°** %13 = (Sq* 13)?

and because B(hf)*Bw™* is zero on the fundamental classes in K.
In PH*(E) there exist elements ¥, such that 2 (7,) = v;. The
components of v; in H*(K(Z,, 16)) are:

(1.5) T3 SQ@ue; Uy 05 Ug: Sqbue;  Tior O;

a8t . a9 . .o m . QalS
Ui2: SQ% %165 Ti3: Sq7716;  Tigt 05 Tys: Sq156.
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It follows that A*(T j) is primitive except for h*(Tg) which has
Ar*(Tg) =18 @13 +15 @18 = A(?).

Because H*(K(Z, 2)) is trivial in odd degrees and is Z; in even
degrees, we conclude

Therefore if
z=35q'"*73 + (Sq"? + 5q° )77 + (Sq° + Sq°?)Ts + Sq*-*7g
+Sq*T 15 + Sa%T 3 + SA°T 14 + Sq'Tys,
it follows that

(1.6) h*(2) = Sa®h*(Tg) = Sa¥ (%) = 1} = Sq'*(if).
Now # and Af both lift Af, so
hf=h+jF,
for some

F =(F, F):K(Z,2) — QKo x K(Z,, 16).

But QK is odd-dimensional with the exception of K(Z,, 22). If f
1s altered by Fj, then L
hf =h+ .]FZ s
and [R]=di}, deZ,.
Using (1.5) we calculate that for all j
(1.7) F;j"(;) =0, andhence A*(T;)= f*(vj).
Therefore 3 )
f*(2) = h*(z) = 84'°(33).
It follows that ¢ = 1. O

THEOREM 1.2. QH?3(X)=0.

Proof. By the restrictions on the degrees of generators of H*(X),
H{(XAX)=0 for i =7, 15, and 31. So by the Steenrod connections,
all generators in degrees less than 63 may be chosen to be primitive.
Further, in degrees < 40, H*(X) is an exterior algebra in which

(1.8) QH*(X)=0, k+#7,15,23,27,29, 31, 39.
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The lowest-dimensional possible non-trivial Steenrod operation is Sq®
acting on H'5(X). Solet x»3 = Sq®x;5 # 0. By (1.8), Sa?, Sq®, and
Sq¥-# are all zero on x,3, and Sq’x23 = Sq'°x;s, which is zero by
hypothesis. Thus the factorization (1.1) applies to Sq'®x,;. We now
construct the universal example.

Let po: Eg — K(Z, 23) be the fiber of the map

g: K(Z,23)— K(Z,; 25, 30, 31, 35)
given by

g (135) = Sa***(12).
Next, define p;: E; — E; to be the fiber of the map

g0 Eo — Ko = K(Z,: 26, 30, 33, 35, 36, 37, 38: 32, 33, 35)
given by
& (234m) =vm (M #8),
and
8 (Tek) =Sad¥vg  (k=1,2,4).
Consider the element in H*7(Kj) :

1216+ (S’ 2 +Sq° 130 + Sq* 2133 + Sq*135

+Sq’136 + Sa’137 + Sq'134]
+8q"%73; + (Sq'* + Sq'% *)733 + Sq'?1;37.
Applying g5 to x, we get
25(x) = Sa®[Sa'!2v3 + (Sq”** + Sq°**)v7 + Sq* vy + Sq*vy,
+Sa’v13 + Sq*v14 + Sq'vs]
+(Sq'5 ! +8q™ 2 4+ Sq124 4+ Sq10 4 2)pg
= Sq¥[Sq'">%v; + (Sq”"% + Sq® ?)u; + Sq*-2vyo + Sq*vy,
+8q%v;3 + Sq?v14 + Sq'vys + (Sq® + Sq°%)vs)
= Sq°Sq'%pg (123)
= (Sq* +8q*! + 8”2 + Sq* *)p; (123).

The values of the last three operations on 1,3 are in the kernel of pj .
So

x = Sq*[Sq

g (1) = Sa**pg(123).
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Hence there exists an element v € H*(E}) such that A(v) = p}pg(i23)
® pipg(123) and jf(v) = o*(x), where j; is the fiber of p;.

We now need to map X into E;. Let f: X — K(Z, 23) be such
that f*(1,3) = x»3. We remark that f can be chosen to be an H-map,
since H3(X AX; Z) =0. Since the composition go f is nullhomo-
topic, there exists a lifting fo: X — Ey of f. The H-deviation of fy
factors through jg, the fiber of pg, say Dfy = joo Dy. The map Dy
corresponds to a set of classes in H*(X A X), k = 24,29, 30, and
34.

We shall work in P, X, the projection plane of X . Recall that there
1s an exact triangle [3]

H*(PX) IH*(X)
IH*(X)® IH*(X
that relates P,X to X . This 1mphes that
(1.10) HYPX)=0 (17 <k <22).

Let u;¢ € H'(P,X) correspond to x5 and set uyy = Sq®u6. By
(1.10) and the Adem relations, qu , Sq®, and qu’4 are all zero on
U4 . So by [3], the components of Dy in degrees 24, 30, and 34
are all zero. Thus D, € H?»(X A X), so it is a sum of terms of the
form x;® x3x15, X7X; ® X15, and twists of these terms. Consider the
elements f; o g;(1), where 1 is one of the fundamental classes of K.
We have

A(fy 0 g5(1) = (Dfo)*85(1) = D§ o j§ 0 g4 (1)

Referring to the matrix relation (1.2), we see that the only possible
non-zero values can be when 1 = 137, when

Djj o j5 o g (1) = Sq® Dy (129).
Hence the images under fjog; of all the fundamental classes of K,

with the possible exception of 137, are primitive, so for degree reasons
they must be zero. We might possibly have

fo o8 (137) = in,7x§,7xi,23-

But since Sq%: H!5(X) — H?3(X) is onto, we may alter the lift f by
the action of the fiber on the map f: X — K(Z,, 29) given by

F*(29) = > X1, 2X] 1% 15
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so as to make, for the altered fy, f; o g5(137) = 0. Thus there exists
a lifting f;: X — E;.
We now consider the element f;(v) € H*(X). We have

A(ff(v) = (ff ® f7)(Bv) + (Df1)*(v) = X33 ® X23 + (Df1)* (V).

There is no term in H*(X) whose coproduct has x;3 ® x»3 as a sum-
mand. Now B
D .fl =0 + J 1© D 1>

where : XA X — E; is a map given by applying the Cartan formula,
Theorem 3.1 of [7], to Dfy. The map 8 factors through cohomology
classes in H*(X A X) of which one factor is a primary or secondary
operation applied to a decomposable element, and, by the Cartan for-
mulae for primary and secondary operations, such operations cannot
hit xp3. Also, (j; o Dy)*(v) lies in the image of Steenrod operations
applied to elements of degrees # 30 or 38, so x3 ® x»3 cannot be
in this image. Thus Sq® is identically zero on H!5(X) and hence
QHB(X)=0. o

CorOLLARY 1.3. H*(X) is an exterior algebra on generators con-
centrated in degrees of the form 29 — 1 for d > 3. Further, the action
of the Steenrod algebra on H*(X) is trivial.

Proof. By the Steenrod connections, any element of QH*(X) not
in a degree of the form 29 —1 lies in the image of Steenrod operations
applied to generators in degrees of the form 29 — 1. By Theorem 1.2
and the Steenrod Connections, it follows that

2' ypr2i-1 _ P
Sqg“QH” *(X)=0 fori=0,1,2,3.

By [1], Sq2' factors through secondary operations for i > 4 if x,_,

lies in the kernel of quj for 0<j<i-1.
So consider the first nontrivial Steenrod operation, say Sq” Xyd_j -

By the Cartan formula, qulxzd_1 is primitive, so it must be a genera-
tor. By the Steenrod connections we must have i = d—1. By Theorem

1

1.2 we must have d > 5, so i > 4. But this implies qud- Xya_, 18
in the image of Steenrod operations of lower degree, which cannot
happen. Thus the action of the Steenrod algebra on H*(X) is triviak
Hence H*(X) is an exterior algebra on generators in degrees of the
form 29 -1, d>3. O

2. H'5(X).
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THEOREM 2.1. HP(X) =0.

Proof. Let x;5 be a nonzero element of H'3(X). We define a
cohomology operation as follows. Consider the diagram:

E,
b
(2.1) 5 E.  —%2. K(Z,;18,19, 22, 23, 24, 30)

x L. kz,15 -5 K(Z,; 17,19, 23)
which is associated with a factorization of Sq'¢ as
8" =" a0
in which the «;; are Steenrod operations and the ¢,; are the sec-

ondary operations of Adams, [1], and is constructed as follows.
The map g; is given by the formulas

k
gik(115+2k) = qu (115)’ k = 13 25 3

The map g, is given by the formulas

8 (Lay2ir) = Vij»
where v;; is an element in H*(E,) that represents the secondary
operation ¢;;.

The map f represents the element x;5. The lift f; exists since
all Steenrod operations are zero on Xx;5, by Corollary 1.3. Now
the H-deviation of f; factors through the fiber of p;, namely
K(Z,; 16, 18, 22). Hence the reduced coproducts of the f(v;;) are
in the image of Steenrod operations, which are all zero. Hence the
f{(vi;) are primitive, so they are all zero. Therefore the lift f; exists.

In H3O(E,) there is an element v whose reduced coproduct is
p;pi(115) ® p3pi(115). We shall show that the reduced coproduct of
f5(v) contains a term x;5 ® X5, which will be a contradiction. Let
us write the factorization of the H-deviation Df; of f; as

Dfi=Doj.

The map D determines elements in degrees 16, 18, and 22 of XA X .
Checking possibilities, we see that the components in degrees 16 and
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18 are zero, while we may express the component in degree 22 as

*(122) ZX7 i ®X15,i

for elements x7 ; and x5 ; in degrees 7 and 15 respectively. Use of
the Cartan formula, [7], now enables us to express the H-deviation
of f, asthe sum of terms in the image of Steenrod operations (which
are all zero) together with terms of the form

Wi(x7,1) ® X15,i»

where the y; are secondary operations. We need to check that it
cannot happen for x;5 ; and w;(x7 ;) both to be x;5. To determine
the secondary operations involved here, we may consider the diagram

/l

X——»KZ 7 (22;9,11).

Using either the Serre or the Eilenberg-Moore spectral sequence we see
that a basis for H'(G) is given by elements in the image of Steenrod
operations together with an element g 3 that restricts to the fiber of
n to be (Sq° +Sq* !)119. So we need to determine whether A}(wy,3)
can be Xxi5.

For dimensional reasons, #; is an H-map. Hence it determines
a map izlz P,X — BG, where BG denotes the classifying space of
G. If hi(wo,3) = x5, then yi¢ = il’f(BUNJOJ) 1s a representative in
H*(P,X) of the primitive class x;5. In [10], Corollary 1.3, we derived
the formula (in the cohomology of BG)

(Bn*(13))® = Sq®(By 3), moduloIm(Sq'?, Sq® 3, Sq*2'1).

In general, three-fold cup products in H*(P,X) are all zero. By the
hypotheses on X and (1.9), H*(P,X) = 0 in degrees 12, 15, and
17. So Sq®h;(Bii,3) = 0. By [13], Sa*(y16) = S Vs, i¥16,:, Where
the yg ; and y;6,; correspond to x7 ; and Xx;s ;, respectively. So
we obtain that y;(x7 ;) cannot contain x;s as a summand; hence th
reduced coproduct

AR3 (V) = X15 ® X5,

which, as stated above, is a contradiction. a
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3. QHZk‘l(X) . By Corollary 1.3 and Theorem 2.1, H*(X) is an
exterior algebra on generators in degrees 7 and 24 — 1, for d > §,
and has trivial action of the Steenrod algebra.

THEOREM 3.1. QH*(X) is concentrated in degree 7.

Proof. Let x = x,c_,, k > 5, be a generator of lowest degree greater
than seven. Let £H*(X) denote the image of the cup-squaring map
&(x) = x2. Since H,(X) is associative, we may assume by [8] that
Ax € EH*(X) ® H*(X), which is trivial since £H*(X) = 0. Hence
X may be chosen to be primitive. We shall construct an operation
similar to that in the proof of Theorem 1.4. Consider the following
diagram:

E,
I

(3.1) % E, 2. K
‘o

x L kz, 2% 5 ki,

in which K; =[[;K(Z,;2k-1+2"), 1<n<k-1,and

271
81 (hpk_yygn) =8Q7 16y,

and in which K, =]; ; K(Z,; 2k — 24204 2/), and g, represents

the secondary operations ¢;; associated with a factorization of quk

By Corollary 1.3, all Steenrod equations vanish on x, so g;f =~ x
and the lift f; exists.

We note that in degrees below 2X — 1, H*(X) is concentrated in
degrees divisible by seven. Since x is primitive, f is an H-map.
Therefore D, ¢ factors through the fiber of p;. Hence the formula
for the H-deviation of a composition yields that Dg f is in the image
of primary operations in H*(X A X), so it is zero by Corollary 1.3.
Hence g f; is represented by primitive elements of H*(X) in degrees
not of the form 29 —1. Since all primitives are concentrated in degrees
of the form 24 — 1, g f; is nultlhomotopic, and the lift f, exists.
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To simplify the situation, we loop the entire diagram to obtain

QF,
o
Q
(3.2) g QE, 2%, ok,
o,
M

ox 2L, gz, 2% -2) 25 ok,

Note. The c-invariant was introduced in [14] as the obstruction to
an H-map between two homotopy-commutative H-spaces preserving
the homotopy-commutative structure. There are various choices for
this invariant, which depend on the choice of homotopy realizing the
H-map. It was observed thatif Y and Z are H-spacesand h: Y — Z
a map, then the composition

(3.3) YaraY or 2 yay 2z

has as its double adjoint QY A QY — QZ a particular choice for the
c-invariant ¢(Q4). In the sequel we shall always make this choice for
our c-invariants.

We have a suspension element v in H 21 (QE,) such that

c(v) = (Qp1P2)) 1y _, ® (QP1P2)) 1y _,-
We shall consider the c-invariant of the element
(Qf) ] € H2 ' —1(QX) = 0.

Let u,_, = 0*(xy_,). Then, applying (3.3) to the formula for the
H-deviation for a composition of maps, we obtain

0=c((QR)[V]) =up_, ®ux_, +c(Qf)"[v].
Since x,_, is primitive, u,_, is a c-class. Hence ¢(Qf;) factors as
QX AQX S Q3K — Q%E,.
We have a commutative diagram
Q’E,

c(Qf,) ,
(3.4) 19 D,

QXNQX —— QzEl

c(Qf)
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Now c(Qf;) is adjoint to
SOXAYQx — QK — Ey,

Dl
XAX

hence [c(Qf;)] € (PH*(QX) ® PH*(QX))?+2'-4.
According to [6], there is an isomorphism of coalgebras

Tory-(x)(Z2, Zy) = H*(QX).

It follows that H*(Q.X) in degrees less than 2% —2 is a divided poly-
nomial coalgebra on primitive elements of degree 6. Therefore

(3.5) [cQf))] € PHS(QX)@PH? ~2(QX)+PH? ~2(QX)@PHS (QX).

Further, the indecomposables of H*(QX) in degrees less than 2k —2
are concentrated in degrees of the form 3-2". Butif £k > 4, no
Steenrod operation on an element in one of these degrees can hit an
indecomposable in degree 2K — 2, so Uy_, is not in the image of the
Steenrod algebra.

An analysis of the Cartan formula [7] for secondary operations ap-
plied to diagrams 3.4 and 3.5 yields that wu,_, = w(ug), where y
is a secondary operation defined on 6-dimensional primitives in the
kernel of all Steenrod operations. We proceed to study all such oper-
ations. Note that y has degree 2% — 8. The possibilities come from
the suspension elements in H2 ~2(G), where G is the space defined
as follows. Let G’ be defined to be the fiber of the horizontal map g’
in the diagram

Gl

l k—1

K(Z,2k—1) 305050 | pig(z,; 0k — 1 4 27)

1

g

Now set . )
G=Q?7G and g=Q%? g
So G is fibered as n: G — K(Z, 6). We shall see thatin H2 ~2(G),
im(a*) c 4(2)- H*(G). For, if an element y of H2 ~%(G) is a stable
operation, then by [1] w can be expressed as a sum

V= Zaij’vij >
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in which the v;; represent the operations y;; applied to 7*(15). We
note that none of the v;; occurs in degree 2k — 2.

IfveH 2k“z(G) represents an unstable operation, then it must be
in the image of (¢*)" but not in the image of (¢*)¥*!, for some
N. Write v = (¢*)[9], © € H*~2*N(BNG). Since ¢ is not a
suspension, its am,-obstruction [12] must be non-zero for some .
Such an obstruction must arise from having

7, € Im(BV* g)*

for some m of the form m = 2".

If r>1,then 1f ;= qu"‘(N+7)le+7 , where

YTHNHT) L ggNHT

?=Sq q
If r =1, then N = 2K~ 14, so that 13, = Sq'yiy.7, where y =

Sq2 8. In either case there is a relation
y= anSq%, an€A(2),

so there exists an element w € H2 ~3(G) that restricts to the fiber to
be > anly, 5. Hence a representative of v is given by Sq'w if r=1
and by Sq2 My if r> 1.

Thus w(ug) must be in the image of the Steenrod operations. This
implies that u,._, lies in the image of Steenrod operations which is
a contradiction. Since

o*: QH? (X)) — PH* ~2(QX)

is monic, we conclude that QH? ~1(X) = 0. O

Proof of the Main Theorem. We now know that H*(X) is an ex-
terior algebra on seven-dimensional generators. If H*(X; Z) has
odd torsion, then for some odd prime p, there is an even genera-
tor of the form B;P"x,,,; by [9]. Applying the Bockstein spectral
sequence, this yields an odd generator in the rational cohomology of
degree (2np +2)p? —1 for d > 1. But

Qup+2)p?—-1>17
so H*(X; Z) has no odd torsion. Hence it is torsion-free. Therefore
H(X;Z)=ZA(xy, ..., %)
where deg(x;) =7.
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We now use the Hurewicz isomorphism to obtain our desired ho-
motopy equivalence

(1]
(2]
(3]
(4]

(3}

[6]
[7]

(8]

9]
[10]

(1]
[12]
[13]

[14]

§Tx...xS" L x. 0
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