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In this paper we develop some of the theory of half-integral weight
Hilbert modular forms; we apply the theory of Hecke operators to find
arithmetic relations on the representation numbers of totally positive
quadratic forms over totally real number fields.

Introduction. Given a totally positive quadratic form Q over a to-
tally real number field K, one can obtain a Hilbert modular form by
restricting Q to a lattice L and forming the theta series attached to
L ; the Fourier coefficients of the theta series are the representation
numbers of Q@ on L. The space of Hilbert modular forms generated
by all theta series attached to lattices of the same weight, level and
character is invariant under a subalgebra of the Hecke algebra; hence
one can (in theory) diagonalize this space of modular forms with re-
spect to an appropriate Hecke subalgebra and infer relations on the
representation numbers of the lattices. In a previous paper the author
found such relations by constructing eigenforms from theta series at-
tached to lattices of even rank which are “nice” at dyadic primes; the
purpose of this paper is to extend the previous results to all lattices.

We begin by proving a Lemma (Lemma 1.1) which allows us to re-
move the restriction regarding dyadic primes. Then using our previous
work we find that associated to any even rank lattice L is a family
of lattices fam L which is partitioned into nuclear families (which
are genera when the ground field is Q), and the averaged represen-
tation numbers of these nuclear families satisfy arithmetic relations
(Theorem 1.2).

In §2 we define “Fourier coefficients” attached to integral ideals for
a half-integral weight Hilbert modular form. Then in analogy to the
case K = Q, we describe the effect of the Hecke operators on these
Fourier coefficients (Theorem 2.5).

In §3 we use theta series attached to odd rank lattices to construct
eigenforms for the Hecke operators; the results of §2 then give us
arithmetic relations on the representation numbers of the odd rank
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lattices. When the ground field is Q, we may assume Q(L) C Z and
then these relations may be stated as

r(gen L, 2p*a) = (1 - p =32y, (p)(~1|p)"~V?(2a|p) + p™?)
-r(genL, 2a) — p™ ’r (genL, %%)

where r(gen L, 2a) is the average number of times the lattices in the
genus of L represent 2a, m isthe rank of L, p is a prime not divid-
ing the level of L, and y; is the character attached to L (Corollary
3.7).

1. Relations on representation numbers of lattices of even rank. Let
V' be a vector space of even dimension m over K where K is a totally
real number field of degree » over Q; let Q be a totally positive
quadratic form on V', L alatticeon V (so KL =V), ./ the level
of L and nL the norm of L as defined in [6]. Then the theta series

O(L, ‘L’) — Z e27ziTr(Q(x)r)

x€eL

is a Hilbert modular form of weight m/2, level .#° and quadratic
character y;, and for & a prime ideal such that #{./", either the
Hecke operator T(%) or the operator T(2) maps 6(L, 7) to alin-
ear combination of theta series of the same weight, level and character
(see [6]; cf. [1]).

We derive relations on the representation numbers of the lattices
in the “extended family” of L; essentially, the extended family of
L consists of all lattices which arise when we act on the theta series
attached to lattices in the genus of L with those Hecke operators
known to preserve the space spanned by theta series. We begin now by
giving refined definitions of a family and of an extended family; these
definitions agree with those given in [8] when the lattice in question
is unimodular when localized at dyadic primes.

DEeFINITION. A lattice L' is in the family of L, denoted fam L,
if L' is a lattice on V® where a is a totally positive element of K*
which is relatively prime to .7, such that for all primes Z|/ we
have L', ~ L%, and for all primes #{.#" we have L, ~ L for
some up € &, . Here Lyp = OpL, and V' (resp. L%,) denates
the vector space V' (resp. the lattice L») equipped with the “scaled”
quadratic form aQ. We say L’ € fam L is in the nuclear family
of L, fam™ L, if there exists some totally positive unit u such that
L, ~ LY, for all primes &, and we say L' is in the extended family
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of L,xfamL,if L' is connected to L with a prime-sublattice chain
as defined in §3 of [8].

For ¢ > 0, we define the representation number r(L, ¢) and
r(xfam L, ) by

KL, =#{xeL:Q(x)=¢}
and :
+ —
r(fam La é) - %’: 0(_L/_)r(L/ ’ é)

where o(L’) is the order of the orthogonal group of L’ (see [4]) and
the sum runs over a complete set of representatives of the isometry
classes within fam™ L. Note that if u € # = &> then L¥ is in the
genus of L;since #*/%? is finite (where %+ denotes the group of
totally positive units and %2 the subgroup of squares—see §61 of [3])
and each genus has a finite number of isometry classes, it follows that
fam™ L has a finite number of isometry classes.

We now show

LEMMA 1.1. The number of nuclear families in fam L is 2" where
reZ.

Proof. As argued in the proof of Lemma 3.1 of [8], Lgp ~ L;% for
any up € #p = 0, when & is a prime not dividing 2./". Thus
there can only be a finite number of primes & such that Ly, # LZ;""
forall ugp e %g;let &, ..., @ denote these “bad” primes for L.

Foreach @ =@; (1<i<t),set

Stabg(L) ={ue€%s: Ly ~ Lg}.

Clearly Stabg(L) is a multiplicative subgroup of %z, and %2 =
{u? : u € %g} C Stabg(L). Now, since [#z : #2] is a power of 2
(see 63:9 of [4]) it follows that [#% : Stabg(L)] is also a power of
2. Thus [}_, %/ Stabg (L) is a group of order 2* for some s € Z.
We associate each nuclear family fam* L’ within fam L to an ele-
ment of [];_, %z /Stabg (L) as follows. For L' € fam L we know L’
is a lattice on V'* for some a € K* with a € % and L" o~ L%;
(1 < i < t); associate fam* L’ with (..., a- Stabg(L),...). It is
easily seen that this map is well-defined and injective.l The techniques
used to prove Lemma 3.1 of [8] show that the nuclear families within
fam L are associated with a multiplicatively closed subset of the prod-
uct Hf':l ?/g; / Stabg’_ (L) ; since this product is a finite group, it follows
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that the nuclear families within fam L are associated with a subgroup
of []i_;%e/Stabg(L). The order of [];_, %z /Stabg(L) is 2°, so
there must be 2" nuclear families in fam L where r € Z. a
For a prime #{2.7", define
1 if L/ L is hyperbolic,
P =
eL(F) { —1 otherwise;
define
MP) = NPFIAN(PK1 +1) ife,(P)=1, and

AP = N(PHK(NPK - 1) ife(P) = -
For &/ C @ such that ord»(%) is even whenever &7 (#) = —1, set
eL(#) = [y eL(F)%¥ , and set

min{a, b}
l((gaa)i(e@b) — Z N( c(2k— ll(g‘oa+b 2c>
c=0
and A(&) = [y A(P>(¥)). Now the arguments of [8] can be

used to extend Theorem 3.9 of [8] to include any even rank lattice L,
giving us

THEOREM 1.2. Let L be any lattice on V where dimV =2k (k €
Z,). Take ¢ enL, &> 0, and write ML)~ = #MN' where # and
M' are integral ideals such that (# ,2.V") =1 and orde # is even
whenever P is a prime such that ¢; (%)= —1. Then

r(fam* L, 2&) = A(# )Ng, (4 )~*/*r(fam™ L', 2&)

— ) er()Ngjo( Y r(fam* &/ L, 2¢)

A OM+ M’
o 4O

where nL' = # -nL and L' is connected to L by a prime-sublattice
chain.

2. Hecke operators on forms of half-integral weight. In this section
we develop some of the theory of half-integral weight Hilbert modular
forms. To read about the general theory of Hilbert modular forms,
see [2].

Let 7" be an integral ideal such that 4¢ C .#", and let .¥ he a
fractional ideal; then as in [8] we define

Lo, #?)

g F2971\ .
fae ([ 7t e =, saanol.
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We also define

Lo, #2)

_ 7 6(SF, A7)] . 2 2

= {A-— [A, —0'(7—,—{)—] .Aero(ﬂ,f ), detde%
where (%, 1) = 3, s €(2a27) with e(B7) = €™ T and #? =
{u:ue¥ =0@*}. Asshown in §3 of [6], when A € To(/", #2) and
detd =1, (7, A1)/0(F, 1) is a well-defined automorphy factor
for A, and it is easily seen that for u € %, 6(.7, ult) = 0(F, 1).
Thus we can define a group action of I'o(.#", #2) on f: #" — C by

0(~7 , A1)

FnpA0) = 1140 = (5Z22) 7 fan).

(Here # denotes the complex upper half-plane.) For x, a numer-
ical character modulo the ideal .#" and m an odd integer, we let
Moy (Lo(N, S 2), x») denote the space of Hilbert modular forms
f which satisfy

[ lmpA(t) = 1 (a)f (1)
forall 4 = (¢ Z) eTo(/, #2). Notice that by definition,

(4 2 @=rw0=1](%

forany ue Z, so %m/z(fo(ﬂf, F2), xv) = {0} unless x,(u) =1
forall u e % . For & aprime, £t/ , we define the Hecke operator

T(P2) : My y(To( N s F2), Ap) = Mgja(TCo( N, P2F2), 1)

f

as follows. Let {ANj} be a complete set of coset representatives for
T, FHNT(W, PREYN (A, PEF2)
where

L, 72 = {(?g) ey, ) :a=1 (modﬂ)} .

Then for fe./im/z(f‘o(./lf, F2), xr), define

fIT(P?) = N(PY"*2 Y fl4;.
J

Clearly T(<?) is well-defined and
FIT(P?) € )y (To( N, P2, 1)
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Similar to the case of integral weight, we also define operators
S(P) : My Co( W, F2), xrr) = Mogp(To( W, P2F), 2p)

by

fIS(&R) = f‘ [C, N((@)—lﬂﬁ(_{i‘i)}

0(£7, 1)
where
Ce ( P 9?’"1]‘26"1)
NRF20 @G ’

detC =1, and ac =1 (mod./"). The proof of Proposition 6.1
of [6] shows that N(P)~1/26(.7, C1)/0(LF , 1) is a well-defined
automorphy factor for C, and it is easy to check that S(Z) is well-
defined and that f|S(P) € My 2(Do(V, P272), xr). (Note that
the restrictions on 4 in Proposition 6.1 of [6] are unnecessary, but one
must then use the extended transformation formula from §4 of [7].)
In fact, S(<) is an isomorphism, so by setting S(#~!) = S(#)"!
and S(A4)S(A) = S(A%), we can inductively define S(#) for any
fractional ideal J relatively prime to ./".

LEMMA 2.1. Suppose
de P P-1 7291
NPF2H Pl
such that detA=1 and ay=1 (mod./"). Then for
f €ty Lo, 72), xr),
1 0(F, A7)
1/2 _
7)|4. M@ gZ A0~ s,

Proof. Let C be a matrix as in the definition of S(Z); so

L1, 0(F, AT) _
Al v s
B L1 0(F, A7) _ 0(£57 , C'1)
—f‘[A’N(ga) l/ze(g"f,r)“[c LN P }
3 _, 0(F, AC17)
‘f‘[“‘cl’ ) ]
=f
since [AC™!, (7, AC~17)/6(F , )] e T\ (/" , F2). 8]

We now use this lemma to give us a useful description of T(%2)
when Ft1°.
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LEMMA 2.2. For & a prime, FtN, and
[ €np Lo, F2), xw)

we have

NPT = 3 ] (6 1)1
+ 118 (o 7)) N(@)‘/Z( > e(—2/3a2))_1

AERT | P°F
'*-f|S(322
where b runs over P-2.5772971/7-29-1 and B runs over
(P37 291 | P2 F-25-1)x
Proof. Since for a € K* the mapping f — f|[(0'(;2 9, N(a?)1/4] is
an iso~morphism from the space A, (To(AV , S 2), xv) onto
Mo yTo(N, 02 F2), xr), we may assume ¥ C &. Choose a €

P —P? such that ad is relatively prime to .#” and a =1 (mod./").
Let {b;} be a set of coset representatives for

(‘@~2f—26—1/;@—1j—28—1)x
such that b #2729 is relatively prime to a@ ; then for each k, use
strong approximation to choose ¢, € J##2.729 and d;, € @ such
that ady — brep = 1. Take 4’ = (4 5)) € Ty (/, P272) such that
a e P, Ptd,and a'd —b'c =1, and take {b7} to be a set of
representatives for 2.7 -29-1/_#-29-!. Then one easily sees that

1 b, e T
{(o DIo{(@ 25 )}
is a complete set of coset representatives for
T, PN, SN, PEF?).
Take fE//Zm/z(f"O(/V, F2), xr). Then

=g |4, 5220

and the transformation formula (2) in §2 of [6] shows that

O(RF7, AT .1\ 2 . b
‘é(—g@f_’f_)l = (C +d ;) Tl/z(d) 172 Z e (—JZaz) .

WERF |d' PF
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(Recall that, as remarked earlier, we need not restrict d as in [6], but
we need to then use the extended transformation formula as it appears
in [7].) On the other hand,

L 0(F, A'r)

f|S(~932)=f} [A',N(ga) 07 1)

and following the derivation in the proof of Proposition 6.1 of [6] we
find that

O(J,A’r) — (C’-I—dll) 1/2,[1/2(dl)—1/2
T

0(P27, 1)
! /
Z e (%2012) Z e (zbi—,Zaz) .

a€P* 7 |d' P*F aed F|Pd' 5

By Proposition 3.2 of [6],
bl
>ooe (Ezcﬂ) = N(P);

acd' 7 |d' P57

also, since #+td’,

>, e (g2a2> = > e (gzaz) :

aeP* 7 |d' P*F a€ERF |d' BT

Thus f|4 = f|S(#?).

Now choose v € #~1.#-19-1 such that (v#F9, dpP) =1 for
all k. Fix some k; for simplicity write 4, = (95). Set g = pg'v?
where f’ € 2~19 is chosen such that af +b € P-1.772971; we
will show that

f|2|[((1) f),l]:N(ﬁ)‘/z( ) e(2ﬂa2))1f|S(9"),

WERF | PP F

and then the lemma will follow. Now,

07, A (L8
118 = f| [Ak (}) /1’) Nyt 0(@}(,011)%)] ;
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again following the proof of Proposition 6.1 of [6] we find that

07, (L 8))e
6(F#7 , 1)

N(P)~1/2

1/2
_ (c+ (¢ +d) %) 2B + d)V2AN(P) L

Z e (a'B +22a )
a€S (cp+d) A7 CB +
and since a(cf +d) —c(afp +b) =1

and e(a(ap + b)2a?) =

1\ 1/2
(c +(ch+ d);) DV2(cf + d)- V2N ()12

> (- )

a€Sf [(cf+d) RS

1\ 12
= <c+(cﬂ+d);) V2(cB + d)" 2N (P)"1/?

2 "( /(;ld 2)

a€l[(cf+d)P

(note that v A7 09 is relatively prime to (cf + d)#). Now, d is
relatively prime to 4 since 4|c; thus by reciprocity of Gauss sums
(Theorem 161 of [3]) we have

2
~1/2 ~1/2 __cv 2
(cB+d)"VPN(P) > e( cﬂ+d2a)
a€l/(cB+d)P
_ i-n)2 2 man-1/2 cp+ d
=i """ N(cv°P9) Z ( >
a€C [V  PD
and using the techniques of §3 of [6],
= i""2N(cv )~ 1/?
chB+ d cf+ d
> () ¥ e(Tgrd).

Q€P [cV PO a€cv?d /e’ Po

For a e £,

d

202 = —
cv

cp+1 20% (mod287")

cv?
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(since B =v2p" with g’ € #-19) so

z e (%—2042)

0P [cv PO

d
—5
aEP /cu%@a

e

a€l [cv?d
(note that ords cv?d = 0). Also,
Cﬂ + d _ o2 -1
2 =28 (;) (mod 20~1)

for a € cv29, so

) e(c/i;dzoﬁ): )y e(2/3(%>2>

accr’d/cv’ PO accr’d [c’ PO

= > el2Bd?).

aERF | P F

On the other hand, formula (1) of [6] and the techniques used above
show that

027, 4 (1 8)1)
(A7, ((‘) /1’)1)

- (c+(c,8+d

1/2 2
D T

0ERF |dRF

1/2q-1/2 Z e(—c—Z,iZa)

aclf[d@g

e~l|'—

¢+ (cp+d)

)
%

Q|-

and by reciprocity of Gauss sums,
1/2
- (c r(cB+d)l ) V212N (1 29) 12
d ,
X Z e (cy—22a ) . O
€l /v’

Our goal in this section is to determine the effect of the Hecke
operators on the Fourier coefficients of a half-integral weight form.
When K = Q, we know that for

(1) =3 a(n)e(2nt) € My (To(N), 2),

n>0
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we have f(7)|T(p?) = X, b(n)e(2nt) where

b(n) = a(p®n) + x(p)p"" I3 (—1|p)™=V/2(n|p)a(n)
+ 2(0Hp™2a(n/p?).

By defining “Fourier coefficients” attached to integral ideals, we ex-
pect to get a similar description of the effect of the Hecke operators
on any half-integral weight Hilbert modular form. This, in fact, is one
of the things Shimura does for integral weight forms in [S]; so mim-
icking Shimura, we decompose a space of half-integral weight Hilbert
modular forms as described below.

Whenever ¥ and £ are fractional ideals in the same (nonstrict)
ideal class, the mapping

(5 ) ]

is an isomorphism from the space %m/z(f‘o(/lf , %), xy) onto
%m/z(f“o(/lf , Z2), xy) where a is any element of K* such that
af = _# (notice that this isomorphism is independent of the choice
of a). Hence we can consider T(#2) and S(&) as operators on the
space

hl
Moo I xw) = [[ 2Tl s 52, 2w)
A=1
where .7, ..., % represent all the distinct (nonstrict) ideal classes.

Note that by the Global Square Theorem (65:15 of [4]), %2, ..., ‘}71,2
represent distinct strict ideal classes. Just as in the case where m is
even (see Lemma 1.1 and Proposition 1.2 of [7]), we have

Moy N 3 X)) = P Mo (N, 1)
2

where the sum is over all Hecke characters y extending y , with
XOO = 1 b

MmN 5 X)) =A{F €EMppp(N, X)) : FIS(F) = X (F)F
for all fractional ideals .7 , ([ , /") = 1},

and x* is the ideal character induced by y. (For # a fractional
ideal relatively prime to ./, x*(,¥) = x(a) where a is an idele of K
such that d» = 1 for all primes #|# 0, and aZ = £ . Also note
that there are Hecke characters y extending x , with x,, = 1 since
xy(u)=1 forall ue?.)
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When defining “Fourier coefficients” attached to integral ideals for
an integral weight form F, Shimura uses the fact that for u € Z*

Al )

In the case of half-integral weight forms, we have no analogous equa-
tion. However, we can decompose .#,,/2(/", x.») as follows.

Let Kt ={acK:a>0} and K? = {a®:a € K, a # 0}; set
G = K+*/K? and H = #*K?/K?* (~ %*/%?). For each character
pE G = the character group of G, define

M2V s Xw s 9)
{Fe/%m/z(/lf ) F’[(u 0), 1] = g(u)F for allue%*}.

Then we have

LeMMA 2.3. With the above definitions,
Moy (N, X)) = D Moo N, X5 0)
9

where the sum runs over a complete set of representatives ¢ for G JH*
with H- = {¢p € G : 9|y = 1}. Each space My y(N, Xy 9) IS
invariant under all the Hecke operators T(%?) where P is a prime
ideal not dividing /" .

REMARK. The restriction map defines an isomorphism from G JH*+
onto H ~ %+ /%2, but there is no canonical way to extend an element
of Z+/%? to an element of G/H".

Proof. Given F € My 2(NV, X), set

foegrm 2, 70r(601) )

ue¥* |Y?
One easily verifies that F € 4,,2(/*", x.r, ¢). Also,

S gz £ (Tew)A[(5]) ]+

9eG/H* ue?* %’
since duality shows that }°, @(u) is only nonzero when u = 1. Fur-
thermore, for 91, 2€G, M2 (N, X > 91) and My (N, X 5 92)
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either are equal or have trivial intersection, depending on whether
910, € HL. Thus 4, /»(/¥, ) =By Mmp2 (N, x> @) as claimed.

Now, given u € Z+, & a prime ideal not dividing .7, and {/Tj}
a set of coset representatives for

T, FHNT(, PRI (W, PLFD),
we see that {(¥'0)4;(¥%9)} is a set of coset representatives for
(T, FHNTYS , PPN, PP,
Standard techniques for evaluating Gauss sums show that

0(7 , A1)
2 0(7, 1)

_ [ 4a bj u_ ul 0 f(u 0
AJ—<CJ dj) and Aj—<0 1 Aj 0 1)

Since d; = ajd; = v?> (mod./#) for some v € %, the Law of
Quadratic Reciprocity (Theorem 165 of [3]) shows that (u|d;) = 1;

hence _— 0
u- 7 1[4 _ qu
59 3 [(: 2)-1)-3

and thus T(£?) acts invariantly on the space ., 2(#, X, 9). O

where

Unfortunately, we also have

LeEMMA 2.4. Given ¢ € G and P a prime ideal not dividing /",
we have

S(P): M)y N X s ©) = B2 N Xw > QW)

where wa is an element of G such that v (u) = (u|P) forall ue
%t . Consequently, given any Hecke character y extending x , (with
Xoo = 1) ’

Mo (N X) O M2 (N X > @) = {0}
unless %+ =%2.

Proof. Let C = ( ;) be a matrix as in the definition of S(Z); so
detC =1, and
-1/2 6(“}Z > CT)

FIS(P) = f’ [c, NP g
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for f € My (To(V , F2), xr). Then for u € ¥+, the techniques
used to prove Proposition 6.1 of [6] show that

ul 0 120, C1) (u 0
K 0 1)’1] [C’N(% a7, ol lo 1)1
_120(F, C¥1)

_ u 1/2

- [e* ey S )
where C* = (“(;1 ?)C(g?). Since d =1 (mod.#") (recall the defi-
nition of .#(Z)) we see again by the Law of Quadratic Reciprocity
that (u|d) = 1. Hence for F € 4, /2(N ", X > @) >

(3 2)

|| (5 1) 1]js@) = s rrise),

showing that F|S(P) € My )(N, X s O¥2).

Now, to finish proving the lemma, we simply observe that there are
an infinite number of primes % such that (u|%#) = -1 if ue #+-%?
(see 65:19 of [4]). O

The preceding two lemmas compel us to define “Fourier coeffi-
cients” attached to integral ideals as follows.
Given

F=(..,f,...) €l (N, Xr)
where fi(7) =X, a,l(C)e (281), 9 € G and .# # 0 an integral ideal,
we define the .#, p-Fourier coefficient of F by:
(1)
1

a4, 9) = @77

Y FEwa W N(FH)
uey* |%*
if # =&772 for some A and some &> 0;

(ii) a(#, 9) =0 if # cannot be written as &.%,~2 with &> 0;

(i) a(0,p)=a;(0)N(H)~"/* if @O N(A)~"/*=a,(0)N(F)~™/>
forall A, u.

Thus for # =E77%, €0, a(# , ¢) is N(F)™™/? times the
¢-Fourier coefficient of the A-component of F,. Since F = Z(p K,
the collection of all the M, gp-Fourier coeflicients (¢ € @/H 1) char-
acterize any form F whose 0, p-Fourier coefficients can be defined.

We now describe the effect of the Hecke operators on these Fourier
coefficients.
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THEOREM 2.5. Let F = (..., fi,...) € My (N, x) where x
is a Hecke character extending x , with oo = 1. Take & to be

a prime ideal not dividing /¥, and take w5 € (K:/\KZ) such that
ww(&) = (E|P) for all &£ € K with ordeé = 0. Let a(# , ) and
b(A# , ) denote the M ,x-Fourier coefficients of F and of F|T(%#?)

(respectively). Then for any ¢ € (K+/K2), we have

b(A , ¢)
a(PM , 9) + *(P)N(P)m=3I2(=1|P) =Dl | py)
= + X(PHN(P)" (AP 2, 9) if Pr M,
a(PIM , 9) + x(PP)N(P)"2a(MP2, 9) if P .

Proof. Take p,y € K* such that #2%? = p2.7?2 and 2P =
y2.%? . Then by Lemma 2.2 the g-component of F|T(%?) is

o (2[(3 )
+ (P L, ‘ [(%2 ?\) ,N(PZ)_W“Z/; [((1) f) %EZ_)]

+X*(9?’2)fn‘ [(7:)2 (1)) ,N(yz)-1/4D l Kp(;z (1)> ,N(p2)1/4]

where b runs over
@‘2‘5‘26“1/%"28‘1,
B runs over
(9_3‘5_23_1/@—2‘%—28—1)x ’
and « runs over
AP | SHP?.

(Recall that F € #,,)5(/4", x) so

s |[(5 ) M| =
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where w7252 = _%2.) It is easily seen that

A [(3 ) I ) o

= NALIY NP Y a@)e(2p~*n)
éeyz‘flz

= N(APFT)TENP?) 3 ax(pPE)e(20),
¢es?

and that

fn” (}’2 (1)) , N(yz)_1/4“ [(p(;z ?) ’ N(p2)1/4] (1)

= NGRS Y ayEpre(20).
569’2‘7,,2

Now we work a little:

Gl R D (MR = [ AR

=Ny (Ze(—zﬂa )) 3 a,©)e2Epp )e(221).

2
B\ ¢e;

Taking By € #3.77201 — #2729~ standard techniques for
evaluating Gauss sums show us that

Z( Ze(—zﬁa2)) e(2£Bp?)

B a
= Y (B (Z (2B0c )) e(2£ o' p?)

B €O |P
and (3", e(2Boe?))? = N(ZP)(-1|£). So
5 (ze<—zﬂa2>) ee8%)

B ]
— N(ga)(m—l)/Z(_llr@)(m+l)/2

: ( ) (ﬂw)e(zﬂ'ﬁoéﬁ)) (Ze(zmoﬁ))

p'ed|F a
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which is equal to 0 when ¢ € £%2. When & # A5?2 and v €
IV - RA7Y, BEv? runs over &/ as B’ does; in this case

> (B1P)e(2B Bt p?) = Z(ﬂ'fUZWa)e(zﬁ'ﬁoleﬂﬂz)
B'el|P B

=3P D e(2Bod?d).

aEPF [P 7,

(67

) -1
(o 7). e (Ze(—zﬂa2>) ] (@)

= N(P) P (=1|2) D2 37 (| P)ay(E)e(27) .
¢es!

This means that for /# =£.7,72, £ 0,

N(Zz)—m/z

A0 =z

N(ng)m/Z—Z

-(N(%Z-'"/ZNW'"/ZNM)-'"/2 " BEuwauep?)
ue¥*|%?
+ XN PIN(P) (1| m=Df2
CY PEw)(uEv | P ay (ul)

ue¥t |%*?

+X*(gaz)N(ga)m/ZN(Lfﬂ)mﬂN(‘Z])_m/2

> ?(éu)an(ufpzy‘z)) :
ue?* |%?

Noting that (uév?P) = 0 when Z|.# , the theorem now follows
from the definition of the A, p-Fourier coefficients of F . |

COROLLARY 2.6. If F € My, )5(V", x) is an eigenform for all T(%?)
(P 14") whose 0, x-Fourier coefficients can be defined and are nonzero,
then

FIT(P*) = (1+ x*(P*)N(P)" )F .

3. Relations on representation numbers of odd rank lattices. Let
L be a lattice of rank m over @ when m is odd; since lattices
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of rank 1 are already well understood, we restrict our attention here
to the case where m > 3. Then, as shown in Theorem 3.7 of [6],
O(L, 1))=Y, cre(Q(x)7) is a Hilbert modular form of weight m/2,
level .#" and character x; for the group {/T S f‘o(/l/ , %) detd =
1} where .# is the smallest fractional ideal such that nL C .2 (so
for every prime %, ordgenL-.# 2% is minimal), .#" = (nL*)~1.7-2,
and y; is a quadratic character modulo .#". (Here L* denotes
the dual lattice of L, and nL is the fractional ideal generated by
{%Q(x) : X € L} ; note that Proposition 3.4 of [6] shows that 4¢&|.7".)
Since O(L, u*t) = 6(L, 7) for any u € %, we have (L, 1) €
My (TN, F2), xL).

LEMMA 3.1. Let & be a prime ideal not dividing .¥". Then setting
Ly =0O@xL, we have

Lgaﬁnl(l,..., 1,897)

X
Jor some n €Ky and ez €.

Proof. Since 47|/, & must be nondyadic. Then from the re-
marks immediately preceding 92:1 of [4], we see that Ly ~ (o, ...,
am) where ay, ..., am € Kgp. Since #{.4 and (nL*)~!(nL)~!|1",
we know that 2 {(nL*)~1(nL)~! and hence Ly is modular; thus by
92:1 of [4], Ly ~ p(1, ..., 1, &p) for some ez € J; and p € K»
such that p@z = nLp . Furthermore, since .#" = (nL*)~1.¥ 2 and
P1{N ", the fractional ideal nL* and hence nL must have even order
at &, so we may choose p = n2 with 1 € K. ]

Notice that in the preceding lemma the square class of &5 is inde-
pendent of the choice of 7 ; thus we can make the following

DErFINITION. With & a prime, {4, let e» € &, be as in
Lemma 3.1; set ¢.(%) = (2e»|%) where (x|*) is the quadratic
residue symbol. For an integral ideal %/ relatively prime to ./, set

er() = [] er(#7)=).
P\A
A straightforward computation analogous to that used to prove Lemma
3.8 of [8] proves

3

LEMMA 3.2. For a € K* with a relatively prime to /¥, xp(a) =
er(ad).

Next we have
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PrOPOSITION 3.3. Let P be a prime, 4" . Then
O(L, 1)|S(PL) = N(P)™ e (P)O(FPL, 1) and so
6(L, 1)|S(P?) = N(P)"9(P°L, 1).

Proof. Following the proof of Proposition 6.1 of [6] and using the
extended transformation formula from §4 of [7], we find that for

4 (a D\ ( 2 Fir
“\c d NPFD &

with det4A=1and d=1 (mod./),

1 m/2
o(L, A7) = ¢ (c + d;) /2 g-m)2

> e(fe) X e(fom)-o@L, 0,

XEPL|APL x€dL/dPL

and

1\ 12
6(~F , A1) = (c+d;) /24172

> e(gzaz) > e(§2a2).0(9?zf,r).

aERF [dPT a€d 5 |dPF
Thus
6(L, 1)|S(£)
-m
b b
_ 2 2
-Ne 3 e(gow) ( > el ))
x€PL/dPL aERTF |dPF
b
> e(zom)
xedL/dPL
-m
b, »
. Y e S20 (2L, 1).
acd 5 |dPF
We know from Lemma 3.1 that Ly ~ n%(1, ..., 1, £2) where é» €

@ ; thus Propositions 3.1-3.3 and the arguments used to prove The-
orem 3.7 of [6] show that

> e(;’}Q(x))( > e(%zaz))_m=<2w@)=q(%

x€dL/dPL a€d 5 |dPF
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and that
-m
b b, ,
Y ooe (EQ(X)) ( Yooe (Zza )) =y(d) =1
x€PL/dPL aERF |dPF
(since d =1 (mod.#") and y; is a character modulo /). O

With this we prove

PRrOPOSITION 3.4. Let the notation be as above. Then

O(L, 7)|T(P?) = eL(P)N(P)" k™'Y 60(K, 1)
K

+ e (P)N(P)™*(1 — N(P) =3I/ g(PL, 1)

where
1 ifm=3,
Kk =< N(P)m=3I2. .. N(P)UNP) "D 4 1)...(N(P) + 1)
if m> 3.

Here the sum runs over all P?*-sublattices K of L (i.e. over all sub-
lattices K of L such that nK = %% .nL and the invariant factors

(L:K}=(,...,0, P, P, ..., P?

with @ and P? each appearing 5L times). Furthermore, each *-
sublattice K of L lies in the genus of &L, and hence 6(FL, 1),
G(K’ T) € '%m/?.(r‘O('/Va {@2‘]2) > XL) .

Proof. An easy check shows that the Hecke operator T(Z2) de-
fined in [6] is, in the notation of this paper, T(Z#2)S(#~?). Thus
Theorem 7.4 of [6] together with the preceding proposition shows that
O(L, 7)|T(P?) is as claimed. (N.B.: Part 2 of Theorem 7.4 has the
wrong constants; for m = 2k + 1 with m odd the theorem should
read

8(L, 7)|T(F?) = N(P)"/? —120 PIK, 1)

+ N(P)~ m/2(1—N(9?J)m AP L, ﬁ

where the sum runs over all Z2-sublattices K of L and x is as
above.)

Now let K be a Z2-sublattice of L. Since nK = n#L, discK =
discZL and #Ls is modular, it follows that K5 is modular as
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well, and that Ky ~ #Lgs. Clearly we have Ky = Ly = PLy
where & is any prime other than %7 ; thus K € gen %L, the genus
of L. Finally, Theorem 7.4 of [6] shows that (P %K, 1) and
6(F~'L, 1) lie in My (Lo, (', P7252), 11), s0

6(K, 1) = N(P) "9(P K, 1)|S(F?)
and
6(LL, 1) = NP)""9(P 'L, 1)|S(F?)
lie in /ﬁm/z(f‘o( , P2 72), x1) as claimed. i

Completely analogous to Lemma 3.2 of [8], we have

LemMA 3.5. Let o(L') denote the order of O(L'), the orthogonal
group of the lattice L', and define

f(genL, 1) =) 5(—114,—)6(L', 1)

LI
where the sum runs over a complete set of representatives L' for the

distinct isometry classes in gen L, the genus of L. Then for a prime
PN,
6(gen L, 7)|T(P?) = N(P)" 21 (P)(1 + N(P)"2)0(gen PL, 7).
As in §2, choose fractional ideals .7, ..., % representing the dis-
tinct (nonstrict) ideal classes (and so %%, ..., %7 are in distinct
strict ideal classes); for convenience, we assume that .¥; = ¢ and
that each .# is relatively prime to .#°. Define the extended genus

of L, xgen L, to be the union of all genera gen] L where .# is a
fractlonal ideal; set

O(xgenL, 1) = (..., N(AF)™*0(gen AL, 1), ...).

Then we have

THEOREM 3.6. Let y be the Hecke character extending i such
that xoo = 1 and x*(¥) = e, () for any fractional ideal &/ which
is relatively prime to /V". Then

O(xgen L, 1) € Myp (N, %) C [[ Mn2To W, FH252), 11)
A

and for every prime PN,
O(xgen L, 7)|T(P?) = &1 (P)(1 + N(P)"2)O(xgen L, 1).
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Proof. Take _# to be a fractional ideal relatively prime to .#". Then
for each A we have 27 = o/, for some u and some a € K*. By
Proposition 3.1 we have

o st ais | [(% 1) v

=&r(F)N(a™ ' Z75)"*0(gen(a™' ZAL), 1)
=er(F)N(A)"*0(gen AL, 1);
since we have chosen x such that

x(F)=el”),
we have O(xgenL, 1) € L, 0(N, X) -
Now take & to be a prime, #{./", and take a € K* such that
PP = oy . Then by Lemma 3.5,

N(A)"8(gen AL, 7)|T(F) | [(“(;2 ?) ,N(a2)1/4]

=& (P)(1 + N(P)")N(a™ ' 5P)"?0(gen(a” ' AAL), T)
= &1(P)(1 + N(P)")N(S)"*0(gen S L, 7). 0
This theorem allows us to infer relations on averaged representation

numbers which we define as follows.
Set

r(L', &) =#{xeL :Q(x)=¢}, and

rgenL, &)=Y ﬁr(u, &)

LI
where the sum runs over a complete set of representatives L’ for the
isometry classes within gen L. For ¢ € (K+/K2), set

eenL.¢.9)= oo S PdgenL, ).

ue* |U*
Then with the notation of §2, the .#Z, ¢-Fourier coefficient of
O(xgen L, 1) is r(gen AL, 2¢, ¢) where A4 = fjj'l“z , £> 0. Note
that for any fractional ideal _# , we can find some o € K and some A
such that J# = a.%; then for ¢ €nL, ¢ 0, and A = &5 72772,
the 7, p-Fourier coefficient of O(xgen L, 1) is ,
r(genSL, 207%, g) =r(genafL, 28, ) =x(gen FL, 2, ).

Also, r(genL, 0) = r(gen_# L, 0), so the 0, ¢-Fourier coefficients of
O(xgen L, 7) are defined to be r(gen L, 0). Now Theorems 2.5 and
3.6 together with Corollary 3.7 give us
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COROLLARY 3.7. Let £ e nL, & > 0. Set # = (72 (where
F is the smallest fractional ideal such that nL C #?). Let # bea

prime ideal not dividing /¥, and let ¢ be any element of (K+/K2). If
P M, then

(14 N(P)" Hr(genL, 2¢, ¢)
=r(genP L, 2, 9)
+eL(P)N(P) "I (—1|2) "= D2r(gen L, 2¢, py)
+ N(.@)m_zr(geng?’L, 2, 9).

Here y is an element of (K:/\Kz) such that y»({) = ({|Z) for any
(€K' with ord { =0. If |4, then

(1+ N(P)" )x(genL, 2, ¢)
=r(genP L, 28, ¢) + N(P)" *r(gen PL, 2¢, ¢).

In the case that K = Q, we have
r(gen L, 2p*a) = (1 — p" =32y, (p)(~1|p)™~V/2(2a|p) + p™2)
-r(genL, 2a) — p™ *r (genL, 12)—‘21)

for any a € Z, ; note that xr(p) = (2discL|p).

REMARK. If Z{(mL*)~1(nL)~! but L|/", then the preceding
corollary can be used to give us relations on the averaged represen-
tation numbers of xfam L* where a > 0 with ord»a odd. Since
r(fam* % L2, of) = r(fam™ %L, &), the above corollary can be ex-
tended to include all primes 2t (nL*)~!(nL)~!.
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