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We construct a vertex type state model in Turaev’s sense for the
multi-variable (non-reduced) Alexander polynomial. Our model is a
colored version of the 6-vertex free fermion model. To show the cor-
respondence of our model and the multi-variable Alexander polyno-
mial, we introduce colored braid groups and their Magnus representa-
tions. By using this model, a new set of axioms for the multi-variable
Alexander polynomial is obtained.

1. Introduction. In [1], the Jones polynomial V' in [9] and its higher
spin versions are directly constructed from some solutions of Yang-
Baxter equations. Let P be the HOMFLY polynomial in [5], [16]
and F be the Kauffman polynomial in [12]. Then these invariants
are both two-variable extensions of the Jones polynomial V. In [19],
Turaev constructs P and F from vertex type state models. Turaev
introduced an enhanced Yang-Baxter operator, from which we get an
invariant of links. He constructed enhanced Yang-Baxter operators
from the R-matrices in [7] and showed that the related invariants
are specializations of P and F. But this family does not contain
the Alexander polynomial, which is the most famous link invariant.
Deguchi and Akutsu [4] propose enhanced Yang-Baxter operators asso-
ciated with a family of link invariants, which includes Turaev’s family
corresponding to P and also includes the reduced Alexander polyno-
mial. We construct an enhanced Yang-Baxter operator for the Conway
potential function V. The potential function V is a version of the
non-reduced Alexander polynomial. As is shown in [6], V of a link
is defined uniquely as a Laurent polynomial in variables associated
with the connected components of the link. Kauffman gives an inter-
pretation of the multi-variable Alexander polynomial by using a state
model in §6 of [11]. In his model, there is no corresponding model in
statistical mechanics. On the other hand, as is shown in Remark 2.4,
our model comes from a solution of the Yang-Baxter equation, which
assures the solvability of a lattice model in statistical mechanics.

In §2, we introduce an enhanced colored Yang-Baxter operator. This
operator was introduced by Turaev [19] for non-colored links. From
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an enhanced colored Yang-Baxter operator, we get an invariant of links
with colored component. In Example 2.3, we give a colored Yang-
Baxter operator. The main interest of this paper is to investigate this
operator and related link invariants. This operator is a colored version
of the solution in [4].

In §§3-5, we construct a link invariant from a colored enhanced
Yang-Baxter operator by using Turaev’s idea. We can apply Turaev’s
method in [19] for our operator to get a link invariant. But the re-
sulting invariant is constantly equal to zero. To construct a non-trivial
invariant, we introduce a notion of redundant enhanced colored Yang--
Baxter operator. In §6, we prove that our invariant is equal to the
Conway potential function. To show this fact, we need Magnus rep-
resentation of a colored braid group. Our invariant and the Conway
potential function are both related to the Magnus representation. They
are linear combinations of traces of exterior product representations
of the Magnus representation.

In §7, we give an “axiomatic determination” for the Conway poten-
tial function V. The Jones polynomial has a very simple, well-known
axiomatic determination. It is determined by the skein relation. Tu-
raev gave a set of axioms for V in §4.2 of [18]. But the Doubling
Axiom 4.2.6 in [18] is not a local relation. Local axioms for V are
discussed in [6] and [15]. But they did not succeed in getting a com-
plete set of relations for links with more than 3 colors. Instead of
Turaev’s Doubling Axiom, a new local relation is added to the known
relations. This relation is much more complicated in comparison with
the other relations and a simpler local relation is still needed.

2. Enhanced color Yang-Baxter operator Sy. Let K be a field. We
extend the contents of [19], §2 for enhanced colored Yang-Baxter op-
erators. Let d(1),d(2),...,d(c),... be non-negative integers and
vy, v@ v, .. be d(1),d(2),...,d(c), ...-dimensional
K-vector spaces. Let R¢-%): V@) @ V&) - V@ @ Ve (¢, c =
1, 2,...) bea (K-linear) isomorphism. The set of operators {R(¢i>%)}
is called a colored Yang-Baxter operator (or, briefly, a CYB-operator)
if it satisfies the equality

(2.1) (R€>%) @ id)(id ® R %)) (R-%) @ id)
= (id ® R-%) (R4 @ id)(id ® R~ %),

This corresponds to the braid relation with colored strings.



A STATE MODEL FOR THE MULTI-VARIABLE ALEXANDER POLYNOMIAL 111

For f € End(V - @ V&) @ V(©)), we define an operator
trace Sp,,c"' o126 (f) € End(V(C . @ V(&-1) by the following.
Let {v\9, ... c(f()c)} be a basis for V(C for ¢ € {ci,...,cy} and

let fj" I “]” denote the matrix element of f with respect to the

ln 1,l

above ba51s 1.e.

f(vl(fx)@...@vfcn)) — Z f-]l ’Jn—lufn (C)® ®’U( )
’ 1<j,<d(c,) T
1<j,<d(c,)

For 1 <i; <d(c;),...,1<i,<d(cy), we put

22 spy (N 8- gy )

— Z f;]w -]nl’j (C)® ®,U(nl)

T Y Jx -1
1<j,<d(c,))
1<j,_<d(e,_))
1<j<d(c,)

EXAMPLE 2.1. If n = 1, then the operator trace Sp!”: End(V'(©) —
K is the ordinary trace. Let n=2, d(c)=2 and f€End(V eV ();

then we have
11 12 21 22
c.0) n Ay A+ G
sz (f) .
M+ 6 B+ 13

DEerFINITION 2.2. Let S be a collection of a set of CYB-operators
{RC%)} (¢1,¢5 =1,2,...), K-homomorphisms u(©): V() — ()
and non-zero elements (9 and © in K (¢ =1,2,...). Then
S 1is called an enhanced colored Yang-Baxter operator (briefly, ECYB-
operator) if the elements of .S satisfying the following:

(1) R(c,6) o (ﬂ(cl) ® ﬂ(cz)) = (‘u(cz) ® 'u(cl)) o R(¢,¢) ;

(2) SpS IR 0 (id ® u9)) = alpid; Sp§ (R o
(id® u9)) = ({9)~1pid.

The collection S is denoted by S = (R(>%); ul) | ol9) | gAY,

ExamMPLE 2.3. Let ¢;,t,,... be indeterminants and K =
C(t;, ty,...) be the field of rational functions in #;,¢,.... Let

d(c) = 2 for all positive integers c. Fix a basis {v°, véc)} for V() ,
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Let

2

(2.3) R:6) — tclEic,ll’ c,) ®E§i21’ c,) + : Efc:,l, c,) ® E§C’22, c,)
2
t
+ _tC_lEéc:,l,cz) ®E§c’22,c,) n Eic’lz,cz) ®E§f21’cl)

)

1 (e.6) o ple,e)
— ZEZ,Z 2 ®E2’22 1 ,
2
where the symbol Efc‘k’ %) denotes the homomorphism V() — V()

which transforms UEC‘) to v,(:z) and transforms UJ(-C'

0. The inverse of R(¢-%) is given by
1

le,

Le, 1(c,,0) o 72(6,,6y)
tE T ®E

) with j # i, into

(2.4) (R(cl,cz))—l — Eiizl,q) ®E§C’ll,cz) + Eéizl,cl) ® Egc’lz,cz)

cl
£ -1

B o B0 - B 0 B
Let pl© = Efc”lc) - Eg‘:’;), o =1, O =¢1 and Sy = (R ;
pu© ol )y A simple computation shows that

(1) the set of operators {R(¢-%)} is a CYB-operator,

(2) Sy is an ECYB-operator.

REMARK 2.4. Let R(¢-%) be as above and R(>%)(x) = R(¢-%)x —
(R@-e))~1x=1 for x € C\{0}. Then R{¢-%)(x) satisfies the Yang-
Baxter equation with spectral parameters

(2.5) (R-%)(x) ®id)(id ® R“>%) (xy)) (R %) (y) @ id)

= (i ® R (»))(R5) (xp) @ id)(id ® R >%)(x)).
This solution is a colored version of the free-fermion 6-vertex model
(see, for example, [17]).

The main purpose of this paper is to investigate some properties of
the ECYB-operator Sy given in the above example.

3. Markov trace of colored links and colored braids.

DEeFINITION 3.1 (colored links). A colored link is a pair of an ori-
ented link and a mapping from the connected components of the link
to N.
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Let B, be the braid group on n-strings and let o, g2, ..., 0,_;
be the standard generators of B, . Let &, be the symmetric group of
degree n. Let 0: B, — &, be the group homomorphism sending o;
to the transposition (ii+1)€ &, for 1 <i<n-1. Then B, acts
on {1,2,...,n} by 6.

DEeFINITION 3.2 (colored braids). A colored braidis (b; ¢y, ¢z, ...,
cn) where b€ By and ¢y, ..., ¢y €N with ¢ =¢; for 1<i<n.

We denote by b the link represented by the closure of 4. Then the
above condition for the colors ¢y, ..., ¢, implies that the closure of
b has a coloring coming from ¢;, ..., ¢,. The connected component
of b containing the ith point at the top of b is colored by ¢;. We
denote by (b; ¢y, ¢2, ..., cy)” the colored link represented by b with
colors defined as above. We need Alexander’s theorem and Markov’s
theorem (Theorem 2.1 and Theorem 2.3 in [2]) for colored links and
colored braids.

THEOREM 3.3 (Alexander’s theorem for colored links). A colored link
can be represented by the closure of a colored braid.

Proof. For a colored link L, let » be a braid whose closure rep-
resents L as a non-colored link. For i =1,2,..., let C; be the
component of L such that the corresponding component of b con-
tains the ith point at the top of b. Let ¢; be the color of C;. Then
the closure (b; ¢y, ¢y, ..., cy)” represents L. o

DEFINITION 3.4 (Markov equivalence). Let B be the set of colored
braids and let ~ be the equivalence relation generated by the follow-
ing.

(1) Let by, by € B, and (b1b3; ¢y, 3, ..., Cn) be a colored braid.
Then

(blbz; C15C2yenny Cn) ~ (b2b1 5 cbl(l) 5 Cbl(z) s eens cbl(n)) .
(2) For be By, let (b;c, ¢, ..., cy) be a colored braid. Then

(bscr,Crynnnscn)~ (ot e, cay ey Cnycn).

An element of the set of the equivalence classes B/ ~ is called a
Markov class.

THEOREM 3.5 (Markov’s theorem for colored links). The closures of
two colored braids are equivalent as colored links if and only if the
colored braids belong to the same Markov class.
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Proof. Every step of the proof of Theorem 2.3 in [2] is compatible
with the coloring. 0O

Now, we define an invariant of colored links by using an ECYB-
operator S = (R>%), u© ol plo)y,
DEFINITION 3.6 (colored braid group). Let

B,(f"'”’c") ={beB,|(b;cy,...,cy) is a colored braid}.
In other words, b € B,(f" +6)
the set B,(f"""c") is a subgroup of B, and is called the colored braid

group with the colors ¢y, ¢y, ..., Cp.
(¢, 5ensrc) (Cp=11y s> Cp=1n)
For b, €B,’ " and b,€B,, we have by 'pbeB, 2

For b € BC ), we define an element pS‘ c)(b) in
End(V @) @ V(@ g..-® V(@) as follows. Let b =0;0; --- g; . Put
b® =g;0; ---0;  and

k 1

if Coi) = Ci for 1 <i < n. Then

(31) R d®(lk ® R( 50z ) * ol 1k+l) ® 1d® )-
Let p>"%(b) = RyRy--- R, . Then
pl () e End(V @ @ V) @ - @ V@),

Since R(%-%) satisfies the colored braid relation (2.2), the above defi-

nition of py’ %) implies the following

ProproOSITION 3.7.
pf;‘ e ), Br(lc"""c") —End(V@ e vV@ ... @ V)

is a representation of the group B,(f"'"’”n) .

DEFINITION 3.8 (Markov trace). Let Spgc"j""’c‘) denote the compo-

sition of operator traces of Sp\*™%, Spgi RS DS Ei ; )
Le.
(3.2) SpSC‘] sp seeesCppg) Spgii...,c,_l)spgcl,...,ci)

for i > j > 0 and put
(3.3) TE % (b)

-1
(0 " ey
— ( H ( (c —-w'“(b) (H Spgzc,l(,) c,)
ce{c,,....C,} k=1

: (Pchl ) (D) () @ ul@) @ - @ ulen)),
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where w{)(b) denotes the number of crossings of b such that the
strings of the over path and the under path are both colored by c.

Then Téc"""c") is a function from the colored braid group B{**%
to K. The function Téc”""c") is called the Markov trace of S.

PROPOSITION 3.9. The Markov trace T, éc‘ %) of an ECYB-operator
S satisifes the following.

C

(1) For b, € B,(,c""" " and b, € B,, we have
Técbz(l) ,...,Cbz("))(bz_lblbz) — Técl e ’c")(bl) .

(2) For b € Bf,c"""c"), bai! € szii""c"’c"“) With ¢, = Cpy1, We
have

Técl,...,cn,cn+l)(b16n) — Técl,...,cn,cn+1)(blarl—l)
=TS D (By) (e = Cnnr).-

Proof. The proof of this theorem is similar to that of Theorem 3.1.2
in [19] and so we omit it. o

With Alexander’s theorem and Markov’s theorem for colored links
and colored braids (Theorem 3.3 and Theorem 3.5), the above propo-
sition implies the following theorem.

THEOREM 3.10. Let S be an ECYB-operator. Let Xg: {colored
braidy — K be the mapping defined by Xg(b;ci,...,cn) =
T ;C“'"’C")(b). Then Xg induces an isotopy invariant of colored ori-
ented links.

ExAMPLE 3.11. Let Sy be the ECYB-operator in Example 2.3. Then
TS0 is an invariant of colored links. But this invariant is equal to O
for all the colored oriented links because of Proposition 4.4 given later
and Trace(u(¢)) =0 for ¢; =1, 2, .... So we need a new technique
to withdraw a non-trivial invariant from the ECYB-operator Sj.

4. Redundant ECYB-operator and modified Markov trace. To with-
draw a non-trivial invariant from the ECYB-operator S, we focus on
a special property of Sj.

Let S = (R ; o) o) B()) be an ECYB-operator. Fix pos-
itive integers n and ¢y, ..., ¢,. Let Agfl ;l""c") be the subalgebra of

End(V(©)®-.-@V (%)) spanned by the image pg‘ e C")(B,(,Cl e C")) . We
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regard A(SC‘)1 as the one-dimensional subalgebra of End(V (<)) spanned
by the identity element.

DEFINITION 4.1 (redundant ECYB-operator). The ECYB-operator

S is called redundant if, for x € A%

(41)  Spy e (x(id® 0D @ ) € Ao

forall n > 1, ¢;,...,c, € N. Let (R, u, a, ) be an enhanced
Yang-Baxter operator in the sense of §2.3 in [19]. We regard this as
an ECYB-operator by putting R(¢-%) = R, ul®© = u, o9 = o and
B = pB. Wecall (R;u,a,p) redundant if the associated ECYB-
operator is redundant.

ExaMPLEs 4.2. (1) The enhanced Yang-Baxter operators associated
with the Jones polynomial V' and its two-variable extensions P, F
in [19] are redundant.

(2) Let Sy = (R-%); u© o) Bl)) be the ECYB-operator in

Example 2.3. Fix a positive integer ¢y and let S(()CO) = (R4 ;
) ol%) | B€)), Then S(()C") is a redundant enhanced Yang-Baxter

operator and the associated algebra A§§°, G2 =%) js a quotient of Iwa-
hori’s Hecke algebra. (See Proposition 5.1 and Lemma 6.11.)

DEFINITION 4.3 (modified Markov trace). Let S = (R(¢>¢); u(©),
o), B)) be an ECYB-operator. With the notation in (3.2), put

(42) Ty (b)

-1
(C) . R
= I @9)™® (H ) Sy’
ce{c,,....c,} k=1

. (pé,cl""’c")(b)(id®ﬂ(cz Q- ®/L(cn))) .

Then Ty (b) € End(V'(@)).
The definition of redundant ECYB-operators implies the following.

PROPOSITION 4.4. Let (b;cy,...,cn) be a colored braid. If the
ECYB-operator S is redundant, then Téf‘l’""c")(b) € End(V'9) is a
scalar matrix. Moreover,

(4.3) T (b) = Trace(u@) TS ().
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DEFINITION 4.5 (modified Markov trace). For a redundant ECYB-
operator S, the mapping 7. é‘:‘l’""c") sending b € B,(,C"""c") to the
scalar T, éi'l""’c")(b) € K is called the modified Markov trace of S.

THEOREM 4.6 (invariant of non-colored links). Let S = (R-%);
u© ol By pea redundant ECYB—operator. Fix a positive integer
co and let S\%) = (R-%) ; u©), a(&%) | B, For b € B,, we put

c°) (b) =T, éc"l’C“""’C“)(b). Then Xé"l is an invariant of noncolored
lmks and ’ ’

(4.4) XS0 (b) = Trace(u) Xg) (b).

Theorem 3.10 and (4.3) imply (4.4). The claim of the above theo-
rem is that X éc"i is still an invariant of links even in the case
Trace(u(©)) = 0. The proof of this theorem is similar to that of
Theorem 3.1.2 in [19] and we omit it.

ExAMPLE 4.7. Let Sy be the ECYB-operator in Example 2.3 and
fix a positive integer ¢;. Then X éc"’)l coincides with the reduced

Alexander-Conway polynomial in variable tc,. For details, see [4],
[13] and [14]. In [13] and [14], they use an argument about one-tangles

instead of the redundancy of S((,C") .

5. The multi-variable Alexander-Conway potential function.

PROPOSITION 5.1. Let Sy be the ECYB-operator defined by Example
2.3. Then S, is redundant.

The proof of this proposition is long and so is given in Appendix
A. The next two theorems are the main results of this paper.

THEOREM 5.2. Let Sy be the ECYB-operator in Example 2.3. For
a colored braid (b;cy, ..., cn), let

(5.1) As(bs ety s ) = (te, = 1)1 T (B).
Then As, Is an isotopy invariant of colored links.

Proof. We show that ASo is invariant for all the elements of a
Markov class of colored braids introduced in Definition 3.4. The
defining condition (2) of ECYB-operator implies that

(52)  As(bog'sci,ca,insCnsCn) =As(bsci,Cosnn s Cn).



118 JUN MURAKAMI
The defining condition (1) of ECYB-operator implies that
(53) Aso(b; Cl, CoyevesCp)= ASO(O'];—Iba'k; Co (1)s «=+ > cak(n))
for k£ > 2. We show that
(5'4) ASO(bQ C1,C5 ccvy cn) =AS0(0-1—1bo-1 5362,€C,C3,..., cn)-
Since
Spilc’Zécl ’Cw---’cn)(pg’z’ﬁ ’63""’6")(0'1—1b0'1)(id®2 ® 'u(C;) Q- ’u(c,.)))
— (R(Cz,c'l))—lspglc:éczycg ,.-.,(,‘n)
) (,D,(gcl ’CZ’C3""’C")(b)(id®2 ® 'u(c3) Q- ® ﬂ(Cn)))R("z’cz) ,
we have
Spizc,ziq ’Ca""’cn)(pg"z’cl ’c3,m,c")(0'l~1b0'1)(id® ﬂ(c‘) ® ‘Lt(c;;) R ® ‘LL(C")))
_ Sp(202 ,Cl)(R(cz,cl))—-lsp;c,léc2 yeesCy)
. (pf;] ’CZ"“’cn)(b)(id®2 ® ﬂ(c3) ® e ® ﬂ(cn)))R(cl’cl)(id ® 'u(cl)) .
Because S is redundant,
Spa,2(p5" " (B)(1d®? @ W) @ - @ ule)) € AT
and so there are o, f € K such that
Spy' > (pg S (B)(dP2 @ 4 @ -+ @ )
=a+ BR(CZ’CI)R(CI :6,) .
But actual computation shows that
Sp;cl ’CZ)(id ® ﬂ(cz)) =0 ,
SD(ZCl ,cz)(R(cz,cl)R(cl ’Cz)(id® u(cz))) =1, - tc_ll
and
Sp>@((R€-4)) 1 RGDRE-GIREGD (A @ p@)) = 1, — 17
Hence we have (5.4). O
THEOREM 5.3. Let Sy be the ECYB-operator in Example 2.3 and let
A, be the invariant of colored links in Theorem 5.2. T, hen Ag, is equal

to Conway'’s potential function, which is a version of the multi-variable
Alexander polynomial.

The next section is devoted to the proof of the above theorem.
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6. Magnus representation of colored braid groups and the multi-
variable Alexander polynomial. To prove Theorem 5.3, we use the rela-
tion between the multivariable Alexander polynomial and the Magnus
representation of the colored braid group Bﬁc‘ %) In this section,
we focus on this relation. In Chapter 3 of the book [2], the Magnus
representations of braid groups and pure braid groups are discussed.

We reformulate them for the colored braid group B,(f"""c") .
Let F, be a free group of rank n, with generators a;g, ..., a,.

The braid group B, acts on F, by

oji-a;= aiai+lai_1 s OOy = Qy,

(6.1) e s e
ogiraj=a; fj#i,i+1.

This induces an action of the colored braid group BY"~"%) on F,

since B,(,c1 6) s a subgroup of B, .

DerINITION 6.1 (Fox’s free-differential calculus). Let KF, denote
the group rings of F,, over C. Foreach j =1, ..., n thereis alinear
mapping

9 : KF, - KF,
Oa;
given by
0 (s -1)/2
(6.2) Doy ( i a ) = Z gkalk,]a ,kk >

where ¢, = £1 and 5,-](, ;j is the Kronecker J, where 6;; =1 if i =
and 6;; =0 1if i #j.

Proposition 3.2 of [2] shows that the mapping 8 /d«; is well-defined.
This mapping is called Fox’s free-differential calculus.

Let Bf,c"""c") be the colored braid group. Let s , ..., s. be inde-
terminates corresponding to ¢;, ..., ¢, and let
K’:C(SCI! cee g SC")
be the field of rational functions in Se,s e+ s Sc, with coeflicients in

C. Let n(4:-:%) be the C-a'gebra homomorphism from F, to K
which sends oF! to sil.

,C,)

DEFINITION 6.2 (Magnus representation). For b € B,(f"'" , let

&@s-6)(b) be the n x n matrix defined by
f(cl ’""C")(b)ij — qleesc) (6(b . ai))

Baj
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with entries in K. This mapping is a group homomorphism according

to the following theorem and is called the Magnus representation of
(c,s...5¢,)
By,

THEOREM 6.3. The mapping &€i>%): b — E€:6)(b) defines a
group homomorphism from Bﬁf"""c") into the multiplicative group of
n X n matrices over K.

Proof. For b € Bi(lc,,...,c,,)’ we have n(cl,...,cn)(b . ai) —

Se, = n(c>:%)(a;) from the definition of B,(f"'"’c"). This implies

that 7(¢>-%)(b.a) = nl4> %) (a) for a € F,, which is the condi-
tion (3-18) in [2]. Therefore, we can apply Theorem 3.9 in [2] for our

case and then we get Theorem 6.3. a

For later use, we need a set of generators of B’ and their

representation matrices.

S =
oy

PROPOSITION 6.4 (generators). The colored braid group B,(,Cl ol s
generated by the following elements o;; of By .

- 1 -1 -1 P
(6.3) 0;j=0;_10j_2*0,410; ’O'H_l 10, 50, (1<i<j<n),

where y;; =1 if c;=cj and p;; =2 if ¢; #¢j.

Proof. Let H be the group generated by o;; (1 < i < j < n).
Then H contains the pure braid group P,. Let &, be the symmetric
group of degree » and 6: B, — &, be the group homomorphism
introduced in Definition 3.1. Let 6&,6"""0") = H(B,(,cl ’""c")) . Then

S = {1 € Gulesy = ¢ (1< i <)},

and 60(g;;) (1 < i < j < n) generate GS,C"""C"). Hence 6(H) =
6510‘ ’""c"). On the other hand, the kernel of 6 coincides with P,,
which is a normal subgroup of B,(,cl %) Hence B,(f‘ e G) g gener-
ated by 0;; (1<i<j<n) since B% _pH=H. O

To get the representation matrix of the generators, we have to com-
pute 8(b-a;)/0a;. Let apg = apopi1--- ag for 1 <p<g<n. The
definition (6.1) of the action of B, on F, implies that

a; (lf [ # D, q) 5

(6.4)  Gpg-ai =14 apgay’ (ifi=p) , ifc=c,

1 . .
api1,q-1%,9-1 (fi=49),
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and
a; (ifi#p,q),
6.5 = apgal a a;! (if i =p)
(6.5) Opg-a; = 9% +1,9-1%p,4-1%p ¢ D),
-1 ~1 oo
Opi1,qg-199%, 4 1%p+1,9-1 (ifi=gq),
if ¢p #¢q.
Therefore, the representation matrices are given as follows. Let sy, =
! —
SCPSCIJ+1 : 'qu and Sc' - 1 - Scl . If Cp - Cq Py

(6.6) ¢,

1 p—1 p p+1 qg—1 q q+1 n
1.~ 0 0 0 0 0 0 --- 0
0 i 0 0, S 0, 0 0 -0
0--- 0 5, SpSc, T Spa=2%, Spa—1 o ---0
0--- 0 0 1 0 0 0 --- 0
0 - 0 0 1 ) 1 0 0
0- LU A P Sp+2,4-1%, Sq—l,q—lscp 0 0 0
0--- 0 0 0 0 0 1 .- 0
0 0 0 0 0 0 0 i
If ¢y #¢4,
(6.7)
é(c‘ N ...,cn)(a_pq)
1 p—1 p p+1 q—1 q g+1 n
1 0 0 0 0 0 0 0
0 i 0 , o 0, o0 0
0 0 scp +scpscq —Spp e s, q-ZchScp sp’q_lscp 0 0
0 0 0 0 0 0
0 - 0 L0 L0 i 0 0 0
0 - 0 A‘IH-l,q—lscq _sp+2,q—l ¢ cq —sq——l,q—lscp‘ycq Scp Y 0
0 0 0 0 1 0
0.5 9 0 0 Ll 0 0 0 ..o i

As Lemma 3.11.1 of [2], we have

LEMMA 6.5. The Magnus representation E€~¢) of BYr =% jg
reducible to an (n — 1)-dimensional representation.

We denote the image of b € BY" "% in this (n — 1)-dimensional
representation by ((¢i-->%)(b). The representation {(¢i--S) is irre-
ducible. But we do not use this fact. As (3-28) of [2], we have
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(€5

PROPOSITION 6.6. Let b € B, Y and A(b) be the Alexander
polynomial of the closure b. Assume that c; # c; for some i # j; then

(6.8) (e8¢, S, — DA(D) = det({ (%) (b) — id).

Let 1: B,(ZCI ) B,(,C"""’C‘) be the group isomorphism defined by

N . . Yy -1 -1 -1
00i)) = On—j410n—j42" " Oni=10,2 0, i " Op_j4170u_j 1 -

Let ¢ = &€ % o1 and w = {o1. Then (6.8) implies that
(6.9) (Se, 8¢, +Se, — DA(D) = det(y@>+%)(b) —id).

For b € Bff"""c"), let w;(b) denote the sum of the signatures of
crossing points of » for which the undercrossing arc has color i. Note
that w;(b) is equal to the sum of the signatures of crossing points of
b for which the overcrossing arc has color i. In fact, w;(b) is equal
to the sum of the linking number 1k(L;, b\L;) and the writhe of the
sublink L; of b consist of the components colored by i. Then (2.4)
of [6] shows that the Conway potential function V is given by

det( '//(c‘ yeees C,) (b) —id) H t;U,(b)

ic{c ,...,c,}
(tete, - le — tc_lllc_zl "'tc—nl)

(6.10) V(b) =

-2

52,

s, =172

1 1 )8

=

Let U be the representation space of y/(¢i--:¢) | Let t//,ic“'"’c") be the
representation of B,(f"""c") on the space of k-fold exterior product

AF U defined by

w D B) A Av)
= ) (B) () A A plaS () (uy).

Similarly let qﬁgf"'"’c") be the representation of B\""%) defined by
the k-fold exterior product of ¢(¢i---:¢) . By taking the eigenvalues of
w'c:->¢)(b) into account, we have

PROPOSITION 6.7. For b€ BX" %) we have

n—1
(6.11) det(y-(b) —id) = Y (~1)"*~'Trace(y," " ().
k=0
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Let V() be the 2-dimensional vector space introduced in Example
2.3 and vf, v§ its basis. Let V(%) = V@) ®...® V() and
Vk(c‘ »%) pe the subspace of ¥(>-%) spanned by the elements vicl '®
--®u;" with #{j|i; =2} = k. Then Vk(c“""c") is invariant under the
action nof pg‘""’c")(B(C"""c")) where pg"""c") is the representation

(Cl >

of B,(,C"'"’C") introduced in Proposition 3.6. Let pg %) denote

the representation of B,(,c" %) on Vk( v Ge) Y et p(c" %) be the

representation of B,(,c""”c") defined by

P:g(f‘k’ ...,c,,)(b) — H (ti)(k—l)w,(b)) pg‘:];...,cn)(b) -
,}

iefc,...,c,

,C,)

Let /\k pg";""c") denote the representation of Bf,c""' obtained

from the natural action to /\k Vl(") induced by pgfl - 129

LEMMA 6.8. Two representations p(1 %) and N pé‘; 24 are
equivalent.

Proof. The linear isomorphism

R: = id@(i—l) ®R(Ci’ci+l) ®id®(n—i—1): V(cl,...,c") N V(cl,... €1 3CsesC,)

implies \¥ R(:9): /\k(Vl(C"""C")) — A (V(C" ooy Let f; =

Vi@ QU QU UM ®- BV € Vl(c" %) and g = 02®
--®vff“®vcf®vcf+‘® ®v1 € V(C" €€ G)  Then {fis.-o Ju}
and {g;,..., g:} are bases of V(c" %) and V(C""' Cut2Corea )
spectively. The matrix /\k R; with respect to the basis {f; A--- A
ﬂklil < iy < -+ < i} and {gi1 /\--'/\giklil < i < - < i}
is equal to the matrix tfl‘lid®(i“1)R(C:’cn+l) ® id®"—i-1. V;c(cl e G)
V(c" Cur € ) , where the bases f; A - /\f and g A---Agi
correspond to v ®-- Uy “ with j, = 1 if j, ¢ {i1,..., it} and
Jp=21f j, € {11 y oo zk} " This implies the statement of the above
lemma. o

re-

LEMMA 6.9. Let ¢'(i-=:%) be the representation of B,(,c"""c") de-
fined by
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w,(b)

(6.12) ¢l(c1,...,cn)(b) — ¢(c1,...,cn)(b) H £

ie{c,,...,c,} Sl=tl_2,.5‘2=t2_2

Then the representation ,{)(Sc1 1 ""c")(b) is equivalent to the representation

¢’("1 seesCy)

Proof. This lemma is proved by comparing the representation ma-

trices of generators of Bf,c‘ %) In fact, the matrices p( L )(a,- )
and ¢'(t>+%)(gy;) are intertwined by a diagonal matrix w1th diagonal

elements d1 =1,dy= tgzt;l‘ , d3 = tg3z;21d2, cers dp = tgnt;n:dn_; .0

Combining above two lemmas, we know that the two representa-
tions péc %) and AK ¢/c>-¢) are equivalent. On the other hand,
PCis6) = ylass6) @y, where g is the trivial representation of
B,(,"‘1 2 Ca) sending every element to 1. Hence we have

LemMa 6.10. Let y, ") be the representation of B de-
fined by

5 ey b

(6.13) w Dy =y D) I 4"

iefetd Lyt gt

( “

Then the representation Ps’! (b) is equivalent to the representation

ey s sC,) ’(¢,5een5C,)

Vel eyt

Let g € C\{0} such that g* # 1 for any integer k. Let H,_(q)
be Iwahori’s Hecke algebra defined by
(6.14) Hyp_1(q) =(T1, ..., Tn|TiT; = T;T5(li — j| 2 2),
T;TinTi = Tin TiTiy, T - (@ —q )T - 1=0)

as a C-algebra. Let I be the two-sided ideal of H,_(q) generated
by the elements (7;+¢ ') (Tj+¢7') 1<j<i-1<n-2).

LEMMA 6.11. The algebra A(Sc1 ;,""C") is isomorphic to (H,_1(q)/1)®
K as an abstract K-algebra.

Proof. Lemmas 6.8-6.10 show that the algebra Agf' ;l""c") is isomor-

phic to P75, M _,c(K) where M ¢ (K) is the full-matrix algebra
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over K of size ,_1C; and ,_,C; = (n—1)!/il(n —1—1i)!. By using
the representation theory of H,_;(q), which is isomorphic to C&,,,
(Hy,_1(q)/I) is isomorphic to @y M_c(C). Hence (H,_1(¢)/I)®

K is isomorphic to A(C &) . O
Proof of Theorem 5.3. Since ://,'c(c1 »+%) is an irreducible represen-
tation, Lemma 6.10 implies that the invariant Tg , is a linear com-

bination of traces of representations t//,'c(c"""c")(b) 0<k<n-1).
On the other hand, (6.10) and Proposition 6.7 imply that the Conway
potentlal function is a linear combination of traces of representations

l//;((c (0 < k < n—1). Both invariants are equal to O for split
links; we have
(6.15) Té,l(i) =Tg (o)) =---=Tg ;((6f -0 2) )=0
5.1((of n—l)A) =1,
Ad)=A((0f)) = =A((0] ---05_9)") =

)
((012 gp_1)") =
Hence the following proposition shows that 7. §,1(i7) =Ab). O

Let ﬂffl »+2%) be a linear combination of traces of ,',,I’{ €enrC) ith
coefficients o € K, where W]lc(c,,...,c")

B %) introduced in Lemma 6.10;

is the representation of

n—1
gf‘ ""’c")(b) = E oy Trace t//,'c(c‘ ""’c")(b) forb e B,(f' o)
k=0
PROPOSITION 6.12. The coefficients oy, are determined by the values
Of T,gcl ’""c")(l) ) T’SCI ,...,cn)(a_lz) o T,(,c‘ ’m’c")(O'iZO' 0_;12 1)

Proof. Let H,_(q) be Iwahori’s Hecke algebra defined by (6.14)
and I the two-sided ideal of H,_;(g) generated by the elements
(Ti+q ") (Tj+q7") (1<j<i—1<n-2). Then, for x € H,_1(q),
there are by, ..., b,_1 €K and gy, ..., g,—1 € H,_1(q) such that
(6.16) x=bo+big ' Tig+b:85 ' Ti TS 8>

+ o+ bp18,- 1T1 -T2 ,g,—; modlI.
Let v: H,_1(q¢)/I — K be a linear function such that 7(xy) = 7(yx).

Then 7 is a linear combination of the traces of irreducible representa-
tions of S, corresponding to a hook type partition of 7. A hook type
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partition is a partition of the form (m, 1%). Moreover, (6.16) implies
that 7 is determined by the values (1), ©(7?), ..., ©(T?--- T2 1) .

Let ﬂf,t“"" o) = T % Lemma 6.11 shows that 4,% is

isomorphic to (H,_1(q)/I ) ® K as an abstract K-algebra. Hence we
can apply the above argument to 7¢"*? and we know that 7{?-~%
is determined by the values at 1, o7, 6703, ..., 0?65 ---02_,. This

N tyoerty) .
implies that nf, ) is determined by the values at 1, a2, 6203, ...,

o203 - 02 if ¢ ,..., 1 arein a neighborhood of ¢, and so this
statement is also true for generic # , ..., I . a-

7. Axioms for the Conway potential function. Hartley proposes ax-
ioms to determine the potential functions of bi-colored links in [6].
Nakanishi gives a complete set of axioms to determine the potential
functions for colored links with up to 3 colors. In the following, we
give axioms for the potential function of colored links. The potential
function has the following characters.

(1) Let Ly, L_ and L, be three links which are identical except
within a ball where they are shown as in Flgure 1. Then the potential
function V satisfies

V(L+) = (te = t71)V(Lo) = V(L-) =0

(2) Let Ly, , L__ and Ly be three links which are identical except
within a ball where they are shown as in Figure 1. Then the potential
function V satisfies

V(L) = (tetyg + 871471V (Loo) + V(L--) =0
(3) Let Ljiia, Li2a1 L1122, Loz1rs Ly, Loy and Lggy be seven
links which are identical except within a ball where they are shown
as in Figure 1. Let
gi(x)=x+x71, g (x)=x-x"'.
Then V satisfies
8+(1c,)8-(1,)V(La112) — 8-(tc,) &+(1c,)V(L1221)
— 8-(t;'1:,)(V(L1122) + V(Loan)) + 8- (2 't te,) 8+ () V (L11)
— 84 (te,) 8- (te,1,2; ")V (La2) — 8- (85262 )V (Logo) = 0.

(4) For a trivial knot L with color ¢, V(L) = 1/(t. —t;1).

(5) Let Ls and Lg be four links which are identical except within a
ball where they are shown as in Figure 1. Then V satisfies
(tc = t7")V(Ls) = V(L) =0

(6) For a split union L of a link and a trivial knot, V(L) =
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c d c d c d

c ¢ ¢ ¢ ¢ ¢ @ @ H

L, L. Lo Ly L. Loo
c d e o d e o d e ¢ d . c (¢
L L, L3 L4 Ls Lg

abc abc

kel

Loz L1 L2 Lo Lyn Looo
FIGURE 1

REMARK 7.1. (1) The Sth relation is a generalization of the relations
(V) and (VII) in [15].

(2) The 3rd relation is not known before. But we can show this rela-
tion by a direct computation using the state model. This relation can
be thought of as a generalization of (VIII) in [15]. We do not need the
Doubling Axiom 4.2.6 in [18]. This is obtained by the following way.
Let Sy be the ECYB- operator in Example 2.3. Then the argument in
§6 shows that the algebra A " :4) g isomorphic to H,(q). Hence
Aéfo’ 37 %) is 6-dimensional and so there must be a linear relation

among seven elements 1, 67, 67, 6203, 67, 6}, 010301, 020i0,. 1

actually computed this relation with MACSYMA by using the 8-
dimensional representation of A(C1 ’362’ %) obtained by the ECYB-
operator.

THEOREM 7.2. The above relations (1)-(6) determine the potential
function.

REMARK 7.3. The first three relations are local relations. With these
relations, we can reduce V of a colored link to a linear combination
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of V’s of links which are split sums of trivial knots, Hopf links and
connected sums of Hopf links. The last three relations determine V
of such reduced links.

Proof of Theorem 7.2. Let S be the ECYB-operator of Example
2.3. Then, with Theorem 5.3, we know that V satisfies the relations
(1)-(6) because a computation shows that T ; satisfies (1)-(6). So it
remains to show that we can compute V of any closed colored braid
by using the relations (1)—(6).

Let 6 be the group homomorphism from B, to the symmetric
group &, defined by 6(o;) = (ii+1). Then B, actson {1,2, ..., n}
by 6. Let I."%) be the two-sided ideal of CB\"*% generated
by the elements b~ 1xb, where b € B, and x is one of the elements

o — 8-(tc,,) — o, (if cpiiy = Cpir1)) »

2 -2
o — g+(tcb“)tcb(,.+,)) +o; (if cpiy # Cp z+1))
and

g+(tcb())g ( cb(+,))0'i+10"20'i+1 —g-(t cb(,+,))g+(tcb )Giai2+10'i

“g—(tc ,H))(J 01+1 + GH—IU )+ g—( cb()
-1 2

_g+(t€b(,))g—( Chiy cb(m)tc . 2) i+1 g-( t )

b(i+2) cb G+1) Cbiis2)

2
Cb(:+l) Cb (i+2) ) 8+ ( Cous2) ) g;

C

of CBr(lcbm,...,cb(n)) Let Mr(lcl,...,cn) _ CB’(1cl,...,cn)/Ir(lc[,..., ) and p, the

natural projection from CB,(,C"""C") to M,(,c"""c") fori=1,2,...,
n-1.

LeEMMA 7.4. The algebra M3(cl G2 ) g spanned by the images of 1,
o2, 0%, 0}o?, o}o?, 6lo3a} as a C-vector space.

Proof of this lemma is given in Appendix B.

LEMMA 7.5. The algebra M,(,c"""c") is generated by pn(c?), pn(63),
a1 € B,

Proof. We claim that () the mage of every generator o;; € Br(zCl yens C,)

is written in terms of the images of ¢7,..., 02 ;. This fact and
Lemma 7.4 imply Lemma 7.5. To show (%), we use the induction

on n. If n =3 then Lemma 7.4 implies (x) and Lemma 7.5. For
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the n = k > 3 case, we assume that (x) and Lemma 7.5 are proved
for the case n = k — 1. Then the induction hypothesis implies that

pi(0;;) is written in terms of py(0?), pk(63), ..., pk(o?_,) if j <k
or i > 1. It remains to show that p;(oy;) is written in terms of
pi(0}), pi(03), ..., pr(o?_,) . Recall that

_ 2_—1 -1
Oik = Ok_y " 020{0y -0 .

The middle part 6, - 620705 " -+ a7

, can be considered as an el-

ement of B,(:_"l""c*“z %) and so we can apply the induction hypothesis

to this part. Then Lemma 7.5 implies that
pr(o1x) = apr(¥) + Bor(z10k_10¢ 507 22)

PRITE) Ciyeees Cp

forsome a, f€C and y, z;, z; € CB(Cl fie2) , Where CB( ' e-2)
V> 21, 22 k-2 k-2

is considered as a subalgebra of CB,(:"""C“). By Lemma 7.4,

pk(ak_la,f_zak_l) is a linear combination of the images of 1, 0,3_2 ,

o?_,, 62,02 ,, 62_ 02, and 6% ,0% 0% ,. Hence we get Lemma

7.5 for the case n. 0

Now prove Theorem 7.2 by an inducution on n. If n =1, then the
closure of a 1-braid is a trivial knot. Assume that n > 2. Note that the
mapping V from colored links to C can be considered as a mapping

from CBY" % 1o C by V(aibi+-- +arb,) = a1 V(b)) +- - +0,V(by)
for aj,...,0,€C and by, ..., b, er,c"""c"). Since V(x) =0 for
X € I,(,c"""c") , V is factored by M,E“' a6 , we may consider V as a
linear mapping from M,(,c"""c") to C. Lemma 7.4 and Lemma 7.5
imply the following:

LEMMA 7.6. The algebra M,(,c‘ %) s @ union of

M,(,c_‘im’c"-l)pn(a,%.‘l)M,gclim’c"—l) and M(c‘im’c"—') '

n_.

This lemma implies that, for every x € CB,(f1 s Ca) , there are a, S €
Cand y, z;, 25 € Mr(fli'"’c"“) such that p,,(x):ay+ﬂzlp,,(a,%_l)zz.
Hence V(x) = aV(y) + BV(z1pn(62_,)z2). But, by using the rela-
tion (5), we have V(x) =aV(y) + (¢, - tc‘fl)ﬂV(zlzz). Hence the

n—1
computation of V for elements of M,(,c""”c") is reduced to that of

M,(lc_‘i""c”“) . This completes the proof of the theorem. O
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Appendix A. Proof of Proposition 4.8. To prove Proposition 4.8, we
need the following two lemmas.

LEMMA A.1. Let r¢-%) = R(©:¢)R(C»¢) € End(V(6-9). Let ry, 1y
be elements of End(V(©-%>%)) defined by ry = rl¢-%) @ 1d r=1id®
r€%) . Then {1, 1y, ry, FiFy, rafy, F1Fary} is a basis ofA S <.

Proof. Let AS(C3C %) is the subalgebra of Ag 3(c;, ¢z, ¢3) gener-
ated by 1, and r,. Let
gr(x)=x+x71, g-(x)=x—x
From the definition of R %) we have

(A1) e 4 (o) = g (1),

(A2)  g-(tctc,)rarra — & (L e )rirar
= g-(te,/tc,)(r1ir2 + rary)
+ (=8 (te,1e,12) + 8-(1, 22, /1) + &-(tc, /1))
— (—g- (L te,te,) + 8- (L2 1c,[1c,) + §-(tc, [ te,))12
+g-(te,)8-(te,) 8- (1 '1c,)

From these two relations, we know that the algebra Ag (C‘ 4G) g

spanned by {1, r, ry, rir,, rpry, rirpry} as a linear space Actual

computation shows that {1, r,, r,, ryry, rary, rirpry} is linearly inde-
¢ ,C,,C.

pendent. Hence {1, ry, ry, 1112, 11y, r1r2r1} is abas1s of A( ),

2273

In the following, we show that Ag 3 = A'(C 2 by showing that the
generators of Ag 3 are written in terms of rp and rp.

Case 1. First, we treat the case ¢; = ¢; = ¢3 = c¢. In this case,
B(C’C’c) is generated by o; and o,. Hence A(C ¢:¢) is generated by
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R€9)®id and id®R(-9) . But we have R = g_(.)"}((R(:9)2-1)
and so we have A9 = 4359

5

Case 2. Assume that ¢; = ¢y # c3. In this case, Bgc"c‘ %) s gen-

erated by g, and 022. Hence Agc' ;CI’C3) is generated by R ® id
and r,. But we have R-9) = ((R9))2 —1)/(g. — q7') and so we
have AL(;: 8 = Ag(fl_,,’ )

(¢;,¢,56)

Case 3. Assume that ¢; # ¢; = c¢3. In this case, By """ 1is
generated by o and g,. Hence, as in Case 2, we get Agcl 3”2’62) =
A0

Case 4. Assume that ¢; = c3 # ¢, . In this case, Bgc‘ *%:4) s gener-
ated by 67, 0} and o] '!a,0, . Hence AS:;CZ’C‘) is generated by r;, 1,

and ((R¢-%)~1 ®id)(id ® R-))(RE-%) @ id). But a computation
shows that

(A.3) (RNl @id)(id ® R D) (RS @ id)
&%) 1
Bl 8- (tc tc,) " g—(tq)r1
g—(tgl tcz)
8- (1c,)8-(le)8-lo lc,)
B g+(lc,) .
8 (1)8 (1)8(lele) ' °
g-(L, té)
T e ()E(le)g (i) !
g+(tcz) FLrary

8-(tc,)8-(tc,) 8-t 1c,)
(¢;,¢5¢)) _ ey 6y,c))
So we have As,3 =Agy .

Case 5. Assume that ¢; # ¢y, ¢ # ¢3 and ¢; # c3. In this case,
Bgc"cz’c3) is generated by o7, 67 and o] 'c20;. Hence Agf‘ ;CZ’C’) is
generated by r;, r» and ((R-%)~! ®@id)(id ® R 4))(id ® R(€i-4)) .

(R-%) ®id). But a computation shows that
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(A.4) (R %))~ id)(id ® R %)) (id @ R %) (RE-%) g id)
_ 8-l /1e)8(tete,[le))  8-(te, /1) 8 (tc,)

g—(tc,)g-(tc 1) FRCSTROTS) ry
g+t )
- (lc)8-(ll) * 8- ()8 (tele)
8+t tgz) 8+(te,)
- g—(tcz)g—(tcltcz)rzrl 8- (tc,)8-(tc, zcz)rlrzﬁ .
So we have A(Cl 565Cp) _ A:g(c,}, 6.6) ]

>

LEMMA A.2. Let Afgc‘ ;l""c") be the associated algebra of S. We

regard As o1 “) asa subalgebra of Agf‘ ;l""c") naturally. Then
(C 1272 n ) ( n 1)
(A‘S) AS n —AS n—1 ] +AS n— 1

(1% @ (R Crm) RO D)) AT 601

Proof. We prove by an induction on n. First, we treat the case
n = 2. The algebra A o %) is generated by 1 and R ¢)R(€-S) if
et #¢. If ¢ = ¢, =c, then AC ) is generated by 1 and R(:©) .
But R(:9) = (RN - 1)/(t, -t 1) and so A(C ) is generated by

1 and (R(:9)2 . Hence Aé’z %) is generated by 1 and R ) R(E6)
for any ¢; and ¢,. The quadra‘uc relation (3.8) proves the lemma.
Next, treat the case » = 3. In this case, Lemma 3.15 implies (A.5).
Now, prove for n > 3. The group BY'% is generated by its

(€;resCyy) —1 -1 7
subgroup B,'; and the elements o, ;- -0, 0, 0,1+ On-y

(1<k<n-1) where y, =1 if ¢, = ¢, and y, = 2 if otherwise.
By the induction hypothesis, it is enough to show that pg‘ ’ ""c")(ay" )

n—1
C ey - . .
o4 (g1 g™"2g,_|) are contained in

and pg

(€15es€yy) (€15esCuy) ys - (€556,
ASCIn : +A;1n_lc 1(1d®(n 2) (R(c’l " l)R(C" 1€ ))A;n ,
We know that pSc" ot )(a,, 1)= /’s ’c"""c")(a,f_l—1)/(t¢"—t;nl—5
if c,.1=c¢p. Hence, from the formula (3.10) and (3.11), we know that
(¢ s Vs 2 b . . .

,0n—1) €an ewrltten as a linear combi-

the element pg )(G,,' _11 a,”.

nation of the elements pf;"""c")(l) (C""" (a2, pr (a2 ),
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péc"""c")(a,f_ D> p(Sc" " )(a 162 _,) and pS )(a 62 02 ,).
Hence the lemma 1s proved. O

Proof of Proposition 4.8. By Lemma 3.16, every element x €
A(Sc‘;l""c"“’c") is written as x = y; + y,RE %) RE-1>%)y; where

yl,yz,ygeAS; ;" Y Hence we have

(A.6) Spir P (x(id®" D x ple))
_ Sp(c‘l ,- c,,)(yl(id®(n—l) ®”(c")))
+Spyt W (py R ) RC1 )3 (10D @ pl6n)))

=)2)3,
which is contained in AA(‘;‘,’I'"1 " ’). o
Appendix B. Proof of Lemma 7.4. Let
gr(x)=x+x71, g-(x)=x—-x"1.

The definition of Igc‘ *2:%) and the relations of B; imply that

LEMMA B.1. Let b e B(C" “%) and x be one of

2 2
g+(tcb(,))g— (tcm))al 02010

2 -1_2
-8-(te,, )g+(tc,,(3))(g+(tc,,(, tcbm)al 0501 — 0 0501)

-1 2 -1 —1),4
—g-(tz R )(oi6? + olaio}) + g_(tcbl 2 bm)(tcbm + tcm))arl
15242 22
g+(tcb(l))g—(tc wle, z)tc )oioy — g-(t; ) b(3)) 1

2.2 2
)g_(tcb(z))alzazalzaz — 8- (t,,)8+(tc,, )01 05 0f

g+(tcb“)
—g_(t7 1. YNgilte, to )oyo%0y — o 62
8- ) Cb(S)) 8+\ley, Le,, )010201 — 0 0301
(g+(tcb(,) ty) 010301 — 010307 )
+8-(tz [ c,,(3 )g+(tcb(3))0'1 - g+(tcb(”)g—(tcb(,)tcb(z)

b(l)

-g-(t; cb(z) cb ) 1>

cb(z)) 102 o1

8+(te,,)8-(t,, )07 020{ 02
_g—(tcb(z))8+(tcm))(g+(tc,,(l tcb(2 0'10'2 o1 — 0'1‘7220'1 )
-1 4
-—g_(tcb(l)t Sy )(01 301 + a3a}) + g-(1;, " cb(Z) te,,)8+(lc,, )0}

_g+(tcb(l))g—( Cu cb(z)tcl) 220'2 g-(t; 2 2 ) oy,

b(3) (2) b(3)

)
)
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-1
g+(tcb 3))g—(tcb(2))(g+(tcb(3) tcb(z))0'20'12(72 — 0y 0'3‘0’1 )

—g-(t,,)8+(te,, )oior0i0y — g (17! 1., )(o30703 + a3 a})
l

Sy

-1 4
+8-U c, ntcb(Z)tcba))g*(tcb(s))az 01 g+(tc )g“( ) Cb(z)tcb(3) 72
-2 2
—g—( b(2) Cy3 ) 23

2 2 2
g+(tc,, )8-(tc,, )03 oo} — g-(te,,)8+(tc, )07 02070,

—l -1
~8-(15) te,,)(8+(Le, e, 020702 — 07 ' a3 ay)

(g+(tcb(3)tcb(z))o'201202 —ajo307 ")
2
+8-(15,) te,, Loy, )8+ (1, )0s0T 0

_g+(tcb(,))g—(tcb( b(Z)zc_bl ) - g (1

b2 © 92>

b(3)

-1.2
g+(tcb(1 )g—(tcb(z))(g+( [ cb(z)) 2‘7120'2 — 0] 0501)

2 2 -1 2 .4 2.2.2
8- (tcb(z))g+( b(3)0'10'20'102_g—(1 c,,m)(0102 + 05,07 07)
14
+g_(t, Cyr cb2 )g+(tcb(3))0'1 0'2 g+(t bm)g—(tcbmtcb(z)tcbm)UZ
2
~8-(t;2 cm)) :
Then pn(b~1xb) =

Proof of Lemma 7.4. We can solve the above six equations with re-

spect to 0102201, 0,0%0y, oy '6}0y, o030, aiala} and oloy0la, if

6 +1 2 -1 3 1 3742 1
b(1) Cb (2) Cb(3( Cb(l) ) (tcb(Z) ) (tcb(Z) + ) (tcbu) + )
3 4 .2 2 3 2 3 2 42 2 2
t -2 L .t t
( Soy o) a3 Sty Co) o3 So1y by Chey) S “Coay Co3)
2 2 2 2 3 A4 4 3
t —1fc t — 1 {
+ Cb(l) Cb(Z) Cb(s) C(Z) Cb(3) Cb(l> cb(}) Cb(l) cb(2) Cb(l) Cb(Z)
2 43 3 .2 2 2
P —t { -t — 1
b(l) Cb(2) cb(l) Cb(z) cb(l) cb(Z) + Cb(l) cb(Z) cb(l))
4 6 4 6 4 2 .6 .4 6 4
—1tl. Iot -2 - t
( %) % S S S Sy %o o S S
+ Sy Ch) Coe3) + Sty b, Cb3) S Ch3) Sy Cb2) e
2 2 4 2 A AR AR
Sty Co2y Ca3) Ch2) Co3) cb(l) Sy Ch3) Sy Cb) Cbe3)
40 422 4222 L2 P2
) Cr3) Sy o) b3 Cb(l) Co2) Co3) S Cr3)

2 2 22 22 2 42 2 )£0

Sy o3y Co1y Co3y Co3) Sy by

This 1mp11es that all the elements in M (¢12%%) can be written in terms

of 1, ‘71 , 0'2 , 0102, 0,01 and al 02 01 if the parameters /. , f. and
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t., are generic. Note that the above condition is also satisfied in the
case ¢; = C,C = C3,Cy = C3 Or ¢; = ¢, = c3 if the parameters
ti, ty, --- are generic. This implies Lemma 7.4. a
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