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A REMARK ON LERAY’S INEQUALITY

AKIRA TAKESHITA

In this paper we recapitulate briefly the significance of Leray’s
inequality in his proof of the existence of stationary solutions to the
Navier-Stokes equations and show that in some simple cases it is
equivalent to the flux condition on the boundary value.

1. Leray’s inequality. The problem about whether or not there exist
stationary solutions to the Navier-Stokes equations has been an open
problem despite of a lot of efforts of many mathematicians. What has
been so far obtained for this equation in this respect is an existence
theorem due to Leray [2] under the condition which we call “flux
condition” to be explained below.

Let D be a bounded domain with C* boundary I' in R” (n > 2).
The stationary Navier-Stokes equation in D is expressed as

AX—-(X-V)X —-gradp=F inD,

(1) divX =0 in D,
X=8B onl,
where X = (X, ..., X,) is the velocity vector field, p the pressure,

F the exterior force and B is the boundary condition. A is the
Laplacian, (AX); = AX;, and

n
0
(X-9)Y)i =3 XjpYi.
j=1
The boundary condition B cannot be given arbitrarily. As a nec-
essary condition of the solenoidalness condition divX = 0 and the
Gauss-Stokes formula, B should satisfy the following compatibility

condition
(2) [ B-ias=o,
r
where # is the unit outer normal to the boundary I" and dS is the

surface element. The problem is whether equation (1) admits a solu-
tion (X, p) under the compatibility condition (2).
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In his celebrated 1933 thesis, Leray succeeded in giving an affirma-
tive answer to this problem under a condition which is stronger than
(2) namely,

(3) /B-ﬁdSzO, i=1,....N,
T.

where I'; is the connected component of the boundary I" and T =
Ufil I'; . We shall call this condition (3) “flux condition.” (Leray says
that condition (2) which does not satisfy (3) is unphysical, and he did
not go further to investigate what would happen if the flux condition
(3) is not satisfied. In this respect, see Takeshita [3].)

The crucial point of Leray’s arguments is the following inequality
which is due essentially to him and we call Leray’s inequality.

Leray’s inequality. Let B be a C* vector field defined on I' satis-
fying flux condition (3). Then for any ¢ > 0, there exists a solenoidal
extension B, of class C* into domain D such that

(4) (X - V)Bs, X)| < e VX2

for any solenoidal C*® vector field X with compact support in D.

Here we have used the notations
n 2
0
—X;i| dx.
Z /D <5xi j)

i,j=1

n
(X, Y)=Z/ X;Yidx, |VX|?=
i=1 7D

This inequality of Leray enables us to obtain an a priori bound for the
possible solutions to the stationary Navier-Stokes equation in question
and thereby to apply topological method (which is again due to Leray
(and Schauder)) to prove existence theorem of stationary solutions.
Thus we find that Leray’s inequality is the most basic in his proof of
existence of solutions.

2. Condition (L). The next problem to study after Leray is to prove
or disprove the existence of solutions only under compatibility condi-
tion (2) on the boundary value without assuming flux condition (3).

Since in Leray’s arguments what is needed to prove the existence of
solutions is Leray’s inequality and not the flux condition itself, and it
seems that there would be some gap between the flux condition and:
Leray’s inequality, one might quite well hope that one might be able to
prove Leray’s inequality even in the case in which the flux condition
is dropped.

The aim of this short note is to study this problem.
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First we make clear our problem. By C§° (D) we denote the totality
of all the solenoidal C* vector fields with compact supports in D.

Problem. Let B be a C*® vector field defined on I". What condi-
tions should B satisfy in order that for any ¢ > 0, B admitsa C*®
solenoidal extension B, into D such that

(X - V)Be, X)| < e VX

holds for all X € C§°,(D)? When this holds, we shall say that B
satisfies condition (L).
As for condition (L), we can prove the following

LEMMA 1. Let B, B’ be C*™ vector fields defined on T such that
d) /B-ﬁdSzO, /B’-ﬁdS:O,
r r
(ii) /B-ﬁdS:/B'-Fia’S, i=1,...,N,
r T,
(ii) B satisfies the condition (L).
Then B’ also satisfies condition (L).

Proof. Let &€ > 0 be given arbitrarily. Since B satisfies the condi-
tion (L), B admits a solenoidal C* extension B, such that

€
(4) (X -V)B, X)| < S |IVX|?
for any X € Cg°,(D). On the other hand, by (ii) we have

/(B—B’)-ﬁdS:O, i=1,...,N.
T

From this we infer that there exists a C*°(n — 2)-form ¢ on D such
that *dg is a C* solenoidal extension of B — B’ into D. Here *
is the Hodge star operation and d denotes the exterior derivation.
Choosing an appropriate C* function p on D which is identically
1 near I" and applying Leray’s arguments, we can prove that

(5) (X - V)(xd(pg)), X)| < 2|V X

holds for any X € C§°;(D). From (4) and (5) we immediately see
that B, = B, — *d(pg) is a desired extension of B'.

From this lemma we see that condition (L) does not depend on
the boundary value B itself but only on the domain D and y; =
Jp B-iidS,i=1, ..., N. This observation leads us to the following
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DEeFINITION 1. Let {u, ..., uy} be a set of real numbers such that
Zfil ui = 0. We say that a pair {D; u, ..., un} satisfies condition
(L) if for any ¢ > 0 and for any C*> vector field B defined on T
with [ B-#idS = p;,i =1, ..., N, there exists a solenoidal C*
extension B; of B such that

(X -V)B:, X)| < || VX|?
for any X € Cg°, (D).

DeFINITION 2. Let {u;, ..., uy} be as above. We say that a pair
{D; uy, ..., un} satisfies condition (L) if for any ¢ > O there exists
a C> solenoidal vector field B, on D such that

/Bg-r“zdS=uz~, i=1,....N,
T

(i) |((X-V)B,, X)| <e|VX|]* forany X € C5%(D).

For these two conditions the following is proved by Leray’s arguments.
LeEMMA 2. Definitions 1 and 2 are equivalent.

Concerning condition (L), it would be of much interest to study the
following

Conjecture. The necessary and sufficient condition for a pair
{D; uy, ..., un} to satisfy condition (L) is u; =0,i=1,..., N.

3. Some examples. So far the author has not been able to give a
complete answer to our conjecture. As a partial answer to this problem
we give some affirmative simple examples.

TBEOREM 1. Let D={x € R"; R; < |x| < R},0< Ry < R, and
I'i={x eR";|x| = R;},i =1,2. In this case the necessary and
sufficient condition for a pair {D; —a, a} to satisfy condition (L) is
a=0.

Proof. Sufficiency is trivial by Lemma 2. We give a proof for ne-
cessity. Let & > 0 be given arbitrarily. By the assumption there exists
a C solenoidal vector field B, on D such that

(6) /Bg idS =-a, /Bg-fia’Sza,

(7) (X - V)B;, X)| < ¢||VX|* forany X € C5°(D).
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We shall make use of the averaging method with respect to G =
SO(n), the n-dimensional rotation group. For this purpose we de-
fine an action of G on B, and its mean M (B;) by

(TyBo)(x) = gBi(e™'x), xe€D, g€G. M(B)= [ T,.ds

where dg is the normalized Haar measure on G. Then by the isom-
etry of the action of G and (7), M(B,) is solenoidal and we get

(8) /M .7idS = —a /M ).idS =a,

9)  [(X-V)M(B.), X)| <&|VX|P* forany X € C5°, (D).
By virtue of averaging with respect to G, M(B;) is G-invariant and
consequently has a very simple form.
Before determining the form of M(B,), we give a proof of inequal-
ity (9) since it appears rather nontrivial.
For vector fields X,Y on D we set at x € D, (X, Y)(x) =
?=1 Xi(x)Yi(x) B

(VX, VY)( ,; ax, a Y (%)
For vector fields X, Y, B and any g € G we have at any x € D
(10) (VT X, VT,Y)(x)=(VX,VY)(g 'x).
(11)  ((TgX) - V)TeB, TgY)(x) = (X - V)B, Y)(g'x).
Now we prove inequality (9). For short we denote by [ the integration

Jg dg . Then
(12)

(X -V)M(B;), X) = ((X-V)/Tng, X) - /((X-V)TgBe, X).

Here we have used the Fubini theorem on the interchange of the order
of integrations. On the other hand we have, for any fixed g € G, by

(11)

(13)  ((X-V)TyBi, X /dx (X - V)T By, X)(x)
/ dx(( V)B,, T; ' X)(g™'x)
/ dy((( V)B., T, X)(7)

(@ lX) V)B., T;' X).
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Combining (12) and (13) we get

(X -V)M(B,), X)| = ] [wrsx w8, 7550
< / (T;'X) - V)B, , T;1X)|
< [elv@ 0 = [alvxiP = sjvxip.

Here we have used ||[VT,!'Y|| = ||[VY| which is a direct consequence -
of (10). Thus we have proved inequality (9).

In what follows we discuss the case n» = 2 and the case n > 3
separately.

First we discuss the case n = 2. In R? we use the polar coordinate
system (r, 8) and define vector fields e, and ey to be ones with
directions along r, 6 respectively and with length 1. Then the SO(2)-
invariant vector field M (B;) is found to be of the form

M(B;) = br(r)er + bg(r)eg

with real-valued functions b,(r), by(r) depending only on r. The
solenoidalness of M (B;) is equivalent to

1 6

0 60

(rb,) 0<—>b,=§.

(rbr) + =

Constant ¢ is determined by (8) to be ¢ = a/2n. Therefore, we see
that M (B;) has the form

al
M(Bg) = %7er+bg(r)eg.

Next we calculate the left-hand side of (9). First we calculate the
deformation matrix & associated with M (B;). It is given by

-2% by(r) - %bo(r)]

o =[bg<r> L) 2k

In inequality (9) we take such X which has the form X = u(r)eg
where u(r) is a non-zero smooth function with compact support in
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(R;, Ry). For such X, the inequality (9) gives
2la / Y2dr < el[V(u(r)es)|?

from which a = 0 follows immediately by the arbitrariness of ¢.
Next we discuss the case n > 3. It goes almost the same way as the
case n = 2 with a slight difference in that in the case n > 3 the action
of SO(n) on spheres has isotropy subgroup SO(n — 1) which is not
trivial. Therefore, the SO(n)-invariant vector field M(B,) is found
to have simpler form M(B;) = b(r)e, The solenoidalness of M (B;)
and (8) determine b(r) to be b(r) = r —n+1  where y, is the area of

the unit (n—1)-sphere. The assoc1ated deformatlon tensor Z = (Z;j)
(with respect to the cartesian coordinate system) is calculated to be

a
9,']‘ = y—r“”(—nr“zxixj + 5,'1‘) .
n

This tensor has eigenvalues f—r“” along the spherical direction with
multiplicity n — 1 and a simple eigenvalue ylr‘”(-—n + 1) along the
radial direction. Taking an appropriate spherical test vector field X €

C5°,(D) as in case n = 2, we can conclude that a = 0.
Generalizing slightly, we can give a little more general examples.

THEOREM 2. Let D be a bounded domain in R" with smooth bound-
aryI' = Ufi 1 Ti, T'; being the connected component of T'. Assume that
foreach i =1,..., N there exists a diffeomorphism ¢; of S"! x
[0, 1] into D such that ¢;(S™ ! x {0}) =T; and ¢;(S" ! x {1}) is
a sphere contained in D. Then the necessary and sufficient condition
fJor a pair {D; uy, ..., un} to satisfy condition (L) is u; = 0,i =
1,...,N.

Conclusion. The examples given in this section are quite insufficient
for a general answer to our conjecture but are sufficient to convince
us that if we want to attack the problem of existence or nonexistence
of stationary solutions to the Navier-Stokes equations in the case in
which the flux condition is not satisfied, new ideas should be thought
out.
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