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EXPLICIT CONSTRUCTION OF
CERTAIN SPLIT EXTENSIONS OF NUMBER FIELDS
AND CONSTRUCTING CYCLIC CLASSFIELDS

S. GURAK

The problem of explicitly constructing classfields (Hilbert’s Twelfth
problem) is largely unresolved, except when a classfield is absolutely
abelian or abelian over an imaginary quadratic number field. Here
an explicit construction of certain split extensions of number fields is
given, which maintains control over the primes which ramify. This
naturally leads to the construction of cyclic classifields over a given
number field. An algorithm is provided to obtain the minimal polyho-
mials for the generating elements of the extension constructed. The
methods employed here rely heavily on classfield theory and the prop-
erties of Lagrange resolvents and group determinants.

1. Introduction. The principal goal of this research is to obtain an
explicit construction of certain split algebraic extension fields over a
given number field F . The characterization of such fields is given for
dihedral extensions of degree 6, 8 and 12 over @ in a previous work
[6]. Those constructions rely on the arithmetic of quadratic fields and
explicit formulas such as Cardano’s. The constructions given here rely
on classfield theory and the properties of Lagrange resolvents. There
1S a natural extension of the construction for similar extensions over
function fields which will be treated in a subsequent paper.

To be more precise about the extensions we seek to construct, let Z,
denote the ring of residues modulo », for some integer n > 1, with
unit group Z; . Consider a polynomial p(x) = x"+a;x" ' +---+aq,
irreducible over F, with Galois group G of the form V'.T, where T
is cyclic of order n with 77 < G and V is isomorphic to a subgroup
of Z) (thatis, G is a semi-direct product of 7 by V). Let K be
the splitting field of p(x) so G(K/F) = G, and let kK and R be the
subfields fixed by 7" and V' respectively. We wish to give an explicit
general construction for the extension K/F (or K/k) in terms of
the arithmetic of k({), where { = exp(2mi/n). Since K = k- R,
the problem of determining K primarily is one of finding explicit
generators for the field R (or a conjugate field). Of course, R is
generated by some root of p(x), but actually finding roots of p(x)
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270 S. GURAK

in terms of radicals is generally quite tedious. The strategy here is
to replace p(x) by a collection of irreducible polynomials of prime
power degrees, each of whose roots are explicitly found in terms of
radicals. The collection is so chosen that R is generated by a certain
choice of roots, one from each polynomial in the collection.

To carry out this approach, first note that the multiplication in G
is explicitly given in terms of a generator ¢ of T via

(1) ot ' =g%®  (1eV),

for some homomorphism 0: V' — Z>. (The map 6 is independent of
the choice of generator ¢, and in fact, a monomorphism since K is
the splitting field of R.) Write n = nyn; --- n; as a product of distinct
prime powers, and let n; denote the natural projection of Z; onto
Z;, (1<i<t).Set §;=m;00 with

(2) ker§;, = {t e V|6(t) =1 (mod n;)} (1<i<t).

and put 7; = (¢™) for 1 <i < t. The subgroups (ker6;) 7; (1 <
i <'t) are easily seen to be normal in G. Let K;, R; and k; be the
subfields of K fixed by (ker8;)T;, V - T; and (ker 6;)T respectively
(1 €i<t). Then one has the following correspondence from Galois
theory

K,' — 1

\

/ /
R; Vi
N\
ki T|T;
/ /

F

where V; = V/(ker6;) and G; = V; - T/(T;) (1 < i < t). Since
Nkerf; = 1, and NT; = 1, we find that K = [[K;, R = [[R;
and k = []k;. In particular, deg(R;/F) = n; and deg(k;/F) =
[(V: ker6;}1. We have shown

ProOPOSITION 1. To construct the splitting field K, it suffices to find
generating elements o; for the fields R; and y; for the abelian exten-
sions k; over F .

We note that the subfields k; can be exhibited explicitly from the
arithmetic of k in a straightforward manner using Galois theory (for
instance, by taking appropriate norms or traces). Thus the above result
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reduces the construction of R to that of finding explicit generators for
each of the subfields R; of prime power degree over F . Our strategy
to construct such a given subfield is to exhibit a particular generator,
which is explicitly given in terms of radicals over a suitable resolvent
field, together with its minimal polynomial of prime power degree.
A general algorithm for this construction is given in §3 with explicit
examples appearing later in §4.

2. Characterization of the resolvent field. Recall the situation just
described with n = n;---n; as a product of distinct prime powers.
The extension K is the splitting field of some irreducible polynomial
of degree n over F whose Galois group G = V - T is a semi-direct
product of a cyclic group T of order n by a group V' isomorphictoa
subgroup of Z;. The subfields k and R are those fixedby T and V'
respectively in the Galois correspondence. The mapping 6: V — Z
in (1) can be determined from classfield theory, without explicitly de-
termining K, using only arithmetic in the abelian extension k/F .
Indeed, K/k is classfield to a certain ideal group J defined for a suit-
able k-modulus .# . So if I is the group of fractional k-ideals prime
to /4 , the quotient I/J = G(K/k) = T through Artin reciprocity.
We shall indicate the Artin map of K/k by

(4) [6]—- 0 foroinT,

where [o] represents the coset of I/J which maps to ¢ in 7. Since
T 4 G we have t(J) =J, so 7([a]) = [to1~!] = [¢9")] from proper-
ties of the Artin map. To actually determine 6 one needs only to find
a prime ideal , in the coset [g], then compute the coset to which
7(2) belongs for each 7 in V. For a given generator a for R/F of
zero trace and fixed generator ¢ of T, form the Lagrange resolvents

(5) wy =wy(@) =a+{Vo(@) +---+ {7 We )  (veZ,).
Set

1 n—1
(6) o= ("o,  (HEZy)
v=1}

where { = {, = exp(2ni/n), so that for 0 <A< n,

(7) Ui(a/t) =0Quqa (€ Zy).

The elements o, is (6) are the distinct zeros of an irreducible poly-
nomial

(8) p(xX)=x"+ax" '+ +a,
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of degree n, with a; = 0, whose splitting field is K. By replacing «
by a suitable conjugate, we may assume that w; #0.

It is known that the elements B, = " (v € Z,) liein k({). (This
follows readily from the proof of Lemma 1 below.) The S, actually
lie in some subfield k’ called the resolvent field for p(x) over F,
which can be described in terms of Galois theory in the following
manner.

Label each element ¢ of G(k({)/F) by ¢ = ¢ s, where 7 is the
unique map in ¥V which coincides with ¢ on k, and s in Z; is
determined by the action ¢({) = {*. The resolvent field k' is that
which is fixed by the subgroup W = {¢; s|s = 6(7) mod n}. Since
¢1,1 is the only map in W that fixes k, one finds that k'({) = k({) =
k'k. That k' contains the f, (0 < v < n) is immediate from the
next lemma.

LEMMA 1. Foreach ¢ = ¢, s in G(k({)/F) andinteger v, ¢; s(Bv)
= 'Buse(r")‘

Proof. Let ¢ be any extension of ¢ to K(), say with ¢|, = 10’
in G for some integer ¢, 0 < ¢ < n. First note that from (1) and (7),

Play) = 10! () = 10" (@) = oD 1(a) = ayu0(e) -

Thus, from (4), we have

d(w,) = D> T appor = » (W ) 0q,

UEZ, HEZ,

_rt ~vspub(r™! . rts
= (" Z (s Doy = ¢ Y001y, 5
UEZ,

upon replacing x4 by u6(z~!)~¢ in the first summation. In particular,

é(By) = ﬂsg(r"),, .

The resolvent field &’ has a convenient characterization in terms
of class field theory. Suppose k/F has conductor / and put » =
LCM(nOr, /), where O is the ring of integers of F. Let Z denote
the group of fractional F-ideals prime to » and ./ be the subgroup
of & which corresponds to the classfield £k over F. The Artin map
of k/F induces an isomorphism of # /& with V', which we shall
indicate by

9) [t]— <.
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(Here [7] represents the coset of %/ which maps to 7| , in G(k/F)
via the Artin map.) In a similar way, let [¢] represent the coset of
fractional F-ideals in & which are sent to ¢ in G(k({)/F) by the
Artin map of k({)/F . In addition, let .#" = #F,o denote the absolute
ideal norm mapping from F to Q. It follows from the properties of
the Artin map that for ¢ = ¢, 5 in G(k({)/F),

(10) [$c,5] = {@ € [¢]fe = s (mod n)}.

The resolvent field k’'/F corresponds through classfield theory to the
group

(11) %= I4].
peEW

To aid in the computation of k', we mention the following result.

PROPOSITION 1. Let h(x) be any irreducible polynomial of degree
[k : F} over F with splitting field k. Select a zero A of h(x) and
label its conjugates

(12) ‘E(A.) lg (1) (T ev).

Then the elements E, = 3 ., {4y (0 < u < n) all lie in the
resolvent field k' .

Proof. Since E, = k({), it suffices to show that each map in W
fixes E,. But, forany ¢ = ¢, o) in W and 0<pu<n,

¢(E,Lt) = Z Cmﬂe(r)e(fl)lg(i—)g(r') = Eﬂ from (12) .
teV

If KNnQ({)=Q then
Gk()/F)={¢:slteV,seZ;} and
G(k()/k) = {1 sls € Z;}.

In particular, we have

PROPOSITION 2. Suppose KNQ({)=Q. Then G(k({)/k)=G(k'/F)
and knk' =

Proof. The action ¢, ; — ¢, W (s € Zj) yields a monomorphism
of G(k({)/k) into G(k'/F) since k'k = k({). Also ¢, 5 = qﬁl’se(f_l)o
¢+ ,6() hereforany 7 € V and s € Z;, so the map is clearly surjective.
Hence G(k({)/k) = G(k'/F) and knk’' =
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ExXAMPLE 1. To illustrate the preceding theory with n =5 and F =
Q, consider the complex quartic abelian field kK = Q(A), where A =
C16+(]¢ , of conductor / = 16 and class number /# = 1 [13]. The ring
of integers of k has fundamental unit E = 1 + /2 and integral basis
{1,V2,A, \/EA}. The field k over Q corresponds through classfield
theory to the subgroup & = {(x)|x =1, 7, 17, 23, 33, 39, 49, 71
(mod 80), x > 0} defined with » = 80. It admits an ideal group J
defined modulo .# = (52) consisting of principal ideals generated by
elements y prime to .# and of the form y = a-B for some o € (k¥)?
and B =1+ 50 +a(l+2vV2)A)mod.# with ac Z, 6 € Q(V2).
The ideal group J corresponds to a classfield K which is normal
over Q with [K : k] = 5. The Galois group G = G(K/Q) is a semi-
direct product of the form V' . T as we have been discussing, say with
T = G(K/k) generated by an element ¢ for which [6] = (1+5v2A)J
in (4). Incidentally, we find [6/] = (1 + 5jV2A)J 0 < ] < 4).
Also, if 7€V = G(k/Q) is given by the action A — A ={}} + (12

—(V2Z + 1A, then t[o] = (1 — 5vV2A)J = (1 +5(2+\/_)A)

(1+ 10\/_A 7. Thus 6(tr) = 2 in (1). Further we find (%) = 4,
6(1’3) =3 and 6(1) =

Suppose a is a generator for the field R fixed by V', so chosen
that the Lagrange resolvents (5) satisfy w, = 0 for (v, 5) > 1. To
determine the resolvent field k' for its minimal polynomial p(x) in
(8), we find the corresponding subgroup % of # from (11). Noting
that

[t]={(x)|Jx>0, x=11,13,27,29,43,59, 61,77 (mod 80)},
[ 1={(x)|x>0, x=09, 31, 41, 47, 57, 63, 73, 79 (mod 80)}
and

[7*]1 = {(x)|]x >0, x=3,19, 21, 37, 51, 53, 67, 69 (mod 80)}

”\J

n (9), we find the sets [¢] in (11) are

[¢l,l] = {(x)lx > 0’ X = 19 71 (mOd 80)}9
[$e,21 = {(x)lx >0, x=27,77 (mod 80)},
[#2 4] ={(x)|Ix>0, x=9,79 (mod 80)}, and
[¢5 31 ={(x)]x >0, x=3,53 (mod 80)}.
Thus, we have &4 = {(x)[x > 0,x =1,3,9,27,53,71,77,79

(mod 80)} with corresponding field &’ = Q(v/10 + 3v/10) from class-
field theory.
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Alternatively, we could use Proposition 1, choosing 4 = A, to find
that

2 =[A+ CA+ B (-A) + (=N = (0 = THA+ (8% - DAY
=7(—5—\/‘)(-2+f)[1+5( 1-v5)(1 +V2)P?
=10-3V10.

Hence k' = Q(v/10 + 3V10).

ExAMPLE 2. Now consider F = Q(y) of narrow class number A" =
1, where y =y, is the positive zero of r(x)=x3—-x—1 and y, and
73 denote the complex ones. The group U of totally positive units is

seen to be generated by y. Choose square roots yl/ 2 , yzl/ 2 , yl/ 2 with

yé/z y;/z 2 ~12 5 0. The extension K = Oy 1/2, yzl/z, y;/z) has
dihedral Galois group G = D4 over F generated by automorphisms
o and 7 in (1) satisfying

1/2 1/2

G- 7 *711/2, 7’21/2 - Vl/z, V;/z — =7, and
2
R A TR Ao

The field fixed by (r) is R = F(yll/z, y21/2 1/2) that by (o) is
k=F (yll/ 2 (y2—73)) . The element a = yzl/ 1/ 2 satisfies the minimal
polynomial p(x) = x* + 2yx2 4+ (4 — 3y?) in (8) with splitting field
K over F. Choosing A = yll /2 (y2 — y3) in Proposition 1, we deduce

that the resolvent field for p(x) is k' = F (iyf/ 2(;}2 — y3)). Direct
computation of #; and f_; from the Lagrange resolvents w(a) and
w_i(a) in (5) yields

Bii = 64(7y2 — 8 £ 4i(yy — 13)/7.7).

The extension k/F is of conductor /Z = 4(y, — 73)* = 4(4 ~ 3?),
where 4 — 3y2 generates the unique unramified prime above 23 in F .
To determine the resolvent field &’ from classfield theory using (11),
let x and y be the quadratic numerical characters of F realized
modulo 4(4 — 3y?) which are induced by extending the Kronecker

symbols (%) and (5‘—‘—/%22—) , and setting

xn=(Zs) and w(n)——-(“zﬁz) for 1> 0.

Since y and y annihilate UF and A" =1, it follows from classfield
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theory (chiefly Theorem 3 [4]) that

[(M1={mMlxow(mn =1,n>0} and
[Kl={mlxown #1,n>0}

in (9) where »~ = (4(4 — 3y2)). Let p be the quadratic numerical
character of F, realized modulo 4, satisfying p(n) = Npon (mod 4).
Then we find the sets [¢] in (11) are

[p1.1]={(M|xow(n) =1, p(n)=1and n>0} and
[, 1 1={(Mxown) #1, p(n) #1and n>0}.

In particular, we have & = {(n)|x o w o p(n) = 1, n > 0} with
corresponding classfield k' = F(iyll/z(yz —y3)) since p(n) = (-1/(n))
for n>0.

The resolvent field k' for p(x) over F can be expressed as a
compositum of resolvent fields (one for each of the splitting fields
K; (1 <£i<¢) in (3)) in a manner consistent with the decomposi-
tion k = [[k;. To see this, let W; = {¢; s5|s = 0(r) mod n;} with
fixed field k! (1 < i <1). Now each k! C k;({"/™) since k;({"/™)
corresponds through Galois theory to the subgroup {¢, ;|0(7) = 1
(modn;)} (1 <i<t). Suppose o!) is a generator for R;/F (and
thus for K;/k;) of zero trace in (5), and form the resolvents

(13) w’(}) e a(l) + C_Vn/n,o'(a(l)) + [N + C—'V(ni—l)n/n,o'(n[_1)(a(i))
veZz).

Set B,Si) = (wf,i))"x for veZ, and

n~—1
(14 ol = Y twnel) = okl (neZy),

v=1

for 1 < i < t. Using an argument analogous to that in the proof
of Lemma 1, one finds the ﬂ,(,i) are fixed by each ¢, in W, and
thus lie in k] (1 < i <t)). The minimal polynomial p;(x) over F
for o) has splitting field K; and resolvent field k] over F. Since
W = N W;, the resolvent field k' is the compositum []i_; k. In
addition, a = [[al? is a generator for R/F of zero trace.

In the next section we take up the construction of the fields R;, de-
termining suitable generators oY) and computing their minimal poly-
nomial p;(x) over F.
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3. Construction of K = k - R when [R : F] is a prime power. Here
we retain the notation and setup of the previous sections, but with
n = [* a prime power. In this section we shall describe how to con-
struct arbitrary extensions K = k- R with KN Q({) = Q and Galois
group G satisfying (1). (The methods can be adapted to construct
such extensions K where K N Q({) # Q, but require more delicate
treatment.) Under the assumption K N Q({) = @, one recalls that
Gk({)/F)={¢. slteV, se€ Z;}, so that the values }_ .- (¥ B,
(0 < u < n) are readily seen to all lie in k. In addition, we have

(15) Mw,) =0, (veZ)

in (5). We may further assume that w, = 0 for (v, n) > 1 by
replacing @ with a—J(ag+apu-1 +- - +a_;p-1) if necessary in (5),
since :

I-1 -
v (a— —}—Zatlu-n> = Wy ( %Z T (@) )
t=0 t=0
-1
- wy(a) _ C(),/(Ol) [_}_ Zcutl“—y}

=0

equals w,(a) if /{v else zero when /|v from (6) and (15). We shall
henceforth assume that this normalization has been made. Finally we
note that if ¢ is any extension of ¢r,s to K({) which fixes R, then
ng(w,,) = 0,9, from the proof of Lemma 1. Thus we find that
&= %Zyez; o’ lies in R;in fact, R= F(a) if (r,n)=1.

We now describe how to construct arbitrary extensions K = k-R as
above with KNQ({) = Q and Galois group G satisfying (1). Explicit
examples will be constructed later in §4.

First choose an irreducible polynomial g(x) of degree ¢(n) over
F with Galois group isomorphic to H = Z; and splitting field k’.
Consider an explicit isomorphism

(16) w: Gk'/F) =

and label the element p, of G(k'/F) so that ¢(p,) = r. Choose a
zero ¢ of g(x), and label its conjugates

(17) & =p(e) (reH).
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Assume the ¢, satisfy the condition

[l e is an nth power in &’ only if the r, are
(18)  tewm
all congruent modulo »,
or Ztr,EO (mod n) when n =1[.
teH

Finally, fix an ordering for the elements of H = Z . Select a func-
tion f: H — Z which sends a given residue class to some specified
integer representing that class, and for which the group matrix

(19) A=(as,) (s,teH),

with a; , = f(st~!), has an inverse, say B. (We note that it is easy
to find such functions f.) Set

(20) B, =[le (weH).
teH
For this choice, note that p,(f,) = B,r for v and r in H, since
pr(By) =[] prie) = [ e = [ e = [] &
teH teH teH teH
With the above choices we have

PROPOSITION 3. Suppose the elements f, (v € H) are selected
as in (20), where the &; satisfy condition (18). Then the extension

k' (¢, BY" v € H) is cyclic of degree n over k().
Proof. Note that [],.y B, is an nth power in k'
if and only if [, .4 [1ch g, is an nth power in k'

if and only if [],cpé; ven®."v is an nth power in k',
Since ), ey, v =D, cgvtn =Y, cyvr, (mod n) for t € H
from (19), it follows from (18) and (20) that [[,.y B, is an nth
power in k’ if and only if

(21) > vr,=0 (modn).
veH

It follows from (21) that for a given v € H,

(22) By = By - "

for some y in k. Also ' lies in (k') if and only if r; = 0
(mod n). In particular, k'({, B/"lv € H) = K'({, B{/"), and the
conclusion of the proposition follows.
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To proceed with the construction, fix a generator o for
k'(¢, ﬂ,f/ "lv € H) over k'({). It follows from the proposition above
that B,l/” generates k'({, B/"|\v € H) over k'({) for any ¢ in H.
Choose particular nth roots 8/" so that a(B,/") = {! Bl" (teH),
and set

(23) aﬁ% S o (e,
t=1

(¢,n)=1
The values a, in (23) are distinct and comprise a complete set of

conjugates over F . In particular o = a( generates an extension R
over F of degree n with Lagrange resolvents (5) satisfying

(24) w, = { B i1,
R if ljv.

The minimal polynomial p(x) for a has splitting field K , which we
assert is the compositum k - R for a certain abelian extension k/F .
We shall determine the abelian extension k from classfield theory.
Suppose k’/F has conductor /’ and » = LCM(/', nOf). If Z is
the group of fractional F-ideals prime to »z, then k'/F corresponds
through classfield theory to a subgroup % of index ¢(n) in . In
particular, &/% = G(k'/F) via the Artin map

(25) [rl=p (reH),

where [r] denotes the coset of /% set to p, in G(k'/F). We
assume that the isomorphism y in (16) is chosen so that the sets

(26) By ={a€[rl|fe=r modn}# @

for each r in H. (Note that this can always be arranged; in the ex-
treme case k' = F({), the map y is the inverse of the Artin map of
F({)/F). The following result specifies how to obtain k£ and deter-
mine G = G(K/F).

THEOREM 1. The set 7 = |J,cy B, is a subgroup of € with cor-
responding classfield k/F . The splitting field K = k - R with Galois
group G, a semi-direct product of T by V, where T = (ad|k) has
fixed field k and V = G(K/R) is isomorphic to a subgroup of Z) .
Furthermore, the group G satisfies (1), where for any © in V, the
value 6(t) is the unique s in H for which [¢. ] C B in (11)

Proof. Evidently & is a subgroup of %, and thus corresponds
through classfield theory to an abelian extension k/F . In addition,
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I NEB =B, =[¢;,1] so the corresponding classfields k -k’ = k'({) =
k({). Since &% = % we have the following diagram of subfields of
k({) and corresponding subgroups of % :

k($) — B

o /) /j

k B4
AN AN
F — &

In particular, [k({) : k] = [/ : %] = ¢(n) so kNF({) = F and
Gk/F)=Gk'({)/k') = F|%, . Since %, # @ and [r] — p, via the
Artin map of k’/F, there exists an extension p, of p, to k'({) =
k({), in fact to K({), which maps

(27) {—{ and w, — Wy, (re H).

Now K is the field fixed by the p, (r € H). Butsince the p, fix k, it
follows that k ¢ K, in fact, with G(K/k) = (d|k). Also KNF({) =
F . In particular, we have the following correspondence from Galois
theory

K\R
(3) "\F / ) GIK/ /

Since no o|x # 1 fixes R, we find that K = k-R and V = G(K/R) =
G(k/F). It follows that G is a semi-direct product of 7 by V', so
that the relation

tolgt! = alz(t) (teV)
defines a homomorphism 6: V' — Z* as in (1). The map 6 is in-
jective since K is the splitting field for R; thus V' is isomorphic to
some subgroup of Z;.

To complete the proof of the theorem it remains to specify the range
of 6. Recall from (11) how Z is constructed from certain cosets [¢]
in & . It follows from (10) that for a given 7 in V', the set [t]N.Z
coincides with exactly one of the cosets [¢, 5] (s € H); namely, that
for which s = 6(1).
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To aid in the computation of k, we introduce the following corol-
lary.

COROLLARY 1. Let h(x) be any irreducible polynomial of degree
o¢(n) over F with splitting field k'. Select a zero 6 of h(x) and label
its conjugates

(28) Oy = pr(é) (r € H)

as in (17). Then the elements N, = 3,y ("0, (v € H) all lie in
the classfield k .

Proof. Since N, € k({) it suffices to show that each map P,
(r € H), described by (27), fixes N, . But p,(N,) = 3 ,c g C¥ 0ur =
Yucg $¥oy forany r, v in H.

To compute the minimal polynomial

(29) p(X)=Xx"+ax"" 2+ +a,

for a = ag in (6), we introduce a counting function

(30) T B S

for non-negative integers Xx;, ..., X;. The primed sum is taken over
all z-tuples (u;, ..., u;) with integral components u; (1 < i < ¢)

pairwise mutually distinct and in the range [0, n). The counting
function (30) has the following iterative property.

PROPOSITION 4.

. ; EO d ,
(31) N(x1>._.{” if =0 (mod n)
0 ifx;#0 (mod n).
For t>1,
(n—t+ DN, ..., X—1)
e =0 an.
(32) N(x1,..., %)= if x, =0 (mod n)
— N+ X1, ..oy Xe—1)
— o =N(x1, ..., X-1+Xx) otherwise.

Proof. Formula (31) is obvious. To verify (32) when x;,=0 (mod n),
we first note that there are n — ¢ + 1 choices for the value u; in any
tuple (uy, 4, ..., #;) in the primed sum, once the first —1 compo-
nents have been selected. Since (*** X -i%-) = (X#+ X% in this
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case, evidently N(x;,...,x)=(n—-t+1)N(xy, ..., x—1). Now if
x; # 0 (mod n) then Z;& (¥ = 0. Since Y %Xt THY equals

Z, cu1x1+"'+u:—1x:-1 (Z u,xl) — Zl Cul(x1+xz)+"'+uz—1xz—l
______Z Cux+ A, (x,_+x,)
we find that (32) holds when x; # 0 (mod n).

COROLLARY 2. (i) If x1+---+Xx; #0 (mod n) then N(xy, ..., X:)
=0.

(i1) If xy+---+x; sums to zero (mod n) but no smaller subset sums
to zero (mod n) then N(xy,...,Xx) = (=) ¢t—Dln for t > 1.

We shall omit the proof of the corollary since both (i) and (i1) follow
easily from (31) and (32) by using induction on ¢.
We are ready to determine the coefficient of p(x).

THEOREM 2. The coefficient a,, (2 < m < n) for the term x"~™ is
a sum of all terms of the form

1
(33)( )/3”” BNty et Les s ) () )

o

v~ v~

¢, times ¢, times
where t; € H, 1 <¢;<m for 1 <i<e with Y,0_,¢; = m and

e iciti =0 (mod n). Each term ﬁc /n ,C:/n
product of the elements ¢, .

which appears is a

Proof. Now

n-1 n—1
pe) = [T - =T (-5 L")
4u=0 u=0

where the sum is over ¢ in H. Expanding the product, we find

that each term that appears in the expressions for a,, is of the form

Z‘/" .- B%!"  where ¢; + -+ +c, = m, with multiplier

(34) L:_l_xn— ZI C(“x,1+“'+“1,f,)’1+"'+("e,x+“’+“e,ce)le )
nm

Here the primed sum is over m-tuples (#;,1, ..., ue,ce) in [0, n)™
with mutually distinct components and ordered so

Uit <u1,2<--~<u1,cl,...,ue,1 <ue,2<~--<ue,ce.



SPLIT EXTENSIONS OF NUMBER FIELDS 283

But (34) equals the multiplier of §;/"--- f;*/" in (33) above, and the
terms for which Y ¢_, cit; #0 (mod n) have multiplier equal zero by
Corollary 2. The terms with Y ¢_, ¢;t; =0 (mod n) satisfy

(35) PARRY R HH&"”’ =1 &

i=lveH veH

where
1 e
(36) ry, = Zzlat,,uci-
I=

But 4; ,, = t;v* (mod n) so P 4t G =Vt Zl 1 tici =0 (mod n);
hence the r, are integers in (35). (Here v* is the multiplicative
inverse of v (mod n)).

For n=3,4,5, 7 and 8 and indicated choice of matrix A4 in (19),

we obtain the following expressions for the coefficients of p(x). (Here
N and Tr denote the norm and trace from k' to F respectively.)

12 17-1 2
S IR A Pt}

a, =—(Ne)/3, a3=—(Ne)(Tre)/27;

(37) n=3:

13 1[{-1 3
A‘{3 1]’ B‘"é[s —1}’

a,=—(Ne)/4, a3=0, a4=(2Ne*-Trp)/64;

(39) n=5:
1 3 -1 2 1 0 -1 1
2 1 3 -1 131 1 0 -1
A=11 2 1 3> B=5i11 1 o>
3 -1 2 1 0 -1 1 1
a, = — (€164 +€283)/5, a3 =—TI‘(818283)/25
as = — (Tr(e1€3¢3) + Ne — (¢33 + £23))/125,

as= — (Tr(p - 5818283) 5(Ne)-Tre)/3125;
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40) n=17:
F 1 -2 4 -1 2 37
3 1 -2 4 -1 2
ol 2 3 24 1
T lu-1 2 3 1 -2 4 }|°
4 -1 2 3 1 -2
L -2 4 -1 2 3 1
0 1 1 0 0 -17
-1 0 1 1 0 O
s_Ll]0 -1 0 1 1 0
710 0 -1 O 1 1|’
1 0O 0 -1 0 1
| 1 1 0 0 -1 0]
ay = — (186 + €265 + €3€4)/7,
a3 = —[2(e16284 + €38586) + Tr(e26485)]/49,
ag = —[—(€2€38485 + €1€2€586 + €1€38486)

+ Tr(e 846585 /€3 + 3€1628485) — 2(e362 + e7e2 + €3¢3)]/343,

as = — [Tr(e 64823 /€3 + 261856365/ €6
— 336482 — e162e066 — 261838485) + S(Ne) Tr(e™1)]/2401,
ag = — T70[Tr(e 656263 /ese6 — 56365 — 2€1848283 €3 + 36162638486
+ 3e?ele4es86/63 — £1636482 — €1€5¢E567
+ 28182838365 — 5e267€48586)
+ (6383 + eje} + e3e3) + (elesed + ededel)
+ 2(g163e2¢e6 + er85€3¢e5 + e3eieles)
— 5(e3e3e462 + e3eres8} + &3616663) + 15(Ne)],

ar = T7[Tr(—B + Teie3eqe3 /3 + Tere3e2es Je3 — 14e e2ede]

~ Tere3e3el [eg — Teleseqeies/e3 — Telereses/e;
— Tezeqes — Teyeeqeies + 21ededefes + 21e3e2eles
+2le 856462 + Tei 85638385/ 66 + Te€28462¢6

— 14¢ 63e3e6 — 14¢ 63¢58586

— 35¢ 83638585 + Te e3638462)
+ 14(Ne)Tr e];
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(41) n=8:
9 -3 ~1 3 9 3 -1 -3
-3 9 3 -1 1 3 9 -3 -1
A=11 3 o 30> B=@|-1 3 9 3|
3 -1 -3 9 -3 -1 3 9
ay = — (€187 +¢3¢5)/8, az=as=a;=0,

a4 = (=2 Tr(ee3) + S(e2e? + e3¢2)
— 3(e3e3/eser + e3¢3/e1e3) + 4Ne)/1024
as = 87 [Tr(—ebe}/eder + 3e1e5ed — 2e2e783 + 2¢tes /es)
— 2(Ne)(e1&7 + &385) — 2(e3e3 + e3ed)],
ag = 87 3[Tr(—p — 20e7e7¢3 /65 — Bejeles — 8ebel/eser + 16e3e3¢e]
+8¢]e3 /e + 4ebe?)
+2(efed + efed) + 2(e8ef/e3e? + eSeS/eled)
~ 56(Ne?) + 32(Ne)(e3ed + e3e?)
+ 32(Ne)(eje3/eser + e3¢3 /e1e3) — 8(Ne) Tr &3¢;
—~ 6(Ne)(e3ef + efed)].

It is natural to ask how general is the above construction. In partic-
ular, suppose we are given an extension K = k- R of the kind under
consideration and a generator a for R over F normalized so that
the Lagrange resolvents (5) satisfy w, = 0 for (v, n) > 1. Does the
construction actually yield the generator o =5 37 _;. (v, my=1 @y fora
suitable choice of elements ¢, in (17)? If not, to what extent can this
be done?

We assert that a generator & = 3 37, (, n=1(@y(a))" for R over

F is obtainable provided the inverse B for the matrix 4 in (19) has
(42) denB=r-n with(r,n)=1.

(Here den B denotes the least common denominator of the entries of
B when written in reduced form.)

Indeed, suppose f is chosen so that the inverse matrix B = (bs ;)
has den B =rn with (r, n)=1. Set

rnb
M,

(43) fu=Tlw ™ (ueH).
teH

It follows from the proof of Lemma 1 and (15), (19) and (42) that the
&, are fixed by o and W, so lie in k’. Now, using (43) to obtain
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values §, from (20); that is

(44) B.=T] & (weH).
ueH
we find that
~ b
B.=1I11 o)l = II w:n(z“e”a”’” wd o' = B}
teH ueH teH

for any v in H . Thus the construction yields a generator & = ;11— Yl
as claimed. In particular, the original generator a is obtained if the
inverse matrix B had den B = n. For these cases, the construction
yields all generators a for R normalized so w, = 0 for (v, n) # 1
in (5). ‘

The author has shown that condition (42) can be achieved if and
only if n = [* is odd; moreover, that den B = n can be obtained
at least for n = 3,5, 7,9 and 11, but not for n = 13. The proofs
of these results involve long, tedious computations with group deter-
minants and will appear elsewhere. (We note that the matrices 4 in
(37), (39) and (40) are so chosen that den B = n holds.)

Before concluding this section, some remarks on constructing exten-
sions with prescribed ramification, e.g., classfields, are in order. For
this purpose we require some results from local classfield theory. Let
L be any finite abelian extension of a number field A . Fix a prime
ideal ~ of M, and choose a prime % lying above -~ in L. Let
Lz and M, be the local extensions at % and , respectively, and
denote the corresponding unit groups by Uz and U, . It is known [1,
10, 11] from local classfield theory that the Galois group G(Lg/M )
is isomorphic to A i /N, Lo/M, (L%), where N, Lo/M, is the local norm
map from Lg to M, . In addition, the inertia group I(Lgz/M,) is
isomorphic to Uﬁ/NLg/Mﬂ(UV@), say of order (% : r).

The construction detailed at the beginning of this section yields a
generator a for a cyclic extension K over k of degree n which is
normal over F and linearly disjoint from Q({). Any nth root /5‘,}/ "
generates K({) over k({). The idea here is to relate the ramification
in K/k to that in the Kummer extension K({)/k({) where it is easy
to determine. For convenience we state the relevant result of Kummer
[10].

PROPOSITION 5 (Kummer’s criteria). Let L = M(BY") for some
number field M which contains {. Suppose . is a prime ideal of M,
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say with uniformizing parameter n in M,. Write B =y -n" with
(y.m)=1in M,.

(i) If (2, B)=(re,n) =1, then , is unramified in L.
(i) If (o, B) > 1 but (r,n) =1, then . ramifies in L if and
only if njv.
(iii) If (2, n) > 1 but (2, B) =1, then . ramifies in L if and
onlyif B ¢ u;.
(Note that determining whether f lies in U7, in statement (iii) amounts
to checking whether B is an nth power modulo a suitable power of ,. .)

Now fix a rational prime p and choose a prime ideal Z lying above
p in K({). Consider the following Hasse diagram of local extensions.
K(0) 5
AN

K&

k(0)

k.

l
Qp

Here & = # NK, Y = Z Nk() and = % N k. Consider the
homomorphism ¥ from unit quotient groups U ; /NK(C)g/k(C) U 5 to
U/,/NKg/k/ Ug given by

(45) X — Nk(o/;/kﬁx . NKg/kﬁ Ug .

The map ¥ 1s injective. Indeed, Ny /x X € Nk, ik Uz if and only
if xe N“1 ) Ik (Nk,/k Us) . But, since KNk({) = k, this last group
Nk,
of local classfield theory [11], to be norm group Nk, 05/k(0), Ug. In

(NK oIk, Ug) is readily seen, using the translation theorem

particular, the ramification index e(,@ : z) divides e(% : r). In
order for ¥ to be onto, it is necessary that

(46) Nk(C)i/k}U/Z.NKg/kﬁng U/z.
In any case,
(47) e(u@ Z/L) = e(%’ ﬁ) . [U/ . Nk(C)/;/k/’ U/; . NKg/kﬁ Ugg] .

For the situation at hand we have
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PROPOSITION 6. If p{l or p=n =1, then U/Z/(NK(f)g/k(i)‘Uj) =
U [Nk k, Uz -

Proof . If p{l then Ny ;x Uz = U, since k({)/k is unramified
at o. If p=n=1then ([K: k], [k({):k]) =1 s0 (B : o) =

e(Z : ple(/i: p). But e(F : p) = e(Z : j)e(s : r); hence
e(#: p)=e(# : ) so (46) holds. In either case, ¥ is an isomor-
phism.

It is clear from the above proposition that the problem to construct
K/k with specific ramification at ,~ is more one of finding g, in

(20) (actually the ¢, in (17)) so that k({, B,f/”)/k(C) has the same
ramification at ,~ by virtue of Kummer’s criteria. Specifying the
ramification at ,»~ in the exceptional case p = / and n = [* for
u > 1, requires more careful selection of . We shall apply these
ideas to construct some specific classfields among the examples given
in the next section.

4. Some examples. Several examples are given now to exhibit the
construction detailed in the previous section.

ExAMPLE 3. Next we wish to apply the construction to find a gener-
ator o and minimal polynomial for the unique cyclic field K, which
is totally ramified at 7, unramified elsewhere, and of degree 7 over
Q. Here k' = Q({) from Proposition 2 since k = Q. Selecting
e=¢ ={"!in(17) yields B, = (¥ in (20). The element g = B; = ¢{
is a unit of Q({), but not a seventh power in the completion of Q({)
at (1 —{). Thus the extension Q(¢, BY/7)/Q({) is totally ramified
at (1 —¢) and unramified elsewhere by Kummer’s criteria. Since

e(#:p)=e(F: r)="1 here, it follows that K is generated by
Too= a9+ (30 + S8+ US + (35 + (', where { = exp(27i/49),
with minimal polynomial p(x) = x7 — 21x% - 21x* 4+ 91x3 + 112x% ~

84x — 97 from (40). Here the particular choice of 7th roots ﬁ,f/ 7

in (23) is determined by the automorphism o of K({) which sends
a9 — 5.

EXAMPLE 4. Here we wish to construct the classfield K/k, where
k = Q({16 + {]), that was described in Example 1 of the previous
section. Since K/k is ramified only at 5, we seek an element f in

k' = Q(+/10 + 3v/10) for which k({, B!/3)/k({) is ramified only at
the prime (1 -{).
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Let p be the element of G(k'/Q) sending 4 = V10 + 310 to
A=110-3V10. Choose y in (16)sothat p; =1, po=p, p3=p3
and ps = p%. (One can check that this choice yields the correct field
k here from Theorem 1 or its corollary.) Select ¢ = A+ 2 a zero of
the polynomial g(x) = x*+ 8x3 + 4x2 — 48x — 54. A straightforward
calculation shows that the ideal (4 +2) = | 23¢ as a product of
primes in k’, where (3) = 21 ,23,23,24 and (2) = g*. The primes
above 3 are labelled so that p,(,2;) = ,2ir (mods), consistent with that
of the & in (17). The element

B = By = —148 + 3210 + A(—686 + 214V/10),
obtained in (20), generates the ideal £° 3 3.3, but is not a fifth
power in a completion of k({) at (1 —{). It follows from Kummer’s
criteria that § may be a suitable choice. By Theorem 1, we find
that o = %(ﬂll/s + [321/5 + ﬂ31/5 + ﬂi/s) generates some classfield of
k of degree 5, and has minimal polynomial p(x) = x5 + 12x3/5 +
48x2/25 + 282x/125 + 7792/3125 from (39). Moreover, the Galois
group G = G(k/Q) satisfies (1) with §(tr) = 2. (Here t is that
generator of ¥ mapping {6+ {J¢ to {1} + (]2 asin Example 1.)
It remains to verify that k(a) = K, the desired classfield. However,
a straightforward, albeit tedious, computation shows that there are
only three admissible ideal groups of k& which have conductor divisi-
ble only by 5, are invariant under G(k/Q), and have corresponding
classfields of degree 5. They are
Ji={(?)|y =a- B where Staf, ac (k*)’ and
B=1+4506+a(l+vV2)A) (mod 5?)
for some integer § € Q(v2) with a € Z},
Jo={(?)|y =a- B where 5{af, ac (k*)° and
B=14+5av2+6A) (mod 5%
for some integer 6 € Q(V2) with a € Z} and
J3=J={{7)|y=a-pB where 5taf, ac (k¥)° and
B=1+50+a(l+2V2)A) (mod 5?)
for some integer § € Q(V2) with o € Z} .
The classfield corresponding to J, is seen to be k(C25+C§5 +C2"57+C2“51) ,
which is actually abelian over Q.
Now the norm 7 = Nk, (A — 5a) = AS + 60A? + 240A% + 1410A +
7792 = 12 - 10v/2 + A(—4 + 6v/2) mod 25. Multiplying by the fifth
power g =[-7—7V2+A(-9+ 6v2)P = =7+ 7V2 + 9A mod 25,
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yields nu =1+ 5[1 +2v2 — (1 + 2/2)A] mod 25. Since (7) lies in
J , it follows that k(a) =K.

ExXAMPLE 5. The quadratic field k£ = Q(v/—47) has class number
h = 5, and hence admits an unramified extension K of degree 5
which is normal over Q, with dihedral Galois group Ds. It is easy to

determine that k' is generated by ({ — {*)v/—47 = 1/47nV/5, where

n = (1 ++/5)/2, upon choosing 4 = /=47 in Proposition 1. To
construct K/k we seek, in view of Proposition 5, an element g =
B in k' for which k({, B'/3) is unramified everywhere over k({).

Select ¢ = & = —1[47 - 5V/5+(=5++/5)4/471V5], a unit in k’. The
element ¢ has minimal polynomial g(x) = x*+47x3+519x2—47x+1
and conjugates

& = — L[47+5V5 — (5 + V5)\/-477V5],

g3 = — I[47+ 5V5+ (5 + V5)y/-477V5],

g4 = — 1[47 - 5V5 — (=5 + V5)4/47nV5]
in (17). The corresponding S from (20) and (39) are

B = 119353 + 4225V/5 — (715 + 325V/5)1/47nV/5],

B2 = 1[9353 — 4225V/5 + (715 — 325V/5)y/ -4T3V5],

B3 = 119353 — 4225V/5 — (715 — 325V/5)y/ —477V/5],

Ba = 119353 + 4225V/5 + (715 + 325V/5)4/4TnV/5].
Since £ is a unit in k({), and also a fifth power in the completion
at (1 —¢), we find that k({, B!/%) is unramified over k({). Thus
the element o = %(ﬂll/s + ﬂ21/5 + ,831/5 + ,B;/S) generates K/k and
has minimal polynomial p(x) = x3 +2x3/5—47x2/25 + 522x /125 —

9353/3125 from (39). (This is essentially the construction of H.
Hasse [9] for the Hilbert classfield of Q(v/—47).)

EXAMPLE 6. Here we wish to use the construction to find a generator
o and its minimal polynomial for the unique cyclic field K, which is
totally ramified at 11, unramified elsewhere, and of degree 5 over Q.

Here k' = Q({) as in Example 5. Set A={ ~{*=4/~v/5n and 1=
{2—¢3 = -1/ —V5n in Q({), where n = (1++/5)/2. Selecting ¥ in
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(16) to be the inverse of the Artin map of Q({)/Q and ¢ = (5+n4)/2
in (17), yields B = By = (90 — 17v/5)(50 + A(=5 + 19/5)) in (20).
The element f is a fifth power in the completion of Q({) at (1-{),
but not a global fifth power, and has norm 55°. Using Kummer’s
criteria, Q(¢, B'/5)/Q(¢) is found to be totally ramified at each prime
lying above 11, but unramified elsewhere. Hence it follows that K is
generated by a = %( Bll/ Sy ,le/ S+ ,331 54 ,Bi/ 5) with minimal polynomial
p(x) =x%=3x3-3x2 - x —1/11 from (29). The zeros of p(x) can
be expressed solely in terms of real numbers. It is easy to check that
the zeros are just the conjugates of ({11 + (5! = 1)/(2 - ¢ = ¢ -

ExAMPLE 7. To illustrate the construction of classfields for which
F # Q, consider the extension k = Q(v/2) of F = Q(v/2). One finds
that k has narrow class number one (so does F), that {14+v2, 1—v/2}
is a fundamental system for the units of k¥ and that {1, v2, v2, v/8}
is an integral basis. The totally positive units of k are generated by
1+v/2 and (14+/2)2. In addition, k/F is seen to correspond through
classfield theory to the congruence group

48) {(X)|x>0, x=1,3,+1 —V2, £3+V2,
3+2v2, 1+2v2mod 4v2}

of conductor / = (4v/2). (The set (48) contains precisely those ideals
for which the extended Kronecker symbol (v/2/z) =1.)

The field k¥ admits an ideal group J defined modulo .Z = (5%)
consisting of principal ideals generated by elements y prime to .#Z
and of the form y = a - B for some a € (k¥)°> and B = 1 +
5(a + bv2 + ¢v/8) mod .# with a,b,c € Z. The ideal group J
corresponds to a classfield K which is normal over F with [K : k]
= 5. The Galois group G = G(K/F) is a semi-direct product of
the form (1), say with generator gfor T = G(K/k) for which
[6/]=(1+5jv2)J (0<j<4) in (4). Also, since 7(v2) = —v/2, we
have t[6/] =[07/] so G is dihedral. (A straightforward, but tedious,
computation shows that J is the only admissible ideal group of &
which has conductor divisible only by 5, is invariant under G(k/F)
and has corresponding classified K with G(K/F) = Ds.)

To determine the resolvent field k', we choose A = v/2 in Proposi-
tion 1 to find E2, =[({ — (*)V2]? = —yV/10 where 7 = (1 +V/5)/2.

Hence k' = F(i1/v/10n). Realizing (48) modulo » = 20v2, we find
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the sets [¢] in (11) are
[b1.1]={C)|]x >0, x=1,9,11, 19, £1 —=5V2, 1 + 10V2,
3+2v2, 3 -3v2, £3-7V2, 3+ 8V?2,
+74+3V2, £7+7V2, -T+£8V2,7+£2V2,9+10V2,
+9-5v2, £11+5vV2, 11+ 10v2, —13 +£2V?2,
+13-3V2, £13-7v2, —13 £ 8V2,
17+£2V2, £17+3V2, 17+ 8V2, +17+ 7V?2,
+19 + 5v2, 19 + 10v/2 mod 20v2}
and
[¢r,_1l={(X)|x >0, x=-3,7,13, =17, -1+ 4V2,
—1+6V2, +14+9V2, +1 +V2, £3-5V2, -3 - 10V?2,
+7+5V2,7-10v2, £9+ V2, -9+ 4V2, 9+ 9V2,
—94+6V2, 11 -v2, 11 +4V2, —11 +6V2,
+11-9v2,13-10v2, £13 - 5V2, £17 + 5V2,
—17-10v2, £19 - 6V2, —19+£6V2, —19+4V2,
+ 19 — 9v2 mod 20v'2}.
The classfield corresponding to % = [¢;,1) U [¢,—1] must be k' =

F(iy/V10n).

Now to construct K/k we seek a suitable element f in k' for
which k({, B1/3)/k({) is ramified only at the prime (1 — {) lying

above 5. Let p be the element of G(k'/F) sending A = iy/V/107

to A = %\/\/ﬁn and choose ¥ in (16) so that p; = 1, p, = p,
p3 = p3 and ps = p?. (This choice of y yields the correct field
k in Theorem 1 or its corollary.) Select ¢ = &; = V2 — /55 + 2A,
a unit of k' and zero of the irreducible polynomial g(x) = x* +
(10 — 4v/2)x3 + (47 + 10v/2)x2 + (30 + 2v2)x + (99 + 70v2).
conjugates in (17) are &, = V2 — \/_n+2A/n, &3 = \/_ V57— 2A/11,
and &4 = V2 -5y —2A. The corresponding # = f,;, from (20) and
(39) is

1((~89325 + 64303v2) + v/5(40007 — 28715v/2))

+ A((32737 — 22440V2) + V/5(—14651 + 10028V2)).
Since f is not a fifth power in the completion of k() at (1 —{), we
find from Theorem 1 that a = —( 1/5 ﬂl/s ﬂl/s ﬁl/s) generates
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some classfield of & of degree 5. This classfield must be K in view of
the parenthetical remark made about J. From (39), o has minimal
polynomial

p(x) = x> — (19 + 10v2)/5x3 + (30 4+ 2v/2)/25x>
+ (38 +20Vv2)/125x + (179900 — 127256v/2)/3125 .

ExaAMPLE 8. In this final illustration, we wish to apply the con-
struction to find a generator o and minimal polynomial for the real
subfield K of Q({y7). Again k' = Q({) since k = Q. Selecting
& =2+ {" in (41) yields

B=PB1=0@+D2B+2iVDH4+i+2V2+2iV2)*/173,
Br = (4—0)(3+2ivV2)*H4—i—-2V2+2iV2)*/173,
/)’3 (4+0)2(3 = 2ivV2) (4 + i — 2vV2 = 2iV2)*/173,

(4— 023 -2iV2)44 —i+2V2 -2iV2)*/173

n (20). Now it follows from Proposition 5 that Q(¢, BY/8)/Q({)
totally ramified at each Q({)-prime lying above 17, and unramlﬁed at
other primes except possibly at (1 + {) lying above 2. Hcwever, it
can be checked that g is an eighth power in the completion of Q({)
at (1+¢). For any Q({)-prime , lying above 17, we have e( : »)
= &, 50 (46) holds. As K is the unique cyclic field with such ramifi-
cation, it is generated by o = ( /8 +/31/8 +/351/8 +ﬂ71/8) for our con-
struction. The minimal polynom1a1 for a is p(x) = x¥ — 20x%/(2%)
+1986x4/(28.17)-50256x2/(22.172)4+300304/(216.173) from (41),
and has zeros

—)?

.l:.

(85 +17) 4777 + 409vV17
4\/‘ )F \/

expressed solely in terms of real numbers.
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