ASYMPTOTICALLY FREE FAMILIES OF RANDOM
UNITARIES IN SYMMETRIC GROUPS

ALEXANDRU MIHAI NICA

Volume 157 No. 2 February 1993



PACIFIC JOURNAL OF MATHEMATICS
Vol. 157, No. 2, 1993

ASYMPTOTICALLY FREE FAMILIES
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ALEXANDRU Nica

We prove that independent, Haar distributed families of random
unitaries in symmetric groups are asymptotically free.

1. Introduction. In this note we prove that independent, Haar dis-
tributed families of random unitaries in symmetric groups are asymp-
totically free.

If G, is a closed subgroup of the unitary group U(n), then by a ran-
dom unitary in G, we understand a measurable function f: X — G,,
where (X, %, P) is a (fixed) probability space. A random unitary in
G, has a distribution, which is a probability measure on G, , and we
can define the notion of independence for a family of random uni-
taries, exactly as it is done for usual real-valued random variables. A
family (fw)weq of random unitaries in G, will be called, following
[1], standard-independent if it is independent and if the distribution
of every f, is the Haar measure on G, .

Now, a family (fy)yeq of random unitaries in G, can be also
viewed as a family of unitaries in the non-commutative probabil-
ity space (M, , 7,), where 9M, is the unital *-algebra of measurable
functions X — Mat,(C), having bounded entries, and 7,, is the trace-
state of 91, obtained by integrating the normalized trace of Mat,(C).
From this point of view, the concept analogous to independence to be
considered is the property of (fu)weq Of being or not being free (see
[2]). This property can be expressed in terms of a naturally defined
“non-commutative distribution” of (f,),cq , Which is a state on the
group algebra of the free group on Q generators.

Hence, we are in a situation when both concepts of independence
and freeness can be considered. It seems to be a deep phenomenon
that, as found by D. Voiculescu in [1] for several important examples
of such situations, one can hope independence to give rise (at least in
good cases) to asymptotic freeness.

In our particular framework, the problem-type reflecting this phe-
nomenon can be stated as follows: “For every n > 1, let (f,, »)weo
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be a standard-independent family of random unitaries in the closed
subgroup G, of U(n). Is it true, for a reasonable series (G,)32,,
that the families (f, »)wecq are asymptotically free for » — 00 ?” In
[1] it is proved that this is true for G, = U(n), and it is found that
the limit non-commutative distribution of the families (f, »)weq 1S,
roughly speaking, the free product of Q copies of the Haar measure
on the circle.

The goal of this paper is to prove that the same holds if every G,
is a semidirect product A" Xq, Sp, With S, the group of permutations

of {1,2,...,n}, A, aclosed subgroup of the circle, and a,: S, —
Aut(A4]) the natural action,
an(t)(z1, 22,00, Zn) = (zfn(l) s Zpigys e zfl(n)).

The paper is subdivided into sections as follows: in §2 we fix the
notations and review the concepts related to non-commutative prob-
ability spaces that we need. In §3 we state precisely the problem-type
concerning asymptotic freeness for standard-independent families of
random unitaries. In §4 we prove the main theorem of the paper,
namely that asymptotic freeness holds for the series (S,)32; of sym-
metric groups, and in §5 we extend the result to the above-mentioned
case of semidirect products.

We are deeply indebted to Dan Voiculescu for his constant sup-
port during the preparation of this work. We are thankful for the
good atmosphere of the Operator Algebra theme year at the C. R. M,
Montreal, where the paper was written.

2. Basic definitions. In this section we fix the notations and briefly
review the basic concepts about non-commutative random variables
that we need (for a more detailed exposition, see [2]).

2.1. By a non-commutative probability space we shall understand
a pair (A, g), with 20 a unital *-algebra and ¢ a state of A (i.e.
0:2 — C linear, o(a*a) >0 forany a2, o(1)=1).

2.2.  *-distributions for families of unitaries. For a non-void set Q,
let F(Q) be the free group having a free family of generators indexed
by Q, and let C[F(Q)] be its group algebra. It is handy to view
C[F ()] as an algebra of non-commutative trigonometric polynomi-
als, i.e., as having a linear basis consisting of 1 and the monomials
Xg,‘ngz---Xg:,with W W # - #wy,in Qand o), ar, ..., am
in Z\{0}. (Note: By w; # w; # --- # w,, we shall always mean
that w; # w;y 1, 1 < i <m-—1.) Of course, if cardQ2 = 1, then
C[F(Q)] = C[Z] is the algebra of usual trigonometric polynomials.
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C[F(2)] has a natural *-operation, uniquely determined by the
condition that every X, (w € Q) be unitary, and has the following
universality property: for any unital *-algebra 2, and for any family
(Uw)weq of unitaries of 2, there exists a unique homomorphism of
unital *-algebras, I1: C[F(Q)] — 2, such that II(X,) = u, , for every
w in Q.

DEeFINITION. Let (2, o) be a non-commutative probability space.
The *-distribution of a unitary u € 2 will be the state u,: C[Z] — C
obtained by composing ¢ with the unique homomorphism C[Z] — 2
sending X into u. More generally, the *-distribution of a family
(Uw)wen Of unitaries in 2A will be the state u: C[F(Q)] — C obtained
by composing g with the unique homomorphism C[F ()] — 2 send-
ing X, into u, forevery w.

2.3. Example (Haar distribution on C[Z]). Consider the algebra
C(T) of continuous functions on the circle, with pointwise operations,
let o: C(T) — C be integration with respect to Haar measure, and let
id € C(T) be the unitary id(z) = z. The *-distribution p;4: C[Z] — C
will be called the Haar distribution on C[Z]; it is clearly determined
by the property that u;q(X*) =0 for any k # 0.

2.4. Free families. Let (A, o) be a non-commutative probability
space. A family (#y)pecq Of unitaries in A is called free if for any
Wy F Wy # - # wy in Q and py, P2, ..., Pm In C[Z] such that
a(pj(uwj)) =0, 1 <j<m, we also have that (p1(Ue, ) Pm(Ue ))
=0.

Remark that the fact whether the family (#y)pecq is free or not
depends only on its *-distribution u on C[F(Q)]. More precisely, it
is easy to check that (#y),eq i free in (A, o) if and only if (Xy)uea
is free in (C[F(Q)], u).

2.5. Asymptotically free families. Let, forevery n > 1, (Un,w)wec
be a family of unitaries in the non-commutative probability space
(An, on), and let u, be its *-distribution. The families (4, o)pen
are said to converge in distribution (for n — oo) to the state x4 on
CIF(Q)] if un(p) il u(p), for any p in C[F(Q)]. If, moreover,
the limit state u has the property that the family (Xy)eeq is free in
(C[F(2)], u), then the families (#,, »)eecq are said to be asymptoti-
cally free for n — co.

2.6. Random matrices. For (X,% , P) a probability space and
n a positive integer, we shall work with the unital *-algebra 91, of
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measurable functions f: X — Mat,(C) having the property that for
any 1 <1i, j<nm,theentry f; ;: X — C is bounded. This is only
a subalgebra of what one usually calls the algebra of n x n random
matrices on (X, % , P) (see the definitions preceding Theorem 2.2
of [1}), but it will be sufficient for our purposes. On 9, we have a
canonical trace state, defined by:

M wl) =y [ T dre) = Z/ fi.;dP.

2.7. Random unitaries. Let (X, % , P) and n be as above, and
assume that we are also given a closed subgroup G of U(n). A mea-
surable function f: X — G (which is in particular a unitary in the
algebra 91, defined at 2.6) will be called a random unitary in G.

As a unitary in the non-commutative probability space (9,, 7,),
a random unitary f in G has of course a *-distribution in the sense
of 2.2. But in this case, we also have the distribution of f defined
in the classical sense, which is the probability measure on the Borel
o-algebra of G, given by the formula: A,(4) = P(f~!(4)). More
generally, a finite family (f,)wcq of random unitaries in G has a
joint distribution, which is the probability measure A on the compact
group G, given by

MA) = P({x € X|(fo(X))weq € 4}), A C G Borel set.

If A= [lpeal 1, » the family ( Jw)weq 1s called independent. If this
happens and, moreover, each 4 £, coincides with the Haar measure on
G, the family (fy)weq Will be ‘called standard-independent (see 3.7
of [1]).

An arbitrary family (finite or not) (fu)weq of random unitaries in
G will be called standard-independent if so is ( fa,)weg0 for any finite
subset Qg of Q. As it is easily checked, this is equivalent to the fact
that

) /X 01(for (%)) - Omlfeo_ (X)) dP(x) = / Dt

for any w;, ..., wy in Q such that w; # w; when i # j, and for
any ¢, ..., ¢ in C(G); on the right side of (2), integration is done
with respect to the Haar measure of G.
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3. The setting of the problem.

3.1. The enunciation of the problem can be done as follows. For
every n > 1, let (f,.0)wecq be a standard-independent family of ran-
dom unitaries in the closed subgroup G, of U(n). Is it true, for
reasonable series (G,)52, , that:

(i) the families (f4,w)weq, regarded in the non-commutative
probability spaces (9, , T,), are asymptotically free, and

(ii) For every w € Q, the unitaries f, ., converge in distribution
(for n — o0) to the Haar distribution on C[Z]?

3.2. Reformulation. For concrete computations, it is useful to re-
mark that (i) and (ii) of 3.1 together are equivalent to the following as-

sertion: Forany w; # wy # - # Wy, in Q,and any ag, as, ..., am
in Z\{0}, we have:
(3) nli_g}o’tn(f(;l,w, “‘fﬁ:’:‘wm) =0.

Indeed, (i) + (ii) mean that the *-distributions of the families
(fn,w)weq converge, for n — oo, to a state u on C[F(Q)] with
the following properties:

() (Xw)weq 1is a free family in (C[F(Q)], u);
(Gj) #(Xk)=0 for any w in Q and k in Z\{0}.
But (j) and (jj) together are clearly equivalent to
(i) #(Xe!---Xgr) =0, for any @) # w3 # -+ # Wy in Q and
a1, 0, ..., an In Z\{0}
(in particular (j) + (jjy) determine u completely).

So, if (i) and (ii) hold, we have for any w; # @, # -+ # Wy In Q
and any aj, ..., a; in Z\{0}:

’}Lnolo Tn(le,w1 " 'f(r):':'mm) = p(Xo! -

LX) = 0;
conversely, if (3) holds, then the *-distributions of the families
(fn.,w)wen converge for n — oo to a state on C[F(Q)] satisfying

(jii), and we have (i) + (ii).

3.3. REMARK. The expression T,(f ﬁ‘, w f i,";’wm) appearing in
(3) depends in fact only on G, (and not on the probability space
(X, %, P) we started with). Indeed, if f7' o, -+ /7w = f,then for
any 1 <j<n,theentry f; ; of f isa polynomial in the entries of
Jr,w s o5 oo, and [y f; ;dP is seen not to depend on
(X, F, P) because of (2) of 2.7.

3.4. Reformulation for G finite. Let us assume that the subgroups
G, C U(n) considered at 3.1 are finite.
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Let (f1,w)weq be a family of random unitaries in G, . Since C(G)
is the linear span of characteristic functions of one-point sets, and
Haar measure on G, is the normalized counting measure, the relation
(2) of 2.7 (i.e. the standard-independence of (f, »)weq) 1S seen to be
equivalent to

1
-1 -1 =
(4) P(f 3l ()00 f 3l () = ey
for any w;, ..., w, in Q such that w; # w; when i # j, and for

any f1,...,tn In Gyp.

Further, let (f,, »)weq be a standard-independent family of random
unitaries in G, and let us compute 7,(f},' e, - -fn"w ) for some
W # Wy # - # wy, in Qand ay,...,aq, in Z\{0}. When ¢
runs from 1 to m, w, describes a subset @/, ..., w, of Q, with
k < m. In other words, we have written w; = w, , (1 < g < m),
with ) # a)’j for i # j. The hypothesis #qwz # - # Wy
becomes ¢; #cr # - # Cm -

We claim that
() Tl S )= 3D TH(S 1),

3
n(card Gy) t,,. 1, €G,
Indeed, for any #;,..., # in Gy, the function f}'¢ -+ fy"e 18
constant and equal to #;'---fo" ontheset £ (t)n---nf " (t),
m s Yy >k

which has measure 1/(card G,)*, by (4). The sets of this form realise

a partition of X (when ¢, ..., #; describe G,); decomposing the
integral which appears in the formula (1) of 2.6 after this partition,
we get (5).

We conclude that a sufficient condition for having an affirmative

answer to (i) and (ii) of 3.1 (for any indexing set €2) is, in this case

. 1 a a
6 lim —————— Tr(¢,'---t,7)=0,
( ) n—oo n(card Gn)k Z ( G Cm)

t s s 1, €G,

forany kK > 1, ¢; # ¢ # -+ # ¢, exhausting {1,..., k} and
ay, ..., an in Z\{0}. Clearly, this condition is also necessary (take
Q={1,...,k} and w1 =c¢1, ..., Om =Cm)-

4. Asymptotic freeness in the case of the symmetric groups.

4.1. Statement of the result. We view the symmetric group S, asa
subgroup of U(n), by identifying every ¢ in S, with the correspond-
ing permutation matrix (the entry (7, j) equals 1 if #(j) =i, and O
otherwise). We shall prove that:
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THEOREM. The assertions (i) and (ii) of 3.1 are true for the series
(Sn)nz

As we saw at 3.4, this comes to

1 o o
(7 lim —— Tr(t.'---t.") =0,
n—00 n(n!)k . ,Ztkes 6 Cm
for any kK > 1, ¢y # ¢ # --- # ¢y exhausting {1,...,k} and
al, s e ,am in Z\{O}.
The numbers: k,c;,...,Cm, a1, ..., o, will be fixed for the

rest of this section. In fact, we shall also fix for the rest of the
section an integer n, not too small (for instance such that n >
2(lag]+ -+ |am|)) and prove the inequality:

1
(8) Z Tr(te! - tem) < —(a+2)7,

Nk
”(” es,

with o = |ay| + -+ + |am|. Clearly, (8) implies (7) and hence the
proposition.

4.2. REMARK. In some particular cases, the left side of (8) can be
computed precisely. We give here some examples (we omit the proofs,
since they are not part of the main stream of this paper).

1°. Assume that there exists 1 < j < k with the following property:
there is only one ¢ (1 < g < m) with ¢; = j, and for that ¢ we
have a4 = £1. Then the left side of (8) is exactly 1/n.

2°. Assume that for every 1 < j < k thereisonlyone g (1 <g<
m) with ¢; = j (but instead there is no condition on the exponents).
After a change of indices, the non-commutative monomial zg ! tZ;”

becomes £ ---£*. We have
ITj=1(Ale)) = 1)

1 o @
—e Tr(t ’---t") _|.

Nk > 1 k k-1
n(n!) [ res, n n(n-1)

where A(a;) denotes the number of positive divisors of «; .
3°. Assume that the non-commutative monomial f;'--- ;" is the
commutator of two permutations We have:

> Tr(nn's? )—in—l'

t,,4LES,

n(n.

It would be interesting to find such precise evaluations in the general
case.
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4.3. NotATIONS. (a) Besides k&, ¢;,...,Cm, @1,...,an and
a = |a| + - -+ |am| which were fixed at 4.1, we also fix the following
partition of {1,2,..., a} into integer valued intervals:

Il = {1, ceey [all},
L ={ag|l+1,..., o] + ]2},
Iy ={lai|+ - +lam1| + 1, ..., o]+ -+ |am-1] + |lam]} -
(b) Relations. By a relation we shall mean a subset of {1, ..., n}?.

A relation R will be called injective if the two projections on the
components are injective when restricted to R. For any ¢ in S, , the
relation R, associated to ¢ will be {(i, /)|t(i) = j}.

It is easy to see that for a given relation R, there exist permutations
t such that R C R, if and only if R is injective; if this happens, the
number of permutations ¢ such that R C R, equals (n — (card R))!.

(c¢) Cycles. By a cycle we shall understand a sequence & = (uy, ...,
Ug, Ugy1) Of numbersin {1, ..., n},such that u,,; = u;. Toacycle
¢ we shall associate k relations, R;(¢), ..., Ri(&). It will be useful at
4.7 to have the construction made for any sequence n = (uy, ..., ug)
of elements of {1,...,n}, with 2 < g < a+1. So, having such a
sequence 71, we define for any 1 < j < k arelation Rj(n) as follows:
we take all the numbers 1 < a < f — 1 which belong to intervals I,
(1 £ g £ m) having ¢; = j; and for any such a € I, we take into
Rj(n) the couple:

{ (ua+1 9 ua), if aq > 0;
(ua, ua+1), ifaq <0.

A sequence 1 = (uy, ..., ug) will be called injective if the relations
Ry(n), ..., Ry(n) are so.

Having a cycle ¢ and a k-tuple (¢, ..., t) in S¥, we shall write
E=<(t1,..., %) if R;(&) (_ZR,},forall 1<j<k.

Now, for & = (uy, ..., Ug, Usy1) @ cycle, ¢ a permutation and
1 < j <k, we clearly have: R;j(¢) C R; 518% (y, 1) = u,, for
any 1 < g < m such that ¢; = j, and for any a € I, . This gives the
criterion

(9) £=(u1,...,ua,ua+,)<(t1,...,tk)

@tz:gna"(uaﬂ):ua, Vi<g<m,ael,.
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4.4. LEMMA. Forany t, ..., t in S, we have:
Tr(te' - - te) = card{¢ cyclelé < (t1, ..., i)}

Proof. Let zs‘g“ % = (Sg:u.0)1<u,v<n € U(n) . Then:
Tr(tgtll .- ) ’I‘I‘(s[al e Slsml)
m
= Z I_‘[I_Isq;u,,,ua+l .
E=(u,,..,u,,,), cycle \g=1a€l,

Since $4.4,4 equals 1 if tz: "(v) = u, and 0 otherwise, every term

of the last sum is O or 1, and it is 1 if and only if tzgna"(uﬁ 1) = Ug
for every 1 < ¢ < m and a € I;. Comparing with (9) we obtain the
desired equality. |

4.5. LEMMA. For any injective cycle & we have
(10) card{(ty, ..., i) € SKIE < (11, ..., 1)}
< () (nf2)” T RO

Proof. We have:

k
{(tr, s ) €SKIE < (115 ..., i)} = [[{2 € SulRe 2 R;()}
j=1
so that the cardinal to be majorized is

k
[ card{z € S»|R, 2 R;(&)}
j=1

k
= [[(n - (card R;(&)))! (by 4.3b))
j=1

S SR

ﬁ n n n )
» (;'n—l'm'n—(carde(é))—}-l )

j=1

Now, from 4.3c) it is clear that E lcardRJ((j < Ygoicardly =

a. This implies that 2, Lo .., Tm are not greater than

a1 < 2 (we assumed in 4.1 that n is not too small); majorizing all
these factors with 2 in the last expression, we get (10). O
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4.6. A reduction of the problem. Applying Lemma 4.4, changing
the order of summation and applying after that Lemma 4.5 we get

1 al am
n(n')k Z Tr(tcl tcm)

e LLES,

1 Z card{¢ cycle| < (¢;, ..., &)}

n(n!)k . 1,€S,
n!)k Z card{(ty, ..., t;) ESKIE < (t1, ..., 1)}
¢ cycle
1 L
SomE X (A2 R,

¢ injective cycle

The sum Z§=1 card R;({) takes values not greater than «, as re-
marked in the proof of 4.5, and not less than k (since obviously
every R;(£) is non-void). Hence the last expression equals:

k
anrde(&f) = l} ,

j=1

a
—i; Z(z /n)! card {6 injective cycle

I=k

and a simple computation shows that (8) will follow if we can prove
that:

k
(11) card {é|é injective cycle, anrde(é) = l} < (C;) o Inl,

j=1
forevery k </ <.

4.7. The tree of injective cycles. In order to estimate the cardinals
of sets of injective cycles needed in (11), it is convenient to have all
the injective cycles placed together in a rooted tree.

Let T be a rooted tree, let V' be its set of vertices, and let vy be
its root. For any v in V', the length of the (unique) path connecting
v and vy will be called the level of v, and denoted by L(v). The
vertices of level L(v)+ 1 which can be connected with v by a path
of length 1 will be called the successors of v ; their number, denoted
by D(v), will be called the degree of v .

The rooted tree 7 will be called (1, »n)-regular if

(1) it has a maximal value of the levels, Lyax > 2;

(i1) any vertex v with L(v) # Lmax has D(v) =1 or n—a <

D(v) < n (of course, for L(v) = Lyyax We have D(v) =0).
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Clearly, if T is a (1, n)-regular rooted tree, then for any vertex v
of T, the subtree 7, of T generated by v is also (1, n)-regular.

By a labeling of the (1, n)-regular tree 7" we shall understand a
function e: V\{vg} — {1, ..., n}, having the property that whenever
v eV has n—a < D(w) < n, the restriction of e to the set of the
successors of v is one-to-one.

PROPOSITION. One can construct a rooted (1, n)-regular tree T,
with Lymax = a+ 1, and a labeling e: V\{vo} — {1, ..., n} such
that

1°. Forany 2 < B < a+ 1, there is a canonical bijection from
{v € V|L(v) = B} onto the injective sequences of f numbers in

{1, ..., n} (see 4.3¢c)), given by the following rule: for any v in V
with L(v) = f, we take the unique path vy, vy, ..., Vg =V connect-
ing v to the root, and we associate to it the sequence (e(vy), ... ,e(vg)).

2°. Forany v in V with n—a<DWw)<n and L(v)<a-1, at
most « of the successors of v have degree 1.

3°. Let & be an injective cycle, an let v be the unique vertex with
L(v) = a+ 1 associated to & at 1°. Then, denoting the path between
vy and v by vy, vy, ..., Vg1 =V, We have:

k
card{1 < B < o|D(vg) =1} =a— Y cardR;(¢).
j=1

Proof. We shall construct the levels of the tree inductively, and
define the labeling at the same time, taking care that 1° holds.

The level 0 contains only one vertex, the root, which is not labeled.
The level 1 contains »n vertices, labeled from 1 to n. The level 2
contains n? vertices, and more precisely, every vertex of the level 1 has
n successors, labeled from 1 to n. It is clear that the rule described
at 1° gives a bijection between the vertices of the level 2 and the
sequences of two numbers in {1, ..., n} (which are all injective). If
a =1, then thisis 7, and 1°, 2°, 3° are easily checked. For the
rest of the proof, we shall suppose that a > 2.

Now, let us assume that for some 2 < # < a we have constructed
the tree and the labeling up to the level £, such that 1° is satisfied.
For constructing the level # + 1, what we have to do is provide an
algorithm which decides, for a given vertex v with L(v) = f, what
D(v) should be, and which indicates the labels of the successors of
v. Let ¢ (1 < g < m) besuch that g € I,, and consider j =¢; €
{1,...,k}, ag € Z\{0}. If o, > O, the algorithm sounds like this:
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“Take v with L(v) = B, consider the path vy, vy,...,vg = v
connecting v to the root, consider the sequence n=(e(vy), ...,e(vg))
and the relation Rj(n) (defined at 4.3c)). If thereis u € {1, ..., n}

such that (u, e(vg)) € Rj(n), then put D(v) = 1, and the label of
the unique successor of v is u. Otherwise, n — a < D(v) < n,
and the labels of the successors of v are {1, ..., n}\n;(R;(n)).” If
ag < 0, the algorithm is the same, but we replace “(u, e(vg))” with
“(e(vg), u).

It is easy to check that the level § + 1 constructed in this manner
has the property of 1°. Hence the construction can be reiterated up to
B = a, giving us a labeled (1, n)-regular rooted tree 7", with maximal
value of the levels a + 1, and satisfying 1°.

To prove 2°, we need the following

LEMMA. Let v’ bein V such that L(v')= B’ <a and D(v') = 1.
Let vo, vy, ...,vgy = v' be the path connecting v’ with the root.
Then there exists 1 <y < B’ — 1 such that e(v') = e(v,).

Proof of the Lemma. We denote by ¢, ¢, respectively, the numbers
in {1,..., m} suchthat p'~1€l;, B’ €1, (notethat L(v') = f',
D(v') =1 imply B’ > 3, so that ¢ makes sense; clearly, ¢ = ¢’ or
g=q —1).

Let us assume that e(v’) # e(v,) forevery 1 <y < p' -1, and
obtain a contradiction. To make a choice, suppose that oy > 0.
From D(v') = 1 and the way we constructed the tree, we infer that
there exists 1 < y < B’ — 1, belonging to an interval I,, such that
¢p = ¢y and:

e(vy) =e(v), if ap >0,
{ e(vyr1) =e(v’), ifapy<0.
Because of the assumptions we made, the only possibility is that o, <
0 and y = B’ —1 (hence p = ¢q). This gives ¢; = ¢, and a4 < 0.
Further, ay < 0 < o, implies ¢ # ¢', and hence g = q' —1; so we
get ¢ = ¢4-1, a contradiction. If oy, < 0, we proceed in the same
manner.

The proof of 2° is now immediate. Take v in V with L(v) =

B<a-1,n-a<Dw)<n,andlet vy, vy,...,vs = v be the
unique path connecting v with the root. If a successor v’ of v has
D(v’) = 1, then, by the lemma, e(v’) € {e(vy), ..., e(vg)} which has

at most a — 1 elements. Since the labeling is one-to-one on the set of
successors of v, we obtain 2°.
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Finally, let £, v and vg, vy, ..., Upy; =V be asin 3°. From the
construction of the tree it is clear that, forany 2 < g < a:

k
Z cardRj(e(vy), ..., e(vg), e(vgiy))
j=1
0, if D(vg)=1,;
1, ifn—a<D(vg)<n.

k
- Ecarde(e(vl), oo, e(vg)) = {
j=1
Hence the sum:
k

card{1 <y < B|D(vy) = 1} + anrde(e(vl), oo e(vg), e(vgyy)),
j=t

considered for 1 < f < a, increases with 1 when g increases with 1.
Since for f=1:

k
card{1 <y < 1|D(v,) =1} + anrde(e(vl), e(rn)=0+1=1,
Jj=1
by putting f = a we get assertion 3°. o

4.8. Remarks on (1, n)-regular rooted trees.

4.8.1. LEMMA. Let T be a rooted tree with maximal value of the
levels Lyax = B+ 1, and such that every vertex v with L(v) < S has
D(v) < n. Then, forany 0 <y < B+ 1, T has at most n’ vertices
of level 7.

The proof of 4.8.1 is clear, by induction on y.

4.8.2. LEMMA. Let T be a (1, n)-regular rooted tree, with maxi-
mal value of the levels B + 1, and with the following property: for any
vertex v with L(v) < B ~1 and n— o < D(v) < n, at most o of the
successors of v have degree 1. Then for any 1 <y < B, there are no
more than an?~! vertices of degree 1 on the level y.

Proof. The case y = 1 isclear. If y > 2, denote by Ngi) the number
of vertices of degree i onthelevel 6, ie{l,...,n}, de{y—1,y}.
We have

" . " 4.8.1
NY<a Y NP +NY <o N S ant o
i=1

i=n—a
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4.8.3. LEMMA. Let T bea (1, n)-regular rooted tree with the prop-
erty stated at 4.8.2. Fix 1 < gy <---< B, < B, and let N be the
number of vertices with L(v) = B and with the following property:
if vo,v1,...,vg = v is the path connecting v with the root, then
D(vg)=---=D(vg)=1. Then N < a'nb~".

Proof. We first take the case & = 1. Let Vﬂ be the set of vertices

of degree 1 on the level B;, and for any v in V , let T, be the
subtree of T generated by v . Clearly, N = ZveV“ Nv , with N, the

number of vertices of 7, having level g — f; (m Ty). 4.8.1 gives
us that N, < nf~A (v € V}V), and 4.8.2 that card V" < anhi~1;
hence N < anf-!, 1 l

We now make induction on /4. Assume the lemma proved for all the
possible choices 1 < ) < --- < B, < B (B natural) and let us prove
it forasystem 1< By <--- < B < PBpy1 < B. Defining Véll) as in
the preceding paragraph, we have again the formula N =3 ev Ny,

where this time N, is the number to be majorized with respect to the
tree T, and the system 1 < B — B < - < Bpa1—P1 < B - B.
Hence, by 4.8.2 and the induction hypothesis:

N < (anﬂl"l)(ahnﬂ—ﬂl—h) = oHipB-(htl) o

4.8.4. PRroPOSITION. Let T be a (1, n)-regular rooted tree, with
the property stated at 4.8.2, and with the maximal value of the levels
a+1. Let 0 < h < a be a fixed integer. For any vertex v with
L(v) = a, we consider the path vy, vy, ..., Vq =V connecting v to
the root. Then

card{v|L(v) = «, card{1 < f < a|D(vg) =1} > h} < <Z)ahn"‘h.
Proof. For h = 0 we have to prove that the number of vertices of

level « is not greater than n* (which is in 4.8.1). If A > 1, then for
any v having card{l < g < a|D(vg) = 1} > h we choose a system

1 < By < < Bp<asuchthat D(vg) = - = D(vﬁh) = 1; after
that, we sum after all the possible choicesof 1 < f; <--- < B, < a,
and apply 4.8.3. O

4.9. End of the proof of Theorem 4.1. We were left to prove (11)
of 4.6. Letusfix / (k<!/<a),and denote a—/ by 4. We consider
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the tree T of the injective sequences, constructed at 4.7. To every
injective cycle ¢ having Z’;zl card Rj(¢) = | we associate the unique
vertex v of this tree such that: L(v) = a, and (e(vy), ..., e(vq))
are the first a components of & (as usual, vy, V1, ..., 0, = U 18
the path connecting v to the root). Taking into account point 3°
of Proposition 4.7, we see that £ — v is a one-to-one mapping into
the set of vertices {v|L(v) = a, card{l < B < a|D(vg) = 1} = h}.
Hence:

k
> card R;(¢) = 1}

j=1
< card{v|L(v) = a, card{1 < B < a|D(vg) =1} = h}
<card{v|L(v) = a, card{l < f < a|D(vg) =1} > h}

A\ phoa-h _ (X a-l,]
S(h>an —(l)a n. 0O

5. Asymptotic freeness in the case of Weyl groups. For any positive
integer n, let 4, be a closed subgroup of the circle (i.e., 4, = T
or A, = Z/r,Z for some r,), and let G, be the semidirect product
AR Xa_ Sn, where the action a, of S, on A" is

card { & injective cycle

an(t)(ZI g cee g Zn) = (Zt_l(l) 9 see g Zt—l(n)).

We can view G, as a subgroup of U(n), by identifying g =
((z1, ..., zn), t) € G, with the matrix having the (i, j) entry equal
to z;,if #(j) =i, and to O, if ¢(j) # i. We have

THEOREM. The assertions (i) and (ii) of 3.1 are true for the series
(Gn)oy -

To see this, we only need to take #,: G, — S, the projection, and
make the obvious remark that the inequality (12) appearing in the
next lemma is valid:

LEMMA. For n > 1, let G, and H, be closed subgroups of U(n),
and let m, be a continuous homomorphism of G, onto H,, with the
property that

(12) Trra(g) > |Trg|, forany ginG,.

In this situation, if (i) and (ii) of 3.1 are valid for the series (H,)%>,,
then they are also valid for the series (G4)3, .
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Proof. Consider, for every n > 1, a standard-independent family
(fn.w)weco of random unitaries in Gy, .

Note first that (7, o f;. w)weq is standard-independent in H,,. In-
deed, for any w;, ..., w, in Q such that w; # w; when i # j, and
forany ¢,,..., ¢ in C(Hy,):

/X 01(7n 0 fo. 0 )(X)) - Om(Tn © fo o )(X)) dP()
- /X (@100 (0 (X)) (P 0 ) (fir 0 (%)) dP(x)

2) of 2.7 4=
DL [ aomie)ds
g=1"0"

=ql:[l/Hn¢q(h)dh.

On the other hand, for any w; # wy # --- # wy, n Q and
ay, ..., an in Z\{0} we have

|Tn(f(r;ll,wl fi’"wm)l
<o [T R, F i, SN dP()

(12) o a
<1 [ TH (@0 (F i, D) P)

1
= 4 | T o) (n o0, ) AP ()
= Tp((mp 0 fn,wl)a1 o (mpo fn,wm)a”’) .
Taking into account the considerations of 3.2, the last inequalities
clearly finish the proof. ad
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