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A Banach space has the complete continuity property if all its
bounded subsets are midpoint Bocce dentable. We show that a lemma
used in the original proposed proof of this result is false; however, we
give a proof to show that the result is indeed true.

1. Introduction. Throughout this paper, X denotes an arbitrary
Banach space, X* the dual space of X, B(X) the closed unit ball
of X, and S(X) the unit sphere of X. The triple (Ω, Σ, μ) refers
to the Lebesgue measure space on [0,1], Σ+ to the sets in Σ with
positive measure, and Lx to Li(Ω, Σ, μ). The σ-field generated by a
partition π of [0, 1] is σ(π). The conditional expectation of / e L\
given a σ-field 3S is E(f\@).

A Banach space X has the complete continuity property (CCP) if
each bounded linear operator from L\ into X is Dunford-Pettis (i.e.
carries weakly convergent sequences onto norm convergent sequences).
Since a representable operator is Dunford-Pettis, the CCP is a weak-
ening of the Radon-Nikodym property (RNP). Recall that a Banach
space has the RNP if and only if all its bounded subsets are dentable.
A subset D of X is dentable if for each ε > 0 there is x in D such
that x φ. cδ({y ED: \\x -y\\ > ε}). Midpoint Bocce dentability is
a weakening of dentability. The subset D is midpoint Bocce dentable
if for each ε > 0 there is a finite subset F of D such that for each
x* in B(X*) there is x in F satisfying:

if x = \zχ + \z2 with Zi e D then \x*(x - z\)\ = | x*(x - z2) \< ε.

The following theorem is presented in [Gl].

THEOREM 1. X has the CCP if all bounded subsets of X are mid-
point Bocce dentable.
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Our purpose in writing this note is to show that Lemma 2.9 in [Gl]
(which was used in [Gl] to prove Theorem 1) is false and to provide
a proof of the theorem. Lemma 2.9 asserts that if A is in Σ + and
/ in Loo(μ) is not constant a.e. on A, then there is an increasing
sequence {πn} of positive finite measurable partitions of A such that
tf(U πn) — Σ Π A and for each n

Example 2 shows that Lemma 2.9 is false.

EXAMPLE 2. Let / = 3χ [ 0,i) ~*[i,i] T h e n
 J Ω / ^

 = 0 S u P "
pose that {πn} is an increasing sequence of positive finite measurable
partitions of [0, 1] such that for each n

Then σ ( | J π n ) ^ Σ .

Proof. Consider the martingale {fn} given by

/„(•) = E{f\σ{πn)) =
Eeπn

For each n € N put

j | andPn = (J |£:: E eπn and j fdμ> θ |

Since μ{Pn) = \, we have that μ(Qn) > \ • Thus

l\fn-f\dμ> ! \fn-f\dμ> ί(fn--l)dμ
Jn JQη JQn

> ί ίdμ = M(2«) > ^

We know that such a martingale J?(/|σ(ππ)) converges in L\ norm
to ^ ( / | σ ( | J π , ) ) . But E(f\Σ) = f. Thus σ ( L J π n ) ^ Σ . D

The error in the proof of Lemma 2.9 occurred in assuming that if
A is in Σ+ and {πn} is an increasing sequence of positive measurable
partitions of A such that for each n and each E in πn the μ(E) < εn

with limM εn = 0 5 then σ( |JπΠ) = ΣnA. This seemingly sound
assertion is not true as shown by the following counterexample.



ERRATA 391

E X A M P L E 3. F o r neN a n d 1 < / < 2n, def ine

' 2 2 " + 1

and

Clearly {πn} is an increasing sequence of positive measurable parti-
tions of [0, 1] such that μ(E) = 2~n for each n and each E eπn.
Let f = χ^oly An easy computation shows that E(f\σ(πn)) =

2/[0,i] We know that such a martingale E(f\σ(πn)) converges in
Lx norm to E(f\σ([jπn)). But £(/ |Σ) = / . Thus σ ( | J π r t ) ^ Σ . D

2. Proof of theorem. Our proof of Theorem 1 uses the following
observations. For / in L\ and A in Σ, the average value and the
Bocce oscillation of / on A respectively are

mA{f) =
μ{A)

and

1, .
U μ(Λ)

observing the convention that 0/0 is 0.

LEMMA 4. Fix A in Σ and f in L\. There is a subset E of A
with 2μ(E) = μ(A) and

2 Bocce-osc/U < I mE(f) - mA{f) \ .

Furthermore, for each subset E of A with 2μ(E) = μ(A),

\mE(f)-mA{f)\< Bocce-osc/U.

Proof. Without loss of generality, A = Ω and JΩfdμ = 0 and
JΩ I / | dμ = 1. With this normalization, Bocce-osc/|^ = 1 and
I ' M / ) - ^ ( / ) l = l ^ ( / ) l . Let P = [/> 0] and ΛΓ = [/< 0].

The first claim now reads that \ < 2 \ fEfdμ \ for some subset
E of measure one half. Wlog μ(P) > \. Partition P into 2 sets, Pi
and Pi, of equal measure such that Jpfdμ<Jpfdμ. Note that
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Since μ(Pχ) < \ < μ(P), we can find a set E such that P{ c E c P
and μ(E) = ̂  . For such a set E

\< ί fdμ < ί fdμ ,
4 ^P, «/£
4

as needed.
Normalized, the second claim reads that for each subset E of mea-

sure

ί fdμ
JE

< 1 .

Fix a subset E of measure \. Wlog JEnN-fdμ<JEnpfdμ. So

ί fdμ
JE

I fdμ+ ί fdμ
JEΠP JEΠN

ί fdμ < j \ f \ d μ = \,
JEΠP JP L

Das needed.

A subset ^ of Li satisfies the Bocce criterion if for each ε > 0
and B in Σ + there is a finite collection & of subsets of B each
with positive measure such that for each f in K there is an A in &
satisfying

(*) Bocce-osc f\A<ε.

Lemma 4 provides an equivalent formulation of the Bocce criterion;
namely we can replace condition (*) by the condition

if the subset E of A has half the measure of A,

then \mE(f)-mA(f)\ < ε.

We now attack the proof of Theorem 1. Our proof follows mainly
the proof in [Gl].

(**}

Proof of Theorem 1. Let all bounded subsets of X be midpoint
Bocce deniable. Fix a bounded linear operator T from L\ into
X. It suffices to show that the subset Γ*(£(£*)) of Lx satisfies the
Bocce criterion (this is a necessary and sufficient condition for T to
be Dunford-Pettis [G2]). To this end, fix e > 0 and B in Σ+ .

Consider the vector measure F from Σ into X given by F(E) —
T(χE). For x* e 3t*

x*F{E)
rnE(T*x*) =

μ(E)

since JE(T*x*)dμ = x*T(χE) = x*F(E) .
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Since the subset {|[§j :E cB and E e Σ+} of X is bounded, it is
midpoint Bocce deniable. Accordingly, there is a finite collection &
of subsets of B each in Σ+ such that for each x* eB(X*) there is a
set A in & such that if

F{A) 1

< e.

2 //(EO + 2 μ(E2)

for some subsets £; of B with is, G Σ + , then

x*F(Eχ) x*F(A)

μ{Ex) μ(A)

x*F(E2) x*F{A)

μ(E2) μ(A)
Fix x* eB(X*) and find the associated A in &.

At this point we turn to our new formulation of the Bocce criterion
(whereas [Gl] used the old formulation and Lemma 2.9).

This ^ G F satisfies the condition (**). For consider a subset E
of A with μ(E) = \μ{A). Since

F(A) 1 F(E) 1 F(A\E)

< ε.

μ(A) 2 μ(E)^2 μ(A\E)

we have that
x*F(E) x*F(A)

\mE(T*x*)-mA(T*x*)\ =
μ(E) μ(A)

Thus Γ*(5(3£*)) satisfies the Bocce criterion, as needed. D

3. Closing comments. A relatively weakly compact subset of L\
is relatively norm compact if and only if it satisfies the Bocce crite-
rion [G2]. Thus our new formulation of the Bocce criterion provides
another (perhaps at times more useful) method for testing for norm
compactness in L\.

Fix A in Σ+ and / in L\. Put

MA(f) = sup{\mE(f)-mA(f)\: E c A and 2μ(E) = μ(A)} .

This supremum is obtained. For just normalize so that A = Ω and

Jςifdμ = 0 and / Ω | / | dμ = 1. As Ralph Howard pointed out, next

find disjoint subsets E\ and E2 of measure \ and aeR such that

EιC[f<a] and E2c[f>a].

Then MA(f) will be the larger of |mEχ(f)\ and \mEl{f)\.
Basically, our Lemma 4 says that

- Bocce-osc/|^ < MA(f) < Bocce-osc/^ .

These bounds are the best possible.
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For the second inequality, consider the function defined on A =
[0, 1] by

/ = X[θ, i )-*[ i , i ]

Straightforward calculations show that m^0 i](/) = 1 and that
Bocce-osc/|^ = 1. Thus

MA(f) = Bocce-osc/|^.

As for the first inequality, consider the family of functions defined
on A = [0, 1] by

Jδ — —?— X[0,δ)+ X[δ,l]

for 0 < δ < j . Straightforward calculations show that

MA(fδ) = 2 _ Bocce-osc/jU.

Actually MA(f) = \ Bocce-osc/|^ if and only if / is the zero
function on A.
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