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WITT RINGS UNDER ODD DEGREE EXTENSIONS

ROBERT W. FITZGERALD

For a separable odd degree field extension K/F the kernel of a
Scharlau transfer of Witt rings s. : WK — WF is a W F-module.
We compute the prime ideals attached to ker 5. and deduce that WK
is not a projective W F-module if an ordering on F extends uniquely
to K. An example shows WK may be a free W F-module if F is
real and no ordering extends uniquely. For non-real, non-rigid F we
show that K/F Galois and WK noetherian implies WK is not a
projective W F-module.

If K/F is a finite extension of fields (characteristic not 2) then each
non-trivial linear functional s: K — F induces a Scharlau transfer
S. : WK — WF on the Witt rings. When K = F(v/d) the kernel and
image of s, are well known. We restrict our attention to separable
odd degree extensions, where s, is surjective but little is known of
ker s,.. The map induced by inclusion r, : WF — WK is injective
and we view WF as a subring of WK . Then WK and ker s, are
W F-modules and our approach is module theoretic.

W F need not be noetherian and ker s, need not be finitely gen-
erated over WF . So the usual theory of prime ideals associated to
modules must be replaced by the notion of attached primes (in the
sense of Dutton). We show no P(a, p) is attached to ker s., P(a) is
attached iff o has more than one extension to K and IF is attached
iff W,Kn ker s, # 0. As a consequence, WK = WF iff each or-
dering on F extends uniquely to K and W;K Nnkers, = 0. Another
consequence is that WK is finitely generated over W F if F has only
finitely many orderings and IF is not attached to ker s, .

The main result deduced from the work on attached primes is that
WK is not a projective W F-module if some ordering on F extends
uniquely to K. WK may be projective, however, if F is real and
no ordering extends uniquely. We present an example where K/F is
Galois, F is real, both WK and WF noetherian rings and WK is
a free W F-module. When F is non-real and non-rigid we show the
same conditions ( K/F Galois, WK and WF noetherian) implies
WK is not a free WF-module. Weaker results hold under fewer
restrictions on K/F .
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The first section gives basic results and several examples. The last
section concerns the possible values of [G(K) : G(F)] when this is
finite (here G(E) = E'/E"?). Two sample results: If K/F is Galois
and [K : F]=p a prime then p divides [G(K): G(F)]-1. If K/F
has a real normal closure then [K : F] < [G(K) : G(F)].

Hom (K, F)" denotes the non-trivial linear functionals s : K — F'.
The set of orderings on a field E is denoted Xg. If a € Xr then
X(a) = {B € Xk|B|F = a}. For a € X and an odd prime p we
write P(a, p) for {r € WF|sgn,r = 0 (mod p)} and P(a) = {r €
WF|sgn,r = 0}. These ideals, with IF = {r € WF|dim r = 0
(mod 2)}, are the prime ideals of WF .

W,F denotes the torsion part of WF . The height of F', h(F), is
the least positive k such that 2% . W,F = 0 (or infinity if no such k
exists). If R; and R, are Witt rings then the fiber product R; MR, =
{(r1, r)|ri € R;, dim r; = dim r, (mod 2)} is again a Witt ring. If
C is a group of exponent two then the group ring R;[C] is again a
Witt ring.

1. Basic facts.

DEeFINITION. (i) m(K/F) =[)ker s., over all s € Hom(K, F)".
(il) M(K/F) =73 ker s., over all s € Hom(K, F)".

LemMA 1.1. Let s € Hom(K, F)".

(1) kers. is a WF-submodule of WK .

(2) If t e Hom(K, F)" then kers, = (z) kert, for some z€ K".

(3) m(K/F) = [kers, : WK] is an ideal of WK .

(4) M(K/F) is the ideal generated by kers, .

(5) There exists t € Hom(K , F)* with t.(l) = (1).

(6) If s.(1) = (1) then WK ~ WF @Xkers,.

(7) If 5.(1) = (1) then kers, is generated (over WF) by {(x) —
s {x)|x € K'}.

Proof. (1) s, is additive and if ¢ €ker s, and r€ R then s.(r¢)
= r8.(¢) = 0. Thus ker s, is a W F-submodule of WK .

(2) There exists z € K° such that s(x) = t(zx) for all x € K.
Then s5.(¢) = t.({z)¢) for all ¢ € WK and so ker s, = (z) ker ..

(3) Let ¢ € m(K/F) and z € K'. Define #(x) to be s(zx) for
all x € K. Then ¢ € ker t. = (z) ker s.. Since z was arbitrary, we
have ¢ € [ker s, : WK]. Conversely, if ¢ € [ker 5. : WK] then for
every z € K*, (z)¢ € ker s. and ¢ € (z)ker s. = ker ¢,, for some



WITT RINGS 123

t € Hom(K/F)' . Thus ¢ € m(K/F). Clearly [ker s, : WK] is an
ideal.

(4) M(K/F) =3 kert. =), (z)ker s. is the ideal generated by
ker s .

(5) We may write K = F(x) since K is separable over F. Take
t € Hom(K, F) with ¢(1) =1 and #(x) =---=t(x" 1) =0 (n=
[K : F]). Then t.(1) = (1) by [15, II 5.8].

(6) If s.(1) = (1) then the exact sequence 0 — ker s, - WK —
WF — 0 splits. This also proves (7). O

There are few examples of Witt rings under odd degree extensions
in the literature. We present several to illustrate the range of possible
m(K/F) and M(K/F).

ExaMpLEs. (1) The definitions of m(K/F) and M(K/F) make
sense for any finite extension F c K. Consider K = F(v/d) and
define s : K — F by s(1) =0, s(v/d) = 1. Then ker s, = r.(WF).
Since (1) € ker s, we have M(K/F) = WK. Also, m(K/F) =
anny r(anny (1, —d)) ® K by [5, 2.12]. Note that if W F is Goren-
stein (e.g., a group ring extension of a Witt ring of local type) then
annyr(annyr(l, —d)) = ({1, —d)) and hence m(K/F) =0 (cf. [9]).

(2) Let F = Q, and K = Q,(e) where e is a root of x3 +
2. Then K'/K'? may be represented by the group generated by
2), (3), (5), (@), (B) where a =2+¢? and B =1+ 2. Define
s: K — F by s(l) =1, s(e) =0 and s(e?) = 0. Then s.(1) =
(1), sefa) = (3), s(B) = (5) and s.(af) = (2)(1, -7, -14) =
(2)(1,1,2) ~ (1 , 1) (see [15, p. 188]). Set p = 4. (1) and
x=3-(1).

We verify that m(K/F) =0. Let ¢ = r; +ry{a) + r3(B) + r4(ap) €
m(K/F) with r; € WF . From s.¢ =0, s.{(a)¢ =0 and s.(f)¢ =0
we obtain:

ri+ (3)r+ (S)r3+ xra =0,
pr3+ pra =0,
pry+ prg = 0.

The last two equations imply dim r, = dim r3 = dim r4 (mod 2).
The first equation yields ¢ = (a, =3)r, + (B, =5)r3 + ((af) — )14
When all r; (2 <i<4) are even dimensional then ¢ € I’K. When
all r; are odd dimensional then d(¢) = 1 and again ¢ € I’K. But
I’K = {0, p} and s.(p)=p #0. Thus ¢ =0.

Lastly, M(K/F) = ({1, =3a), (1, =58)). Namely, M(K/F) is



124 ROBERT W. FITZGERALD

generated by (1, —3a), (1, —58) and y—(af). Now pe(l, —3a)IK
and x —(af) =p—(1,aB) =p— (151, =3a) + (3a)(1, =58)).

(3) Let F = C(x). It is easy to see £3 + xt + x is irreducible over
F. Let a be aroot and let K = F(a). Pick s € Hom(K, F)* with
s+(1) = (1). Now forall u € K, s.(u) = (Ng/r(u))+ ¢, for some ¢ €
I’K = 0. We are using here that K isa C;-field for every finite exten-
sion [15, II 15.2]. So s.(u) = (Nk/r(u)), and s is a ring homomor-
phism. Thus m(K/F) =ker s, = M(K/F) = {(1, —u)|Ng/p(u) = 1}.

This is the only example (of the three ) for which m(K/F) # 0. To
verify this it is enough to show —xa & K? as Ng/r(—xa) € F2. Butif
—xa = (a+ba+ca?)? then b = a?/2cx and (a/c)*+8(a/c)x? = 4x3.
However t* + 8x2¢ — 4x3 has no roots in F .

(4) In §3 an extension F C K will be constructed with WF ~ Z
and WK ~ Z?. Here F/F? = {£1} and K/K? = {1, a, £8,
+af}. Here a correspondsto (1, —1, —1) € Z3 and f corresponds
to (-1, 1, —1). There is, by a later result (1.4), an s € Hom(K, F)’
with s.(1) = (1), s.(a) = (1), s(B) = (1) and s.({af) = —3(1).
Thus ker s, is generated by (1, —a), (1, —=8), (1,1, 1, af). Using
(1, a, B,apB) = 0 it is straightforward to show m(K/F) = 0 and
M(K/F) = ({1, —a), (1, - B)).

For any field E let G(E) = E'/E™. Set U = {(x) € G(K)|Nk/r(x)
e F?}.

LemMmA 1.2. G(K)~ U x G(F).

Proof.  The sequence 1 — U — G(K) — G(F) — 1 is exact and
splits since for a € F* we have Nk r(a) = a™ where m = [K : F] is
odd and so Nk/r(a) € aF?. 0

LEMMA 1.3. If s.(1) = (1) and dim(s.(x))qn = 1 for some x € K"
then s.(x) = (Ng/r(X)).

Proof. Suppose [K : F1=2k+1. Then s.(1) ~k-(1, —1)+ (1)
so that det (s.(1)) = (—1)¥ . Hence det (s.(x)) = (=1)*Ng,r(x) [15,1I
5.12] and so s.(x) = (Ng/r(x)). a

PROPOSITION 1.4. Let s € Hom(K, F)" with s.(1) = (1). Set
L(s) = {(y) € G(K)| Nx,r(y) € F? and s.(y) = (1)} . Then:

(1) {(1, =y)|y € L(s)} C ker s., and

(2) L(s)L(s)=U.
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Proof. (1) is clear as is the inclusion L(s)L(s) C U. Suppose
then that f € U and set E = F(f). Define v: E — F by v(1) =1
and v(B) =0, 1 <i<[E:F]. Then v.(1) = (1) and v.(B) = (1)
[15, II 5.8] (note Ng/r(B) =1 as 1 = Ng;r(B) = Ng/r(Ng/e(B)) =
Ng/r(B), modulo squares). Pick any ¥ € Hom(K, E)" with u.(l) =
(1). Then (vu).(1) = (1) and (vu).(B) = v.(u(B)) = v.(B) = (1),
as f € E. Thus {1, f} ¢ L(vu). Now there exists z € K* with
vu(x) = s(zx) for all x € K. Note (1) = (vu).(l) = s.(z) so that
Ni/p(z) € F? by (1.3). Also zL(vu) = L(s). Thus z, z8 € L(s)
and f € L(s)L(s). O

ProrosiTiON 1.5. m(K/F) C WK, the torsion ideal of WK .

Proof. If x € K' and ¢ € m(K/F) then tr.((x)¢) = 0 where
tr is the trace map trg,r. Let Q € Xx and let P = QN F. Since
X(P) is finite, we may find a Pfister form p and integer m with
sgny(p) = 2™ and sgny (p) =0 for Q' € X(P) — {Q}. Then by [15,
III 4.5]:

0=sgn,tr(pg) = Y sgny(pd) = 2"sgny(9).
Q'ex(P)

Thus sgny(4) =0 and as Q was arbitrary, we have ¢ € /K. O

PrROPOSITION 1.6. Suppose s € Hom(K , F)" satisfies s.(1) = (1).
Let m =[K : F] and set k = (m —1)/2 and n = m — (=1)k. Let
J C WK be the ideal generated by {(1, —y)|y € U}. Then:

(1) M(K/F)=J +({{1) = s.{y)|y € U}).

(2) If K/F is Galois then n- (1) e M(K/F).

(3) If K/F is Galois then M(K/F)=J.

Proof. (1) J C M(K/F) by (1.4). If Ng/r(y) € F? then (p)
s«(y) € ker s, C M(K/F) and (1) —s,(y) = (1, =p) + (¥) — $.(y)
M(K/F). Conversely, M(K/F) is generated by ker s., by (1.1
which is generated by (y) ~ s.(y), for y € U. And (y) — s.(y)
(L, =y) + (1) = () € T+ ({(1) = s.(0)|y € U}).

(2) Let G = Gal(K/F). Let tr = trgyr : K — F. There ex-
ists zg € K with tr.(zg) = s (1) = (1). So (=1)* = det tr,(zp) =
(dettr.(1)) Ng/r(z0) = Ng/r(20), as tri(l) = m(1). Set z=(=1)kzq.
Then Ng/r(z) € F? and tr,(z) = ((—1)¥). Thus ((—1)¥) = Y ;(g(2))
and Y 5(1, —g(2)) = |G(1) — {(-1)¥) = n(l) € ] ¢ M(K/F).

h>=m i
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(3) If Ng,p(y) =1 then we need to show (1) —s.(y) € J. Pick z
and z = (=1)*zy asin (2). Then (1) —s5,(y) = (1) —tr.(yzo) = (1) —
Yelgrzo) = (1) = (=D* T{gr2)) = (1) + (=¥ (1, ~g(yz)) -
(—1)*m(1). As Ng/p(yz) =1 we have each (1, —g(yz)) € J. Also
(1 - (=1)*m)(1) € J by the proof of (2) and so (1) —s.(y)eJ. O

CoroLLARY 1.7. Suppose K/F is Galois and s.: WK — WF s
a ring homomorphism. Let m = [K : F] and k = (m —1)/2. Then
(m — (=1)*)(1) = 0. In particular, F is non-real.

Proof. Here (m — (=1)X)(1) € M(K/F) = ker s, , using (1.6).
Yet s.(1) = (1), so that (m — (=1)k)(1) = 0. O

COROLLARY 1.8. Suppose K/F is Galois. Let m = [K : F], k =
(m—1)/2 and n=m—(-1)k. Let 29 be the largest 2-power dividing
n. If |Xk| < oo and the height h(K) is finite then 24 € M(K/F).

Proof. Write n=2%.b, where b is odd. If K is non-real then
b(1) isaunitin WK andso 2? € M(K/F) by (1.6)(2). Suppose then
that K isreal. Let Q € Xx. We Claim U ¢ pc(Q), the positive cone
of Q. Namely, suppose U C pc(Q). Then pc(Q) = U - pc(P) where
P=0QnF.If Se€X(P)-{Q} (and such an S exists as |X(P)| =
[K : F]) then pc(S) = g(pc(Q)) for some g € Gal(K/F). But
gU)="U and g fixes F so that pc(S) = g(U-pc(P)) = U-pc(P) =
pc(Q), a contradiction.

The Claim shows that the only prime ideal to contain M(K/F) =
({(1, —y)|ye€U}) is IF . By primary decomposition [8, 2.3], M(K/F)
is IF-primary. Since no power of b is in M(K/F) c IF we have
2%e M(K/F). ]

2. Attached primes. For modules M over non-noetherian rings R
there are several notions of associated primes (cf. [10]). We will use
three:

Ass(M) = {P € Spec(R) | P = anng(m), some m € M}
Asf(M) =
Att(M) = {P € Spec(R) | for all f.g. ideals I C P, there

exists m € M with I C anng(m) C P}

{P € Spec(R) | P minimal over some anng(m)}

Ass (M) is given by the usual definition of associated primes in the
noetherian case. Asf (M) is denoted by Ass (M) in [10] and Att (M)
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is denoted by sK(M) there. Primes in Att(M) are called primes
attached to M (following Dutton [3]).

LEMMA 2.1. Let R be a commutative ring and M an R-module.

(1) Ass(M) C Asf(M) C Att(M), with equality if R is noetherian.

(2) Asf(M)#0 iff M#£0.

(3) If s,t €« Hom(K, F)' then & (kers,) = & (kert,) for & =
Ass, Asf and Att.

Proof. (1) and (2) are clear cf. [10, p. 346]. For (3) note that
ker s, = (z)ker ¢, for some z € K* by (1.1) and annyr((z)m) =
annyr(m). O

We remark that equality in (2.1)(1) can fail at either place for non-
noetherian R, cf. [10].

LEMMA 2.2. Let M be a W F-submodule of WK . No P(a, p) is
attached to M (where a € Xp, p an odd prime).

Proof. WK contains no odd dimensional zero-divisors, hence
pm # 0 for all 0 # m € M. Thus if annyr(m) C P(a, p) then
m#0 and (p) ¢ annyr(m). So P(a, p) & Att(M). o

ProPOSITION 2.3. Let M be a W F-submodule of WK . The fol-
lowing are equivalent:

(1) MNWK #0.

(2) IF € Att(M).

(3) IF € Asf(M).

(4) zd(M)=1IF.

Proof. (1) — (2). By [3, Cor. to Prop. 6], zd(M) = UPeAtt(M) P.
If MNW,K #0 then 2k € zd(M) for some k and so 2% € P, for
some prime P attached to A . But then P =IF.

(2) — (4). By (2.2) we have that Att (M) consists of some P(«)
and possibly IF . Thus every P € Att(M) is contained in [F. If
IF € Att(M) then IF = Uy P = zd(M).

(4) — (1) is clear as then 2 € zd(M). (3) — (2) is clear by (2.1).
For (1) — (3) note that we have 2Xm = 0 for some me M. IF is
minimal over 2%(1) so that IF € Asf(M). 0

COROLLARY 2.4. Let M be a WF-submodule of WK. Then
Asf(M) = Att(M).
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Proof. We need only show Att(M) C Asf(M) by (2.1). Let P €
Att(M). P is not any P(a,p) by (2.2) and if P = IF then P €
Asf(M) by (2.3). So suppose P = P(a) for some a € Xr. Then for
some m € M annyr(m) C P(a) and clearly P(a) is minimal over
annyr(m). Thus again P € Asf(M). O

THEOREM 2.5. Let s € Hom(K, F)' and let a € Xp. Then P(a)
is attached to kers, iff |X(a)| > 1.

Proof. Suppose first that |X(a)| > 1. Let f, y € X(«) be distinct
and choose ¢ € K* with e >5 0 and ¢ <, 0. We may assume
s«(1) = (1) by (1.1) and (2.1). Thus x = (1, e) — s.(1, e) € ker s,
and sgngx = 2 —sgn,s.(1, e) while sgn,x = —sgn,s.(1, e). Hence
x & P(f)N P(y). We may assume x & P(f).

We claim annpyr(x) C P(a). Suppose r € WF and rx = 0. Then
rx € P(f) and so r € P(B)N WF = P(a). This proves the claim,
and since P(«) is a minimal prime, shows P(a) € Asf(kers,) =
Att(ker s.).

Next, suppose P(a) € Att(ker s.). Assume, if possible, that |X ()|
= 1. Denote by « also its unique extension to K . Suppose anny g(x)
C P(a) for some x € ker s,. We may assume s = trg;p by (2.1).
Thus 0 = sgn,s.(x) = sgn,x by [15, III 4.5]. Hence x € P(a).

Let A= {0 € Xg|x € P(6)}; A is clopen. The complement A’ is
clopen and so is B = ¢x/r(A'), where eg/r(Q) = QN F, by the Open
Mapping Theorem [6, 4.9]. By the Normality Theorem [4, 3.2], there
exists an r € WF such that sgnsr =0 if 6 € B and sgng(r) = 2" if
0 ¢ B (some fixed n). We note that a & B since a € 4, a ¢ A’ and
eg}F(a) = {a} is disjoint from A’.

Let 0 € Xk . If 6 € A' then B =¢g/r(d) € B and so sgns(rx) =0,
as sgns(r) = sgng(r) = 0. If J € A then sgns(rx) =0 as sgns(x) =
0. Hence rx € WK and 2%rx = 0 for some k. That is, we
have 2%r € annyr(x) C P(a). But sgn, (2Kr) = 25*" as o ¢ B,
a contradiction. m]

COROLLARY 2.6. Suppose kers, # 0. The following are equivalent :
(1) kers, C WK.

(2) M(K/F)Cc WiK.

(3) Every ordering on F extends uniquely to K .

(4) tr.(1) is a unit.

(5) Att(kers,)={I[F}.
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Proof. (1) < (2) follows as ker s, generates M(K/F) by (1.1).
(3) « (4)is [15, III 4.5] and [11, VIII 6.4].

(1) — (3). Let a € Xr and let By, f» € X(a). Choose any
e € K'. We assume s.(1) = (1). Then (e) — s.(e) € ker s, C W;K
andso 0 = sgng (e) —sgn,s.(e) for i =1,2. Thus sgng e = sgng e
forall e K'. Hence f; = f,.

(3) — (1). Let a € Xk and set f = aNF. Then sgngtr.(m) =
sgn,(m) forany m € WK (tr is the trace trg/r ). Thus if m € ker s.
then sgn,m =0 and so m € W,K. Thus kertr. C W;K and hence
ker s, C WiK.

(3) — (5). We have Att(ker s,) # @ by (2.1). But (2.2) and (2.5)
show only IF could be attached to ker s.. Lastly, (5) — (3) is
(2.5). O

For a field £ and form ¢ € WE we write D(¢), or Dg(¢) if
we need more precision, for the elements of E represented by ¢.
For a positive integer m we will write D(m) for D(m(l)). Lastly,

) Un>l (m) .

COROLLARY 2.7. Let s € Hom(K , F) and suppose s.(1) = (1).
Suppose also that dim(s.(x)),, =1 forall x € K'. Then:

(1) s, is a ring homomorphism.

(2) m(K/F) =kers. = M(K/F) = ({{1, -y)|y € U}).

(3) U C Dk(o0).

(4) Every ordering on F extends uniquely to K .

(5) Att(kers,) = {IF}.

(6) For a€ G(F), Dk(l, —a) = Dg{l, —a)(Dkg(l, —a)nU).

Proof.  We have s.(x) = (Ng/p(x)) by (1.3) and so s, is a ring
homomorphism. Then ker s, is an ideal which gives (2) by (1.1) and
(1.6), noting that (1) —s.(y) e ker s, NWF =0. By (1.5) m(K/F) C
WK and so if y € U then (1, -y) € W;K. Hence U C Dg(c0).
Parts (4), (5) follow from (2.6) as ker s, C WK .

Lastly, let bx € Dk(l, —a) where b € G(F) and x € U. Then
((—a, =b)) = ((—a, —x)). Apply s. to get

((—a, =b)) =su((~a, =b)) = ({(=a))s.({~x)) = 0.

Hence b € Dk(l, —a) N G(F) = Dg(l, —a). Then x € D(1l, —a)
nU. |
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REMARK. (2.7) applies in the following cases:

(1) I’F =0 (e.g. tr.d.cF = 1). Here we may write any s.(x) =
(Ng/p(x)) + ¢ where ¢ € I’F = 0.

(2) G(K)={1, a}G(F). This follows from (1.4).

COROLLARY 2.8. Ifevery ordering on F extends uniquely to K then
G(K)/G(F) ~ Dg(oc0)/Dp(c0).

Proof. Wemayassume WK # WF. Att(WK/WF)={IF} by
(2.6) and so W F isan IF-primary submodule of WK . In particular,
multiplication by 2(1) is locally nilpotent on WK/WF . That is, if
x € G(K) then 2™(x) € WF for some m. Hence ax € Dg(2™)
for some a € G(F). So G(K) = G(F)Dg(x) and G(K)/G(F) =
Dk (00)/Dg(00) N G(F) = Dk(00)/Dp(c0). o

The condition (2.3) telling when IF is attached to ker s, is not easy
to check. We give some examples. Clearly IF € Att(ker s,) if F is
non-real and WK # WF . For an example with F real, take F = Q
and K = Q(v/2). Q has a unique ordering o which extends uniquely,
s0 P(a) & Att(ker s,) by (2.6). Also ker s, # 0 as v2 ¢ Q-K?2. Thus
Att(ker s.) = {IF}.

For an example with IF ¢ Att(ker s.), consider the Pythagorean
SAP field K with automorphism ¢ of odd order n constructed by
Ware [16]. If F = K° then K/F is Galois of degree n. As |X(P)| >
1 for P € X we have WK # WF, while the fact that W,K = 0
implies IF ¢ Att(ker s,).

In general, the property IF ¢ Att(kers,) is restrictive. We close
this section by examining some of its consequences.

LEMMA 2.9. Let [K : F]1= 2k + 1 and choose s such that s.(l) =
(1). Suppose IF ¢ Att(kers,). Then:

(1) Dg(c0) = Dr(c0)K?.

(2) If Ng/p(w) € (=1)¥F*2 then Dfp(c0) C Dg(l, —w).

(3) WK = W,F.

Proof. (1) Let w € Dg(oo) so that (1, —w) € W,K. Now
s«(1, —w) € W;F . Thus (1, —w) —s,(1, —w) € W,K nker s, =0 by
(2.3). Then s,(1, —w) = (1, —w), w € F'K? and w € Dp(c0)K"2.

(2) We have det(s,(w)) = Ng/r(w) = (—1)F. Then

det((w) — su(w)) = (=D w  and d((w) — s.(w)) = w.
Hence (w)—s.(w) = (1, —w) + ¢ for some ¢ € I’K . If x € Dp(c0)
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then (1, —x)((w) — s.(w)) € ker s, N W;K = 0. By the Arason-Pfister
theorem, (1, —x)(1, —w) =0 and x € Dg((l, —w)).
(3) WiK is generated by (1, —w), w € Dg(o0). Apply (1). o

COROLLARY 2.10. If IF ¢ Att(kers.) then m(K/F) = 0. In partic-
ular, WK embeds into a fiber product of copies of WF . If |Xr| < 00
then we need only finitely many copies.

Proof. If ¢ € m(K/F), ¢ # 0 then ¢ € W,K by (1.5) and
¢ € ker s. . This contradicts (2.3). Thus m(K/F) =0. Write G(K) =
gr{xi |i € I} - G(F), where gr(S) is the group generated by S. Set
si(y) = trg/p(x;y) for all y € K. Then WK — MyWF by ¢ —
(.. s (8:)(#), ...) is injective.

Suppose |[Xr| < co. Then |Xg| < oo also. Write Xg = {Qy, ... ,
On}. Now N Q; = Dg(c0) = Dp(c0)K? by (2.9). Hence

[G(K): GF < [K:( @] <2n.
Thus WK embeds into n copies of WF. O
COROLLARY 2.11. Suppose IF & Att(kers,).

(1) If | XF| < 00 then WK is a finitely generated W F-module.
(2) If WF is noetherian then so is WK . O

COROLLARY 2.12. WF ~ WK iff every ordering on F extends
uniquely and kers, "NW;K = 0.

Proof. By (2.2), (2.3) and (2.5) we have Att(ker s.) = 0. Then
ker s. =0 by (2.1). |

REMARK. There is a partial converse to (2.8). If W;K = W,F then
IF ¢ Att(ker s,). Namely, if ¢ € W;K nker s, then ¢ € WF and so
¢ =5.(¢) =0. Thus W,Knkers, =0 and IF ¢ Att(ker s.).

3. kers, as a projective module.

LemMA 3.1. (1) kers. is projective iff WK is projective.
(2) If kers, is free then WK is free.

Proof.  We may assume s.(1) = (1) by (1.1). Then both parts
follow from WK ~ WF @ker s,. |

The trace of an R-module M is:

trM:{Z fi(m;)|f; € Homg(M , R), mieM}.
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We refer to [7] for basic facts about tr /.

PROPOSITION 3.2. Suppose kers, is projective and kers, # 0. Then:
(1) tr(kers,) = WF,
(2) annyr(kers,) =0.

Proof. (1) tr(kers,) is an ideal so if tr(kers,) # WZF then
tr(ker s,) is contained in a maximal ideal of WF . We check the
two cases.

Suppose tr(ker s,) C IF . Choose x € K such that s,(1) = s.(x) =
(1). (This is possible by (1.4) since otherwise L(s) = {(1)} and U =
{(1)}. But then for any x € K*, x € Ng;r(x)K? C F'K2, as
Nk r(xNg/p(x)) € K'2. This implies WK = WF and ker s, =
0, contrary to the assumption). Then (1, —x) € ker s,. We have
IF -ker s, = ker s, by [7, 3.30(a)] while (1, —x) € ker s,\I?’K and
IF -Xer s, C I’K . Thus tr(kers,) ¢ IF .

Next suppose tr(ker s,) C P(a, p) for some a € Xr and odd prime
p. Let m > 1 be the largest integer with tr(ker s.) C P(a, p™); a
maximum exists since (,, P(a, p™) C P(a) C IF . Now tr(ker s,) =
(tr ker s,)2 by [7, 3.30(a)]. Hence tr(ker s.)C P(a, p™)?>C P(a, p*™),
a contradiction. Thus tr(ker s,) ¢ P(a, p) and so tr(ker s,) = WF.

(2) Clearly tr(kers,) = WF is a finitely generated ideal, so
anny r(ker s,.) is generated by an idempotent [7, 3.30(b)]. Only 0 and
1 are idempotent in W F [11, VIII 6.8] and clearly anny g(ker s.) # R
as ker s, # 0. Thus anny r(ker s.) =0. O

THEOREM 3.3. Suppose F is real and kers, # 0. If some ordering
on F extends uniquely to K then Kers, is not projective.

Proof.  Suppose ker s, is projective. Then anny g(ker s.) =0 by
(3.2). Let P be a prime ideal attached to W F ~ W F /anny g(ker s,).
Now (ker s,)p is (W F)p-free and so:

ann(w ), (ker s.)p = 0 = (anny p(ker s,))(WF)p.

Then P is attached to ker s, [13, Lemma 2]. That is, Att(WF) C
Att(ker s.).

To complete the proof we need only check that every P(a), a €
Xr,is attached to W F , viewed as a W F-module. This would yield a
contradiction to (2.5). Let o € Xz and choose a >, 0 with a & F?.
Then 0 # (1, —a) € ann(l, a) and ann(l, a) C P(a). Since P(a)
is a minimal prime ideal we have P(a) € Att(WF). In the case that
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a >, 0 implies a € F'2 we have Xr = {a} and G(F) = {£1}. Thus
WF =7, P(a) = {0} = ann 2, so that again P(a) € Att(WF). 0O

COROLLARY 3.4. Suppose kers, is a non-zero projective W F-
module. If W,F # 0 then kers, N W, K #0.

Proof.  The proof of (3.3) shows Att(WF) C Att(kers,). If
W F # 0 then IF € Att(WF) by (2.3) and so IF € Att(ker s.).
This implies ker s, N W;K # 0 by (2.3). |

If no ordering on F extends uniquely to K (for example if K/F
is Galois) then it is possible for ker s, to be W F-projective—even
for WK to be W F-free.

PROPOSITION 3.5. There is a real field F and a Galois extension K
of F of degree 3 such that:

(1) WF and WK are noetherian,
and

(2) WK is WF-free.

Proof. Let o = a;, az, a3 be the roots of x3 — 3x +1 € Q[x].
Note that Q(a)/Q is Galois. Let F be a maximal field in QNR not
containing o (Q is the algebraic closure of Q). F is real with the
ordering induced by R. Moreover G(F) = {£1}. Namely, if a€ F,
a >0 then F(y/a) CQNR and a & F(y/a) as deg a = 3. Hence, by
maximality, F(v/a)=F and a € F?.

Let K = F(a). Since x3—3x+1 isirreducible over F , by construc-
tion, K/F is Galois of degree 3. We claim that K is Pythagorean.
Suppose not. Let f € Y. K2, f ¢ K?. Note that f ¢ F, as
B € Y. K? implies f >0 and so g € F would yield # € F2. Thus
F(a) = F(B) = K. Let o generate Gal (K/F) and set B; = ¢'(f),
i=0,1,2 (Bo=p). Wenote that each #; isin ¥ K?2. If g(x) =
irr(B, F) then g(x2)) =irr(y/B, F). Thus L = F(\/Bo, /B, vV B2)
is Galois over F, contains K = F(f) and is contained in QN R.

Now [L: F]=3-2" forsome r =1, 2or 3. Let P be a Sylow
3-subgroup and let F(Q) be the fixed field. Then F(Q) Cc QNR and
a & F(Q) as deg a = 3 while deg Q = 2". This contradicts the
maximality of F .

Hence K is Pythagorean, and SAP since X ¢ Q [4, Example 1,
p. 1177]. F has a unique ordering so K has 3 orderings. Hence
|G(K)| =8 and WK ~ZNZnNZ which is free over Z~ WF ., 'O
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The example of (3.5) yields another case where IF ¢ Att(ker s,).
Indeed Att(ker s.) = {P(a)}. Also (3.5) is another example of a
Pythagorean field with an automorphism of odd order (cf. [16]).

We will show that the situation of (3.5), namely, K/F Galois, WK
noetherian and WK W F-free, is impossible if F is non-real and
non-rigid. Weaker results hold with fewer restrictions on K and F
so we begin with no assumptions on K or F.

LEMMA 3.6. Suppose WK is a free WF-module. Then for some
index set 1 there exists ¢; € WK for i € I such that:

(1) WK =@, WF -4,

(2) ¢; = (o) + w; where a; € K and y; € I*’K , and

(3) G(K) = Ax G(F), where A is the group generated by the «;,
iel.

Proof. We have WK = @, WF . ¢; for some collection {¢; €
WK |i € I}. Clearly at least one ¢;, say ¢;, is odd dimensional. For
any even dimensional ¢; replace ¢; by ¢;—¢;. We may thus assume
(1) and (2) hold.

Now G(K) = 4. G(F) since if x € G(K) then (x) =) r;¢; and
so x = det(x) = £[[det(r;)a; € A- G(F). We claim that by replacing
some ¢; by a¢;, a € G(F), we may assume ANG(F)=1.

This is clearer if we write the Z,-vector space G(K) additively. We
wish to show that there exist a; (i € I) in the subspace G(F) such
that span{a; +a; | i € I} N G(F) = {0} . Choose any complementary
subspace G(F)'. Then every «; has a unique expression «; = a; +a;
for some a; € G(F) and a} € G(F) . Use these a;. 0

PROPOSITION 3.7. Suppose F is non-real and WK is a free WF-
module. Then for all f € G(F), f # 1, we have Dg(l, —-f) =

Dp(l, —f).

Proof. Write WK = @, WF - ¢; as in (3.6). Each odd di-
mensional form is a unit as F is non-real. Multiplication by qbl“l
is an W F-module isomorphism and {qbl“qbi]i € I} satisfies (1), (2),
(3) of (3.6). We may thus assume ¢; = (1). The result is clear if
WK = WF so we may assume |I| > 2. Write G(K) = 4 x G(F) as
in (3.6) and let a € 4.

Claim. WK =WF.(l)® WF - (a)® M, for some W F-mod-
ule M.



WITT RINGS 135

We have (o) =ri(1)+> 5, ri¢;. If all r; (i >2) are even dimen-
sional then by determinants o € G(F), contradicting (3.6). We may
thus assume 7, is odd dimensional. Since F is non-real, r, is a unit
in WF . We have:

;o) = ry'r (1) + ¢ +Zr2'1r,~¢,- i
i>3
Set M =@, WF-¢;,. Then ¢ € WF.(1)+ WF -(a)+ M, hence

WK =WF .{(1)+ WF.{a) + M. Moreover, if:
51{1) + s2{@) + m =0 (meM)
then

sy +5(r (1) + g+ m)+m=0
(81 + $2r1){1) + 52122 + som’ + m = 0.

But (1) = ¢; and ¢; (i > 2) are independent. Thus s,r, = 0. Again
r, is a unit so s, = 0. Thus s; = 0 and m = 0. This proves the
Claim.

Now say f € G(F), f# 1. Let x € Dg(l,—f), x & G(F).
Then x = ga for some g € G(F) and € 4, a # 1. But
then (1, —f)(1) = (g)(1, —f){(e) contradicting the Claim. Thus
DK<1,—f>CG(F) and so DK<1,—f)=DF<1,—f). 0

In the following, B(F) denotes the basic part, namely those a € F
with either a = +1, a or —a not rigid (cf. [12]).

THEOREM 3.8. Suppose F is non-real and G(F) is finite. If ker s.
is a finitely generated projective W F-module then either:

(1) WK ~ WF[A] where A= G(K)/G(F) or

(2) B(F) = {1} and WF =~ Z,[C] with n =2 or4 and C a
group or exponent two.

Proof. WF is a local ring so ker s,, hence WK, is finitely
generated free. Suppose B(F) # {£1}. Choose f € B(F)\{%l1}.
Set X;(K) = Dg(1, —f). Then X;(K) = X|(F) = Dp(1, —f) by
(3.7). For i > 2 and a field FE let X;(E) = UDg(l, —a), over
a € X;_1(E)\{1}. Then by [2, 2.4]

B(K) = £(X1(K)X2(K)* U - X (K)X3(K)) = B(F) C G(F).

The result is then standard, see [12, 5.19]. And if B(F) = {%1} then
WF is classified as given [12, 5.21]. O
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REMARK. If WK = WF[A], as in (3.8)(1), then WK is clearly a
free W F-module. Suppose B(F) = {1} as in (3.8)(2) and B(K)N
G(F) = {£1}. We may write G(K) = B x C where B(K) C B and
G(F) = £C. Then any form in WK may be written uniquely as
S(bici) = Y {ci1) - (b1) + Yo {cia) - {bp) + ... . Thus again WK isa
free W F-module. However, we know of no example of an odd degree
extension K/F with WK # WF and either (3.8)(1) or (2) occurring.

We obtain a slightly weaker result if W F is not noetherian.

LEMMA 3.9. Let WK =@, WF -¢; asin (3.6). Let o, g € A\{1}
be distinct and let a,b,c,d € G(F). If bae D(1, —af) and da €
D(1, —cp) then b=d and a=c.

Proof. We have
0=((~cB, —da)) = ((~ac, —da)) - ((-af, —da))
= ((—ac, —da)) — ({(—ap, —bd ))(mod I’K).
Thus {(—ac, —da)) = ({(-bd, —ap)). Apply linkage [12, 1.14]:
{((-ac, —da)) = ({—ac, —x)) = {(-bd, —x)) = ((-bd , —afB}))

for some x € K*. Now x € D(1, —abcd). If ac # bd then x €
G(F) by (3.7). But xda € D(1, —ac) which forces a = c, by (3.7)
again. Similarly xaf € D(1, —bd) yields b = d. Suppose then that
ac = bd. Now xda € D(1, —ac) gives x € aG(F) (unless a = ¢
and so b =d). And xaf € D(1, —bd) gives x € BG(F) (unless
b=d and so a =c). But aG(F)N BG(F)=o. Hence a = ¢ and
b=d. O

THEOREM 3.10. Suppose F is non-real and G(F) is infinite. If
kers, is a finitely generated projective W F-module then either:

(1) WK ~ WF[A], with A= G(K)/G(F) or

(2) |B(F)| < 00 and R = Ry[C] for some Witt ring Ry and infinite
group C of exponent 2.

Proof. 1If |B(F)| < oo then R is as described [12, 5.19]. Suppose
B(F) is infinite. Let a € 4, a # 1. We will show « is bi-rigid.

Suppose a is not rigid (the argument for —c is similar). Then
o € B(K) and for all f € B(F), fa is not bi-rigid. Hence there
exist infinitely many f with fo not rigid (that is, if fo is rigid
then — fa is not rigid). But A is finite, as WK is finitely generated
over WF, so there exist distinct f, g in F and f € A\{l, o} such
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that bp € D(1, —fa), dp € D(1, —ga) for some b,d € F. This

contradicts (4.9). O
LemMma 3.11. If ty, ... , tn, and all t;t; (i # j) are rigid then
D(tl,...,tn)z{tl,...,tn}.

Proof. By induction on n. Suppose n = 2.
D{ty, &) = t,D(1, t1t2) = t,{1, t1itr} = {11, 2}

For n > 2 we have by induction:

n-1
Dity, ... ,ta) =] D(ti, ta) ={ts, ... , tn}. O
i=1

LEMMA 3.12. Let K/F be finite Galois (not necessarily of odd de-
gree). Let t € K\FK?. Then at least one of t, it* (g € Gal(K/F))
is not rigid.

Proof. Suppose ¢t and all 7¢8 are rigid. Note ¢ is rigid as
D(1,t)8 = D(1,t8). Also if g, h € Gal(K/F) are distinct then
t&th = g(1t"€') is rigid. Hence by (3.11) D(X(t8)) = {t¢|g €
Gal(K/F)}. But ) (t8) =tr.(t) € WF . Hence some 8 € G(F). But
then ¢ € G(F), a contradiction. O

THEOREM 3.13. Let F be non-real and suppose that either (1) G(F)
is finite and B(F) # {1} or (ii) G(F) is infinite and B(F) is in-
finite. Let K/F be Galois of odd degree. Then neither WK nor
kers. are finitely generated projective W F-modules.

Proof. If WK is a finitely generated projective W F-module then
(3.8), (3.10) imply B(K) ¢ FK? and hence if ¢t € K\FK? with
K = F(t) then t and all #t8 (g € Gal(K/F)) are bi-rigid. Namely if
tt8 € FK?, say t& = at, then g%(¢t) = a(at) = t. Thus ¢ is fixed by
g%. As g has odd order, ¢ is fixed by g. But then K # F(¢). This
contradicts (3.12). O

Ware [16, 1.6] shows a rigid field cannot be the Galois odd degree ex-
tension. (3.13) improves this slightly: even the case WK ~ WF[A],
A = G(K)/G(F) cannot arise.

In a different direction we have:
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ProrosITION 3.14. Suppose WK is a noetherian, injective W F-
module. Then F is non-real and WF is Gorenstein (that is, |ann [ F|
=2).

Proof. WK injective implies its direct summand W F is injec-
tive. Thus WF has injective dimension 0 and so Krull dimension 0.
Thus F is non-real. Further, WF is Gorenstein (cf. [1], [9]). O

4. Noetherian extensions. We have given several examples of odd
degree extensions K/F where WK is a finitely generated WF-
module. This is necessarily the case when Xy is finite and [F ¢
Att(ker s,) by (2.11). We collect here several results on the possible
values of [G(K) : G(F)].

ProrosITION 4.1. Let [K : F] = p be an odd prime and suppose
K/F is Galois. If [G(K) : G(F)} = 2k then p|2F — 1.

Proof. Let G = Gal(K/F) and let ¢ generate G. G acts on
G(K)/G(F). Suppose xG(F) is a fixed point. Then Ng/r(x) €
xPG(F) = xG(F) and so x € G(F). If x ¢ G(F) then the orbit
{o'(xG(F))|i € Z} has order p (there is no stabilizer as G is sim-
ple). Thus p divides 2% — 1. O

EXAMPLE. Let p be an odd prime and set n = 22 — 1. Let K
be Q, with the nth roots of unity adjoined. Then K/Q, is Ga-
lois of degree p [14, Prop. 16, p. 77}. By [11, p. 161] we have
[G(K) : G(Q;)] = 2°~!. This gives the minimal value of [G(K) :
G(F)] for p such that the order of 2 mod p is p — 1 (thus for
p=3,5,11, 13, 19, 29, 37, 53, 59 etc.).

COROLLARY 4.2. Let [K : F] = pyp>---p: with the p;’s prime (not
necessarily distinct). Let k; be the least positive integer such that
pil2% — 1. If K/F is Galois and G(K) # G(F) then [G(K): G(F)] >
2¥, where w =k +---+ k;.

Proof. We use induction on 7. The case t = 1 is (4.1) and if
t > 1 then choose an intermediate normal extension L and apply the
result to K/L and L/F. ]

When p is a Mersenne prime (i.e., p = 2f — 1) then the minimal
(non-trivial) square class extension for a Galois extension of degree p
is p + 1. In this case we may improve (1.5).
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ProrosITION 4.3. Suppose K/F is Galois and that [K : F] = p
where p = 2X—1 isa prime. If [G(K) : G(F)] = p+1 then m(K/F) C
ann(2%(1)).

Proof. Choose s € Hom(K, F) with s.(1) = (1). There is an
x € G(K) with tr,(x) = s,(1) = (1). Now (=1)?"1/2 = det tr.(x) =
Ng/p(x). Since p =25 -1 (k >2) we have Ng/p(x)=—1. Write
G(K) = U x G(F) as in §1. There is only one (non-trivial) orbit in

G(K)/G(F). Thus U = {1, x;, ... , Xp} where o(x;) = x;;; (here
g generates Gal (K/F) and x,.; = x;). We may assume X; = —X
and so tr,{x;) = (-1).

Let w = ¢+ >.0_,(xi)p; € m(K/F), where ¢g, ... ,dp € WF.
Then:

14
O=tr.y =ppo— Y ¢,

i=1
P

0 =tro(X))¥ = pdy — g0 — Y _ 4.
i=2

Subtraction yields p(¢g—¢;) — (¢1 —dg) =0 and so 2K(¢g— 1) =0
Similarly, 2X(¢; — ¢;) =0 forall i, j.

Now (—1) = tr.{x;)=(x1, X2, ... , Xp). Thus (x,)=—(1, xy1, ...,
Xp—1). Then y = go+{x1)p+- -+ {xXp_1)p_1—(1, X1, ... , Xp_1)Pp
= (g0 — ¢p) + (X1)(d1 — Bp) + -+ + (Xp_1)(dp—1 — ¢p). Thus 2Ky
0. O

(4.3) applies when [K : F] =3 and [G(K) : G(F)] = 4. See after
(4.1) for an example of such an extension. We can improve (4.3) in
this case (see the second example after (1.1)).

COROLLARY 4.4. Suppose K/F is Galois with [K : F] = 3 and
[GK):G(F)l=4. Write U={1,x,y,xy}. Then:
}(1) m(K/F) = {¢o{x)+$2(¥)|¢; € WF, 4¢; =0 and ¢o+¢1+¢2 =
0}.
(2) m(K/F) =0 iff Dr(4) C Dg(1, —x) N Dk (1, -).
(3) If F is non-real and m(K/F)=0 then x,y € Dk(2).

Proof. (1) Follows from the proof of (4.3). Suppose m(K/F) =
0. If w € Dp(4) then for ¢ = (I, —w) we have 4¢ = 0 and
(1, —x)¢p € m(K/F) = 0. Thus w € Dg(l, —x), and similarly
w e DK<1 s —y) .
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If DF(4) - DK(I R —X) ﬂDK(l R ——y) and V= ¢0+¢1<X) +¢2(y) €
m(K/F) then

¥ = ¢o+ ¢1(x) — (o + 1) (V)
=¢0(1a —‘y>+<X>¢1<1, —xy) =0+0=0,

as ¢; € ann(4) which is generated by (1, —w), w € Dr(4). Thus
m(K/F) =0, proving (2).

To prove (3) note that (2) implies Dp(22t%) c Dg(2K({(—x)))
ADx(2K((=y))). If Dp(4) = G(F) then —1 € D (1, —x)NDk (1, —)
and x, y € D(2). Otherwise, say Dp(2%*!) # G(F) and Dg(2K*?) =
G(F) for some k > 1. Then —1 € D(2¥{(—x))) and 2¢*!((-x)) =
0. Thus x € D(2¥*1) ¢ D2k¥~1((~x))). So —1 € D(2k~1{{—x))
and 2%((—x)) = 0. Continue until 2(1, —x) = 0. Similarly 2(1, —y
=0.

~

O

We have only a few results for non-Galois extensions.

PROPOSITION 4.5. Let L be the normal closure of K/F. If L is
real then [K : F]1<[G(K) : G(F)].

Proof. Let Xg(P) denote the set of extensions of an ordering P
toafield E. Let Q€ X; andset P=QNF, V=0nK. Then
|Xr(p)| = [L : F] as L/F is Galois, and |[X.(V)| = [L : K]. Then
|Xk(P)| =[L: F]/[L:K]=[K : F].

Let A(S) denote the number of subgroups of G(K) of index 2
containing a set S. Let P € Xyp. Then A(P) = |G(K)/P| -1 =
2[G(K) : G(F)]-1. Also h(PU{—1}) =[G(K) : G(F)]—1. Thus there
are [G(K) : G(F)] many subgroups of index 2 in G(K), containing
P but missing —1. These are the only possible choices for extensions
of P to K. Hence [K : F] = |Xk(p)| L [G(K) : G(F)]. O

We close with a detailed study of the smallest possible case: [K : F]
=3 and [G(K) : G(F)] = 2. We know of no such extensions.

LEMMA 4.6. Suppose [K : F] = 3 and K/F is separable but not
Galois. Let L be the normal closure of K. Then:

(1) There exists a field E such that F C EC L, [L:E]l=3 and
L/E is Galois.

(2) [G(K) : G(F)] = [DK“{G_(’S;g;g(F’f}{_g” , for some g € G(F).

(3) [6(K) : G(F)] < [G(L) : G(E)].
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Proof. We have [L : F] = 6. Thus there exists a normal sub-
group H of Gal(L/F) of order 3. Let E be the fixed field of H.
Then [L: E]1=3 and E = F(,/g) forsome g € G(F)\{1}. Suppose
K =F(e). Then e¢ E andso L = F(,/g). By [11, VII, 3.4].

[G(E) : G(F) = 3IDr(1, =g}l

LD
3|1D
[G(L) : G(K)] = 3|Dx(L, —g)I-

Hence the formula in (2) holds. (3) follows from (2). a
LeEMMA 4.7. Suppose G(K) = {1,a}G(F). Set H = D(l, -a)n
G(F). Then for fe€ G(F):

DF(I!'—f> l.fnga

DK“"”z{{l a}De(l, —f) iffEH,
Dx(l, —af) = {1, ~af}(De(l, —f) N H).

Proof. By (1.4) there is an s € Hom(K/F) with s.(l) = s.{a) =
(1). (2.7)(6) then gives the computation of Dg(l, —f). Clearly
Dg(1, —af)={1, —af}(Dg(l, —af)NG(F)). Then geDk(l, —af)
NG(F) iff af € Dg(l, —g) iff g € Dp(l, —f) and g € H. Thus
Dx(l, —af) = {1, —af}(De(l, ) N H). 0

PROPOSITION 4.8. Suppose [K : F]1 =3 and G(K) = {1, a}G(F).
Then:

(1) ID(1, —a) N G(F)| # 1

(2) If |D(1, —a) N G(F)| =2 then either:

(i) rad(F)#1, or

(ii) WF and WK are group ring extensions, or

(iii) There is a non-real Witt ring Ry such that WF = ZN Ry and
WK =7Zn Ro[{1, a}]. In particular, |Xr| = |Xk|= 1.

Proof. (1) Suppose |D(1, —a) N G(F)| = 1. Then (4.7) implies
a is bi-rigid. Thus WK = WF[{l, a}] is a group ring extension.
Let L be the normal closure of K. Then L = K(,/g) for some
g € G(F). Set E = F(,/g). Now Dg(l,—g) = Dp(l, —g) so
that [G(K) : G(F)] = [G(L) : G(E)] by (4.6). But (4.1) implies
[G(L) : G(E)] > 4, a contradiction.

(2) Write D(1, —a) N G(F) = {1, f} and suppose rad (F) = 1;
in particular, Dr(l, —f) # G(F). If x € G(F) — Dp(1, —f) then
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D(1, —ax) = {1, —ax} by (4.7). Thus if there exists g, —g € G(F)—
Dp(1, —f) then ag is bi-rigid. Now f € D(1, —a) so a is not bi-
rigid and hence g = a-ag is bi-rigid. From Dg (1, —g) = Dg(l, —g)
we see that both WF and WK are group rings (with {1, g} the
group). This gives (ii).

So we may assume for all g € G(F) that either g or —g is in
D(1, —f). Thus [G(F): Dp(l,—-f)]=2 and -1 ¢ Dp(1, —f). In
particular, Dr(1, —f) is an ordering on F. From G(F) = {1, f} x
Dp(1, —f) we get WF =Zn R, for some Witt ring Ry .

We also have that Dg(l, —f) = {1, a}Dp(l, —f) has index 2,
in G(K), and misses —1. Thus Dg(l, —f) is an ordering. Again,
GK)={1, f} xDkg(1, —f). Now in Dg(l, —f), D(1,a)={1, a}
and D(1, —af)={1l, —af}. Hence WK =ZnN Ry[{1, a}].

Lastly, (2.7) implies Att(ker s.) = {/F}. Then (2.7) and (2.8) yield
|Dg (00)/Dg(00)] =2. Now Dp(co) =1 x Dy(co), where Ry = WL,
and Dk (oo) =1 x Dy(o0) unless a € Dy(oo). But this only occurs if
—1 € Dr(o0). Hence Ry is non-real and |Xk|= |Xp|=1. O
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