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PREDUALS AND A PROBLEM OF ARAKI

L. J. BUNCE AND J. D. MAITLAND WRIGHT

A problem of Araki concerning the characterization of orthogo-
nality preserving positive maps between preduals of von Neumann
algebras is solved in a general setting.

Introduction. In an interesting recent article, Araki [1] initiated the
study of orthogonal decomposition preserving positive linear maps
(o.d. homomorphisms) between preduals of von Neumann algebras.
(See below for definitions.)

Let M and N be von Neumann algebras and let φ: M* -» N* be
a linear mapping. When either M or N is of Type I, with no direct
summand of Type I2, Araki proved that φ is a bijective o.d. homo-
morphism if, and only if, φ* = zπ where z is a positive invertible
element of the centre of M and π:N -> M is a Jordan isomorphism.

Araki posed the problem of establishing an analogous characteriza-
tion when M and N were of Type II or Type III.

Araki used delicate Radon-Nikodym methods which seem very dif-
ficult to generalize to algebras which are not of Type I. However, by
adopting a different approach, we are able to show, for arbitrary von
Neumann algebras M and N, that if φ: M* —> N* is an o.d. homo-
morphism then φ*π = z i d ^ where z is a positive central element of
M and π is a Jordan * homomorphism, and we obtain a character-
ization in these terms. If φ is an o.d. isomorphism, we find that z
is invertible and that π is a Jordan * isomorphism. This proves that
Araki's characterization of o.d. isomorphisms is valid for arbitrary
von Neumann algebras M and N.

1. Preliminaries. Two positive linear functional p, τ in the pred-
ual M* of a W* -algebra M are said to be orthogonal, written p _L τ ,
if the corresponding support projections s(p), s(τ) are orthogonal ele-
ments in the algebra M. Every hermitian functional p in Af* admits
a unique orthogonal decomposition p = ρ+-p- , where />+, p- € A/+
and p+ ± p-. On the other hand every hermitian element x in
M has a unique orthogonal decomposition x = x+ = X-, where
x+, x_ > 0 and x+ x_ = 0.
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In the language of orthogonally decomposable (o.d.) Banach spaces
[1, 2, 6], given PΓ*-algebras M and N, a continuous linear map
M* -> iV*, or M -* N ,is said to be an o.d. homomorphism if it pre-
serves both order and the orthogonal decomposition, and to be an o.d.
isomorphism if it is also bijective (and hence an order isomorphism,
as is easy to see).

The dual φ*:N —> M of an o.d. homomorphism φ: M* —> N* is not,
in general, an o.d. homomorphism (see the example at the end of this
section). But there is, nevertheless, a "duality" between the o.d. ho-
momorphisms of preduals of W*-algebras and the weak * continuous
o.d. homomorphisms of W*-algebras. The latter, in fact, are positive
central multiples of Jordan * homomorphisms. Before considering
maps between preduals, we need the following characterization of o.d.
homomorphism between von Neumann algebras.

PROPOSITION 1.1. Let ψ:N -> M be a linear map between W*~
algebras. Then ψ is a weak * continuous o.d. homomorphism if and
only if' ψ = n(z-) where π:N —> M is a weak * continuous Jordan *
homomorphism and z e Z(N)+.

Moreover, ψ is an o.d. isomorphism if and only if π can be chosen
to be a surjective Jordan * isomorphism and z to be a positive central
invertible element of N.

Let ψ:N -> M be a weak * continuous o.d. homomorphism be-
tween ^*-algebras. We may suppose without loss that | |^ | | = 1.
The o.d. property implies that ψ > 0 and that ψ(a)ψ(b) = 0 if
a, b > 0 and ab = 0. In particular, given any projection p of N,
ψ(p)ψ{\ -p) = 0 so that

Since, as a Banach space, N is generated by its projections, it follows
that ^(1) e Z(W), the centre of the W*-subalgebra W of M gen-
erated by ψ{N), and that the range projection r{ψ{\)) = e, where e
is the identity element of W.

We note that if ψ(l) = e, then ψ preserves projections as well as
orthogonality and hence is a Jordan * homomorphism by elementary
spectral theory. Consequently, in the case that ^(1) is merely invert-
ible in W, we see that ψ = ψ(l)π, where π is a weak * continuous
Jordan * homomorphism. (We note here that if ψ is an o.d. isomor-
phism then ^(1) must be invertible in M {— W). This is because,
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then, the condition (*) implies that the two-sided ideal ψ(l)M is
norm dense in M, and hence equals M as M is unital.)

In general, upon identifying Z(W) with C(X) and ψ(l) with
/ G C(X) accordingly, where X is some compact hyperstonean space,
we see that 0 < / < 1 and that {x:f(x) > 0} is dense in X
(we had r(ψ(\)) = e). For each n let Kn be the closure in X
of {x:f(x) > \/n}. Then each Kn is a clopen subset of X. The
characteristic functions Xκn, when translated back into Z(W), give
rise to an increasing sequence (eΛ) of projections in Z(FΓ) converg-
ing strongly to e with the property that each enψ{\) is invertible in
enW.

By the remark above applied to the o.d. homomorphism enψ\ N —>
ew WΓ, this means that, for each n, there is a weak * continuous Jordan
* homomorphism πn:N —• enW such that enψ = enψ(l)πn . So, as
XX^ - ew_i) = e where ô = 0? w e have ^ = ψ(l)π where π is the
weak * continuous Jordan * homomorphism from N onto W given
by π(x) = Σ(en - en-ι)πn{x), x e N. Since π(N) = ff we have
π(Z(N)) = Z(ίΓ), as in [5, Remark, p. 135]. Therefore choosing
z e Z(N) with π(z) = ^(1) we have ψ = n(z-). The converse being
obvious, this completes the proof.

The following example shows that a naive approach to duality of
o.d. homomorphisms does not work.

We observe that given a JF*-algebra N without minimal central
projections and any fixed p e N* then, for all n > 1, the map
φ:Mn(C)* -+ (Mn(C) ® ΛQ* defined by φ(τ) = τ ® /? is an o.d. ho-
momorphism but its dual 0* is not. In fact, there are no non-trivial
weak * continuous o.d. homomorphisms at all from Mn(C)®N into
Mn(C).

2. o.d. homomorphisms of preduals. Given p € M*, where M is a
W*-algebra, and a central projection e of M let p^ e M* be defined
by pe(x) = p(ex)9 for all x in Λ/. If /? € M+, then pe e M'+,

and {pe: p G M*} is identified with (eM)*.

PROPOSITION 2.1. L ^ Λf α/zύf N be W*-algebras and let φ:M* ->
iV* 6e an o.rf. homomorphism. Then kerφ is a norm closed invari-
ant subspace of M*. Hence kerφ = ((1 - e)M)*, for some central
projection e of M, and φ is injective on the complement (eM)*.

Proof. We make use of fundamental results of Effros, as related
in [4, III.4]. Recall, in particular, that each p e Λf* has a polar
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decomposition, /?(•) = \p\(-u) where u is a partial isometry in AT,
\p\ e Mi and u*u = j (|/>|).

Put K = (ker</>)+ . Then K is a norm closed convex cone in Af+ .
The norm closed left invariant subspace of Af* generated by K is
given by V = {p G A/*: |/>| G JSΓ} , and F+ = K. We will show first
that V ckerφ.

Let, then, p e M* such that |/>| € J£. We may suppose that
\\p\\ = 1. Given x in N, where x > 0, we then have \p\(φ*(x)) =
Φ(\p\)(χ) : = 0. Thus φ*(x) is a positive element in the left kernel
of \p\, as therefore is φ*(x)2. Hence \p\(φ*(x)2) = 0. But, by [4,
IΠ.4.6], \φ(p)(x)\2 = |/>(<£*(*))l2 < |P |((0*W) 2 ). So 0(/>)(x) = 0 for
all x e N+ implying that p G ker</>, as required.

On the other hand, since φ > 0, given /? = σ + iτ E kerφ where
σ = (7* and τ = τ*, we have that σ, τ G ker φ. The o.d. condition
now implies that σ±, τ± G ker 0 . Hence p G lin(AΓ) c F . Therefore

0
But, as is easy to see, p G ker^ if and only if/?* G ker ^ . So ker 0

is also a right invariant subspace of A/*, completing the proof.

Notation. In the remainder M and JV are (arbitrary) W*-algebras

and φ: M* ~> N* is an o.d. homomorphism. We will also write

φ(p) = pf

 9 for all p in A/*.

We define F^ to be the weak * closed linear span of {s(pf): p G M+}
and riφ to be the FF*-subalgebra of N generated by Vφ. The identity
element of Nφ is lφ = suρ{s(ρ'):ρ e M+}. The central projection e
for which ker^ = ((1 - e)M)* (Proposition 2.1) will be denoted by
eφ.

Recall that the projections s(ρ) where p G M+ are precisely the σ-
finite projections of M and that, by a standard argument using Zorn's
Lemma, every projection in M is the sum of an orthogonal family of
σ-finite projections.

LEMMA 2.2. (i) If p, τ G Af+ with p ± τ, f/je/2 p' ±τ'.

(ii) r(l) =

Proof, (i) This is a direct consequence of the o.d. property (as p — τ
is an orthogonal decomposition in this case).

(ii) φ*(l - 1*) = 0 because />(0*(1 - M) = />Ό - M = 0, for all

By Proposition 2.1, φ*(N) c ^Af and for any p in A/+ with
p1 φ 0 we have />(r(<£*(l))) > /?((/>*(!)) = />'(!) ^ 0, as required.
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LEMMA 2.3. (i) Φ*(s{p')) = φ*(l)s(p),for all p eM+.
(ii) φ*(l)eZ(M).

Proof, (i) By the remark above, given p e M+ we can write 1 —
s(p) — Ί2s(τi)> w h e r ^ (t |) is an orthogonal family in M+. We
have p ± f; for each /, so that p1 JL τj and hence τi(φ*(s{ρ'))) =
τJ.(*(/>')) = 0. As φ*(s{pf)) > 0, this means that φ*(s(ρf)) s(τ, ) = 0,
for all i . Hence Φ*(s(p')) (l-s(ρ)) = 0. Also, p(0*(l -*(/>'))) =
/>'(1-*(/>')) = 0, so that 0*(l-s(/>')) i(/>) = 0. Therefore, φ*(s(p')) =

(ii) By (i), </>*(l) commutes with all support projections in M and
hence with all projections in M. It follows that φ*{l) e Z(M).

The following is an immediate consequence of [3, Lemma 4.1].

LEMMA 2.4. Let ψ:N —* M be a positive linear map such that
|| ̂ | | < 1 and let e and f be projections in N and M, respectively\
such that ψ{e) = / . Then ψ(ex + xe) = fψ(x) + ψ(x)f, for all x
in N.

LEMMA 2.5. φ* is infective on Vφ.

Proof. By Proposition 2.1 it can be supposed without loss that φ is
injective, so that eφ = 1. We have φ*(\) e Z(M) and r(φ*(l)) = 1,
by (ii) of Lemmas 2.2, 2.3. Choose (see the proof of Proposition
1.1) an increasing sequence of projections (en) in Z(M), converging
strongly to 1 and such that enφ*(l) has an inverse, tn, in enZ{M)
for all n.

Now let x G Vφ such that φ*{x) = 0 and x = x*. Fixing n, put
ψ = tnenφ*. Then ^ : JV —• enM is positive and ^(1) = en. Hence
||yr|| = 1. Let p e M+. Then ψ(s(ρf)) = en5(p), by Lemma 2.3(i).
So using Lemma 2.4 in the second equation below,

tnenΦ*(xs{p')+s(p')x) =

= 0,

as ψ{x) = 0. Hence enφ*(s(ρ')x + xs(ρ')) = 0, for all n, which
implies that s(p')x + xs(ρf) e kerφ*, for all p in M+ . Therefore,
xy + yx G ker <̂>*, for all y in J^. In particular, x 2 e kerφ*.

We now have x2 e Nφ9 x2 > 0 and /?;(JC2) = ρ(φ*(x2)) = 0,
so that s(pf)x2 = 0, for all p e M+. By the definition of Nφ this



270 L. J. BUNCE AND J. D. MAITLAND WRIGHT

implies that x2 = 0. So x = 0 and it follows from this that φ* is
injective on Vφ.

We are now in a position to provide a detailed description of the
properties of φ*.

THEOREM 2.6. There is a weak * continuous and surjective Jordan *
homomorphism π:M —• Nφ such that φ*(π(x)) = φ*(l)x,forall x in
M. Moreover, π maps eφM isomorphically onto Nφ and φ*:Nφ —•
βψM is an injective o.d. homomorphism with dense image. Also, Vφ =
Nφ.

Proof. We claim that for any x in M, there is a unique element x'
in Vφ such that φ*(x') = 0*(1)JC. Uniqueness follows directly from
the injectivity of φ* on Vφ (Lemma 2.5). Existence is explained as
follows.

First, let e be any projection in M. Then e = Σs(Pi) > f° r some
orthogonal family (/>/) in M+ . By Lemma 2.2(i), (/>[) is an orthogo-
nal family in iV+ . Therefore e' = Σ5(/*/) * s a projection of JV lying
in Vφ and, by weak * continuity together with Lemma 2.3(i), we have

Now let x G M . In order to establish the claim it is sufficient to
suppose 0 < x < 1. We can then write x = Σ(en/2n), for certain
spectral projections en of x.

By the above, there exist projections ef

n in Vφ such that φ*(ef

n) —
φ*(l)en, for each n . Thus xr = Σ(^«/2W) e Fψ and

thereby proving the claim.
So, in the notation of the previous paragraph, we see that we have

a well-defined function π:M -+ J^, given by π(x) = xf, satisfying
(a) φ*(π(x)) = 0*(1)JC, for all x in M .
(b) π(^(/?)) = ^(/?0, for all p in AΓ+ .
(c) If (^ί) is an orthogonal family of projections in M, then (π(β/))

is an orthogonal family of projections in Vφ and
Furthermore,

(d) π is linear.
In order to see (d), let x , y eM. By (a),

0*(π(x +y)) = 0*(l)(x + y) = 0*(

So, π(x + y) = 7Γ(Λ:) + π(y), by Lemma 2.5.
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By (c) and (d) π:M —• JV is a linear map that preserves projec-
tions and is completely additive on projections. Hence π is a weak *
continuous Jordan homomorphism. Hence π(M) is a ίF*-subalgebra
of M. But now π(M) = Vφ, by (b). Hence Vφ = Nφ. By Lemma
2.2, 0 (1) G e 0 M and r(φ*(l)) = ^ . Thus 0 (π(l)) = </>*(l)^ =
φ*(π(eφ)), by (a), so that π(l) = π(βφ) 9 by Lemma 2.5, and so
π(eφM) = Nφ. If x e eφM are π(x) = 0, then φ*(l) x = 0 so
that x = e^x = r(0*(l))jc = 0. This proves that π maps βψM iso-
morphically onto Nφ. Finally, if ψ is the inverse of π: eψΛf -* Λ ,̂,
then 0* = φ*(l)ψ on Λfy, completing the proof.

For a M^*-algebra M , Z G Z(M)+ and /? G Λ/*, the functional
/>z G M* is defined by pz(x) = /^(^^) ? for all x i n M . We extract
the following characterisations.

COROLLARY 2.8. Let M and N be W*-algebras. Then a continu-
ous linear map φ:M* —• Λ7* is an o.d. homomorphism if and only if
there is a positive central element z of M and a weak * continuous
Jordan * homomorphism π:M —• N such that

φ*π(x) = zx, for all x in M and

| | ^ | | , for all peM?.

Proof. It remains only to prove the 'if part. Suppose then that the
stated conditions hold as written. Let p G M+ . Then

\\φ(p)\\ = p(z) = p(φ*(π(l))) =

So φ(p) G JV+ and further

φ(p)(π(s(p))) = /7(

so that s(φ(p)) < π(s(p)), from which the orthogonality condition
follows.

COROLLARY 2.9. Let M and N be W*-algebras and let φ:M* —•
iV* be a linear map. Then the following are equivalent:

(i) φ\M* -+ iV* is an o.d. isomorphism;
(ii) φ*:N -* M is an o.d. isomorphism;

(iii) 0* = zπ for some positive invertible central element z in M
and a surjective Jordan * isomorphism π: N —• M.
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Proof, (i) => (ii) If (i) holds then φ*:N -» M is a linear bijection
by duality which, by Theorem 2.6, restricts to an o.d. homomorphism
on Vψ. But Vψ = N, by assumption. The implication (ii) => (iii)
follows from Proposition 1.1, and (iii) =» (ii) is immediate.

Corollary 2.9. solves the open problem posed in [1].
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