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This paper lists all the primitive reductive non-maximal subalge-
bras of simple complex classical Lie algebras.

The classification problem of primitive actions of connected Lie
groups on manifolds, which was raised yet by Sophus Lie [11], and the
problem of finding the maximal subgroups of connected Lie groups
boil down to the classification problem of primitive subalgebras of
Lie algebras (Lie groups and algebras are assumed to be finite-dimen-
sional).

The classification of maximal connected subgroups of connected
Lie groups reduces to the classification of maximal subalgebras of Lie
algebras, which was obtained by the early fifties by V. V. Morozov
[13], [14], F. 1. Karpelevich [9], A. Borel and J. de Siebenthal [7], and
E. B. Dynkin [4], [5].

Any maximal subalgebra of an algebra &, which contains no proper
ideal of &, is primitive. In 1972, M. Golubitsky [7] found primitive
non-maximal subalgebras among maximal-rank subalgebras of simple
classical complex Lie algebras. Later M. Golubitsky and B. Rothschild
[8] found primitive non-maximal subalgebras among maximal-rank
subalgebras of simple exceptional complex Lie algebras.

M. Golubitsky [7] proved that primitive subalgebras of non-reduc-
tive primitive subalgebras of simple complex algebras are maximal.
Thus the problem of finding primitive subalgebras of complex Lie
algebras was reduced to the case of reductive subalgebras of simple
Lie algebras.

This work provides the final solution of the question of primitive
subalgebras of the classical complex Lie algebras; in fact, we list all
the primitive reductive non-maximal subalgebras of simple complex
classical Lie algebras.

This work’s main results have been published in [3]. Note that three
cases of primitive non-maximal subalgebras were left out in [3].
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274 L. V. CHEKALOV

DEerFINITION 1. A k-foliation of a differentiable manifold M is a
collection {U,,}, m € M, of connected k-dimensional imbedded
submanifolds U,, such that for any m, m’ € M the submanifold
U, has a denumerable base for its topology, m € Uy, , Uy, = U,/ , o1
UnnNU, =2.

The foliation {U,,} is called invariant with respect to the Lie group
G action if gUy, = Uy, forany ge G, me M.

There are two trivial foliations of any manifold: the point-one and
the foliation into connected components.

DEFINITION 2. A (transitive and effective) action of a Lie group G
on a manifold A/ is called primitive if the only invariant foliations
with respect to G are the trivial ones.

A closed proper subgroup P of a group G is called primitive if

G acts on G/P in the primitive way, and P contains
no proper normal divisor of G.

DEFINITION 3. A proper subalgebra ‘B of a Lie algebra & is called
primitive if

B contains no proper ideal of &,

B is the maximal invariant subalgebra with respect to

the action of Intp &, where Intp & is the subgroup of

the group of inner automorphisms of the algebra &,

which consists of those automorphisms which keep P

on its place.

Note that any maximal subalgebra of & which contains no ideal of
& is primitive.

We shall be interested in the following problems.

1. List all the primitive actions of connected Lie groups on mani-
folds or, which is equivalent, list to within conjugation, all the primi-
tive subgroups of connected complex Lie groups.

2. List all the maximal closed subgroups of connected complex Lie
groups.

Problems 1 and 2 boil down to classification of primitive Lie sub-
algebras; indeed, the following theorem holds.

THEOREM A [7].
(1) Let G be a connected Lie group, having the Lie algebra & ; let B
be a primitive subalgebra of & ; let Py be a connected closed subgroup
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of G, having the Lie algebra 3. Then Py is a primitive subgroup of
G and Normg Py is a maximal closed subgroup of G .

(2) If P is a primitive subgroup of a connected Lie group G, its Lie
algebra is a primitive subalgebra of the G group’s Lie algebra.

(3) Maximal closed subgroups of a connected Lie group are primitive.

Classification of the maximal connected subgroups of connected
complex Lie groups or, which is equivalent, of the maximal subalge-
bras of complex Lie algebras is provided by the works of V. V. Moro-
zov [13, 14], F. 1. Karpelevich [9], E. B. Dynkin [5, 9], and A. Borel
and J. de Siebenthal [1]. Therefore we shall be interested in primitive
non-maximal subalgebras of complex Lie algebras.

THEOREM B [7]. Let B be a primitive subalgebra of a complex Lie
algebra &. Then:

(1) If & is not simple, B is maximal in &,

(2) If & is a simple algebra and B is a non-reductive subalgebra,
B is maximal in &.

Thus, to complete the classification of primitive and maximal sub-
groups of connected complex Lie groups, one has to find the primitive
reductive non-maximal subalgebras of simple complex Lie algebras.

Let us present the definitions of the main classes of reductive sub-
algebras of semisimple complex Lie algebras [5].

A subalgebra £ of a semisimple complex algebra & is called regular
if it has a basis which consists of elements of the Cartan subalgebra
£ of & and of root vectors of & with respect to £.

A subalgebra £ C & is called a maximal-rank subalgebra if
rank £ = rank® . Maximal-rank subalgebras are regular ones.

A subalgebra £ is called an S-subalgebra if it does not belong to
any proper regular subalgebra of &. A subalgebra £ is called an
R-subalgebra if it belongs to some proper regular subalgebra of &.
Classification of regular subalgebras of semisimple algebras is done in
[5]. Some inaccuracies are corrected in [10]. If & = sl(n), sp(2n),
o(2n + 1), all the S-subalgebras are non-reducible subalgebras. If
& = o(2n), all the S-subalgebras are non-reducible subalgebras and
subalgebras of the form ¢, + ¢, where ¢; are non-reducible, orthog-
onal, odd-dimensional and ¢; = ¢, .

The problem of classification of maximal reductive subalgebras of
simple complex Lie algebras is solved in [4], [5]. Let us briefly formu-
late the results of this classification in the case of the classical algebras.
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1. If B is a simple non-reducible subalgebra of a simple classical
algebra &, P is almost always maximal in &. All the possible inclu-
sions P C £ C &, where the subalgebras ¢ and £ are simple and
non-reducible, are listed in [1].

2. All the maximal non-reducible non-simple subalgebras of classical
algebras are semisimple and to within conjugation are the following:

& =sl(mn), B =sl(m)@sl(n), m>n>2;

& =sp(2mn), P =sp(2m)®o(n), m>1, n>3,
n=4orm=1, n=4;

& = o(mn), B =o(m) ®o(n), m>n>3, m,n#4,;

& =o(4mn), ‘P=splm)@sp(2n), m=>2, n>1.

(Note that o(4) = sp(2) @ sp(2), sl(2) =sp(2).)

3. All the maximal ones among reducible reductive subalgebras of
simple classical algebras to within conjugation are the following:

(1) 8=slim+n), P=(&L(m)+6&L(n)).
This is the subalgebra of matrices with trace zero;

(2) 8 =sp(2m +2n), P=sp2n)®dsp(2lm), n>m>1;

(3) 8 =sp(2n), P=06L"(n),

(4) =02n+14+2m), P=o(2n+1)®o(2m), n>0, m>1,
2n+14+2m>5;
(5) 8 =0(2n+2m), P=o(2n)®o(2m), n>m>1, 2n+2m >
6;

(6) 8=02n+2m+2), P=o2n+1)do(2m+1), n>m>1,
2n+2m+22>6;

(7) & =0(2n), P=06L*(n).
The following assumptions are made here: &£(1) = C, o(1) = {0},
&L*(n)—the algebra of matrices written in the suitable basis in the

form
BL*(n) = {(‘g f,)A) ‘A QSS(n)} .

4. All the subalgebras of item 3 are the maximal ones among all
the subalgebras of &, except for the following ones, which are con-
tained in the parabolic subalgebras [5], [9], [2]: (1); (3); (4) m = 1;
(5) m=1;(7).

Now we return to the classification problem of primitive reductive
subalgebras.

LEMMA 1. If B is a primitive subalgebra of &, then either Normg 3
=B, or Normg P =6.
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Here
NormG"p: {x € Q5> [x: ‘B] - "]3}
is the normalizer of B in &.

Proof. Let NormgP = £, £ D P, fe€Intg®. If x € £, then
[x, P] C P, whence

(), FBICf(B) « [f(x), BIC B,
that is f(x) € £. Hence Intp &(£) = £. Since ‘P is a primitive
subalgebra, either £ =P or £=8.

COROLLARY 1. If B is a reductive primitive subalgebra of a simple
Lie algebra &, then Normg P = ‘P.

COROLLARY 2. If B is a semisimple primitive subalgebra of a simple
Lie algebra &, then Zg(B) = 0, where

Zs(P)={x€&,[x, P} =0}
is the centralizer of P in &.

LEMMA 2. If £ =k @} is a reductive Lie algebra with the centre 3,
feAutg, then f(k)=k, f(3)=3.

Proof. The fact that [3, £] = 0 implies

FG), f(O1=0«1[f(3),£]=0,
that is, f(3) is the centre of £. Therefore f(3) =3, whence if

f(k) = flky, kKlf (ki) , f(ka)] = [ky + 21, ko + 23] € k.
Let Z(£) be a centre of algebra £.

LEMMA 3. Let B be a reductive primitive subalgebra in a simple
complex Lie algebra &. Then the following cases are the only possible
ones:

(1) B is an S-subalgebra,

(2) B is a maximal-rank subalgebra,

(3) P is a semisimple S-subalgebra in a maximal-rank semisimple
subalgebra.

Proof. Suppose that ‘B is an R-subalgebra.



278 1. V. CHEKALOV

(a) Z(P) =3 #0, B =P@;, where P is the maximal semisimple
ideal of P. If f € Intp®, then f € Int, & since f(3) = 3 from
Lemma 2. Consider the subalgebra

A=Ze(3) ={x €8, [x,3]=0}.

The fact that [x, 3] = 0 implies [f(x), f(3)] =0 for f € Int, &, that
is, f(x) € &, whence f() C 2. Since P C A, if P is a primitive
subalgebra, then P = 2. It remains to note that A is a maximal-rank
subalgebra (as a torus centralizer) [10].

(b) Z(B) = 0, that is, the subalgebra P is semisimple and is not
a maximal-rank subalgebra. Let £ be a regular subalgebra, which
contains ‘B. If Z(L) =3 # 0, then P C Zg(3) and one can show
(like the item (a)) that Intgp &(A) = A, that is, the subalgebra P is
not primitive,

If Z(£) =0, but rank £ < rank®, then P C L3 where L3
is a reductive subalgebra with the centre 3", r = rank® — rank‘p.
It has been shown above that such an inclusion cannot take place in
the case of a primitive subalgebra B. So, in the present case any
regular subalgebra, which contains ‘P, is a maximal-rank semisimple
subalgebra.

COROLLARY. If B is a primitive reductive subalgebra of a simple
complex Lie algebra & and Z(B) # 0, then rank’P = rank &.

LeMMA 4. (1) If ¢(B) is a reducible reductive subalgebra of an al-
gebra sl(n), then Zy,)(p(P)) #0.

(2) If ¢(*B) is a reducible reductive subalgebra of an algebra & =
o(n), sp(2n), then Zg(p(P)) # 0 if and only if there are two terms of
the form —@q + @ in the decomposition of ¢ into irreducible compo-
nents.

Proof. (1) The maximal one among reducible reductive subalgebras
sl(n) has a non-trivial centre, that is ¢(P) C LD 3, 3 = Z(£D3).
Therefore,

Zsl(n)((”(qs)) =2 Zsl(n)(?)) 23

(2) Let & =sp(2n), ¢ = go+ @} + f, where the representation f
is reducible and symplectic, generally speaking. In this case ¢ () C
&L*(k) @ sp(2m) = £ where

k=dimgy, 2m=dimf, k+m =n.
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Hence Zg2,)(9(B)) # 0, since the subalgebra £ has a non-trivial
centre.

Let Zgy2n)(9(B)) # 0. Suppose that ¢ has no terms of the form
9o + ¢§. This means that ¢ = > ;_, ¢;, where the representations
@; are symplectic and ¢; ~ ¢; with { # j. Clearly, in this case
Zsp2n)(9(P)) = 0. This contradiction proves our assertion.

If & = o(n), we can argue along the same lines substituting o(/)
for sp(2m) and prove our assertion.

COROLLARY. Let ¢(B) be a primitive semisimple subalgebra of a
simple complex classical Lie algebra & . Then the following cases are
the only possible ones:

(1) o(B) is non-reducible in &

Q)& =o0(n), o =@j_,0i, 0i* @, i #j, ¢; are orthogonal,

(3) & =sp(2n), ¢ = @5:1 Wi, Wi~ Wi, L # ], w aresymplectic.

LeEmMMA 5. (1) Let & = sl(N), o(2N + 1), sp(2N), ¢(k) is a re-
ductive subalgebra of &, o € Autk. The automorphism o can be
extended to an inner automorphism & < ¢ag ~ ¢.

(2) Let 8 =sI(N). Then o can be extended to an outer automor-
phism & < g ~ ¢*.

(3) Let 8 =0(2N). Then g can be extended to an automorphism
& < 9o ~ ¢; g can be extended to an outer automorphism only with
N > 5 & ¢ is decomposable into even-dimensional irreducible parts
and contains a zero weight.

The first and second parts of the lemma are given in [12]; the third
part is given in [5].

PROPOSITION 1. Let & be a simple classical Lie algebra. If B is a
simple irreducible primitive subalgebra of &, then either 3 is maximal
in & or P=Dg, & =0(495),

P () = 000

Proof. Simple irreducible non-maximal subalgebras of classical al-
gebras are listed in [4]. Let us pick out of Table 5 of [4] all possible
triples ¢(P) C f(£) C &, where ¢(P) is a simple irreducible subal-
gebra of &, for which there is such an outer automorphism 6@ that
90 ~ ¢ . Let y stand for a representation of  in £ (y is defined
to within transition to y, , where ¢ is a symmetry of the algebra P’s
simple roots scheme).
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N Py £ & 0:P—-6 f:£-6 v:p—-£C
1 D, | 45, 4 sl(Cfn) o—--cl>—o<g RV SUPS I SN “"04
k k
- 1 1
2 Dn A2n—1 O(C;n 1) O—~-O~£} O=cer=0 +++0 O-0— "—C<
n—1
3| Dy | 4, | si(120) o-0-02 0b—-+ o o-0-02
4 | Eg Ay s1(2925) 0-0-~0-0 0-0mb=++ - =0 0-0=0-0-0
o 0

5 As Cio o(189) o-b-0-4=0 06— =0 o-0-6-0-0
6 Dy Cis 0(495) o-o—o-clzd o—é— .m0 &0 o—o-o-o{‘;]

In cases 1, 2 and 5, w6 ~ y and @ can be extended to an inner
automorphism f(£).
In cases 3 and 4 w8 ~ y* and 6 can be extended to an outer
automorphism of f(£). In case 6 the outer automorphism Dy can
be extended to an inner automorphism of &, but it does not preserve
£ from Lemma 5.

PROPOSITION 2. Let ‘B be a primitive irreducible non-maximal non-
simple subalgebra of a simple complex classical Lie algebra &. Then
one of the following cases takes place:

r

(5) & =o(k"), P=o(k)® -®o(k), r>3, k>3.

& =sl(k"), P=slk)®---@sl(k), r>3, k>2.
& = sp(4s), P =sp(s) @ sp(2) ®sp(2), s> 2.
& =0(4s), P=o(s)@sp(2) ®sp(2), s >2, s#4.

& =sp(k?+!), P=spk)® ---®sp(k), r>1, k>2 is even.

2r+1

v

r
(6) & =o(k¥), B=spk)®---@spk), r>2, k>4 is even or

r>2,k=2.

o

2r

Proof. Introduce denotations for some irreducible non-simple sub-
algebras:

& =sl(n),

where N;---Ny=n.

So(My, ..., My, Ky, ...

&, = o(n),
» ks)

LANy, ..., Ny) =sl(N) ® - ®SI(N;),

= sp(M)) ® - ® sp(M;) ® o(ky) ® - - @ 0(ks)
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where [T;_, M; - [Tj_; kj = n, t is even.

® =sp(n),

Ss(Ml, s ,Mt, kl,... ,ks)
=sp(M;)® - Q@ sp(M;) ®0(k1) ® - - ® o(ks)

where [[;_; M;-[[j_; kj =n, tis odd.
Non-simple irreducible subalgebras of classical Lie algebras have
the form [4]:

& =sl(n), w(P) =QQwiP);
i=1

&=o(n), sp(n), wP =@ eB)e (P,
i=1 j=1

where y;, ¢;, f; are irreducible representations of simple algebras
Bi, Bj; ¢; are symplectic; f; are orthogonal; ¢ is even with & =
o(n) and t is odd with & =sp(n).

Let
dimy; = N;, dimg;=M;, dimf;=k;.
Then
v(PB) C £4(Ny, ..., Ny), if & =sl(N);
v(P) C LoMy, ..., My, ky, ..., ks), if &=o0(n);
v(B)C (M, ..., My, ky, ..., k), if & =sp(n).
Let

y(P)Cc B=sln), fe Int,/,(sp) S.
The automorphism f is a product of automorphisms of the form

X;—siXis7', Xi€Pi, s €SN,

and of automorphisms which permute the conjugate simple ideals
wi(P;) (see Lemma 5), that is, f preserves £4. Analogously,
Inty, ) B(Lo) = Lo if & = o(n) and Int,p) B(Ls) = £ if & =sp(n).
In other words, those primitive subalgebras which are irreducible and
simple are among subalgebras of £,, £o, £s.

(a) & =sl(n).

Let

£4=L4(Ny,...,N;) where Ny >Ny >--->N;>2, N #N,
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Then
£4CLs=L4(N1, V), H N, NM=1]] N
N#N,
From Lemma 5, _
Int_gA sl(n)(L4) = £4

that is in the assumptions made, £, being a primitive subalgebra
implies s = 2. But in this case the subalgebra is maximal.

Let P=Ly(k,...,k),where r >3, k>2.

r
Any proper subalgebra sl(n) which contains B strictly, has the
form £4(N;, ..., Ny) where

A
N; =kl Zl,-:r, s<r.

Consider an automorphism o € Intg sl(n) which permutes the conju-
gate ideals of ‘P and is a cycle of the length r. It is evident that

O',QA(NI,... ,Ns)#EA(Nl, ,NS)

that is the subalgebra 3 is primitive.
(b) 8 =o0(n).
Let £} = £o(M;, ..., M;). Then ¢ is even and all M; are even.
If
MIZMZZZMtZZ, t>2a Ml#Mt’

then
Q%CESIZSO(MI’HZ)’ ﬂl H Ml: M2_“ H M
M #M,
Since

Intgw o(n)(£) = £,

and the subalgebra £ is maximal with ¢ = 0, we see that £} may

be a primitive subalgebra only if M; =--- = M;.
Consider the subalgebra
=L(M,..., M), r>2.
P = Lo( )

2r

Any proper subalgebra o(n) which contains P strictly has the form

Lo=LoMy, ..., My, ki, ..., k)
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where p is even,
D s
Mi———M‘Mi, kj=MkJ, ZM,'—{-ZIC]':ZV, p+s<2r.

Take an automorphism o € Int, o(n) which represents conjugate sim-
ple ideals of B and is a cycle of the length 2r. It is evident that
oL # 20 that is the subalgebra 0 is primitive.
Let S:O Lo(ky, ..., k;). Reasoning on the same lines proves that
the subalgebra £f is primitive but not maximal if and only if k; =
= kt 5 t> 2 .
It remains to consider the subalgebras of the form

Co=Lo(My, ..., My, Ky, ..., k) withts>2.

The following inclusion holds:
t s
Lo CLo=Lotk1, k), ki=][[M:, 2=ij-

Here

Intg o(n)(£0) = Lo (ki # 4);
that is, non-maximal subalgebras of the form considered here cannot
be primitive. If k; = 4, we have the primitive subalgebra

o(s) ®sp(2) ®@sp(2), s§s>2, s#4in & = o(4s).

(c) & =sp(2n).
Let
£s=£s(Ml,...,Mt, kl, ...,ks)

where ¢ is odd and s # 0. The following inclusion holds:
t s
L Cl=8(M, k), M=[[M, k=]]k
i=1 j=1

where £ is the maximal subalgebra and Intg sp(2n)(£s) = £ with
k+#4.
If k =4, we have a primitive subalgebra

sp(s) ® sp(2) ®sp(2), s> 2in & = sp(4s).
Now consider the case s = 0. Let

Ls=L(My, ..., Mypy) My > -2>2Myy, t21, My #My,,.
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Consider the subalgebra £, = Es(ﬁ , 12) , where

(M = Il M:, the number of factors being odd,
) Mle

k= H M;,
\ M #£M,
(k= H M;, the number of factors being even,
) M=M,

M= T] M.
\ M#Ml

The subalgebra £; is maximal in sp(n) and Intg sp(n)(Ls) = &s.
Consequently, for the non-maximal subalgebra £; to be primitive it
is necessary that s =0 and M; =--- = My, t> 1.

Consider the subalgebra

21+1
e N,
PB=L(M,..., M).
Any proper subalgebra sp(n) which strictly contains P, has the form
Qszgs(M], cee ,Mp, kl, cen o kq)

where

Mi=MM | k=M%, p+qg<2t+1.
Take an automorphism o € Intg sp(n) which permutes the conjugate
ideals of ‘B and is a cycle of the length 2¢ + 1. It is evident that
o(Ls) # L5 ; that is, the subalgebra P is primitive.

ProrosITION 3. Let ‘B be a reducible semisimple primitive non-
maximal subalgebra in a simple complex classical Lie algebra &. Then
one of the following cases holds:

(1) & = o(2k), ‘,B=‘o(k)€B-~@o(k)J, r>3, k>3;

v

(2) & = sp(2rk), P = sp(2k) @ - ®sp(2k) , r2=3, k> 1.

“v*
r

Proof. Let ® = o(n) and ¢(*B) be its primitive subalgebra, ¢ ()
being reducible and semisimple. According to the corollary from
Lemma 1, the decomposition of ¢ into irreducible terms has the form
¢ = @j_, ¢; where p; » ¢p; with i # j and ¢; is orthogonal. Let
dim ¢; = k; . Consider subalgebras

5

Moy, ..., ks) = @ o(k:) C o(n)

i=1
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where Y ;_ k; = n. It is clear that
¢("B) C‘%(kl 9 ey kS) "_"'%0
Moreover, from Lemma 5
Int, ) o(n) (M) = My

that is, if the subalgebra P is primitive, P = .#(k,, ..., ks;). Note
that the subalgebra .#; is maximal in o(n) if s = 2. Assume that
ki >--->ks; and k; # k;. Then

My = Moy, ..., ks) C Mok, ky) = My,

where k; = Zk K, ki, ky = Zk%k k; and Int 4 o(n)(/%) My from
Lemma $. Thus if the subalgebra B is primitive but non-maximal,
B=4(k,..., k), r>3. The condition of semisimplicity of P is

r

k>3.
Consider the subalgebra

B =Mk, r , k)Y, r>3, k>3.
Any proper subalgebra o(n), which strictly contains P, has the form
Mo(hiky s ..., 1k,) = My where S2_ L, =r, p <r.If 7€ lIntgo(n)
and t|g is a permutation o(k) of simple ideals, which is a cycle of
the length r, then 7 does not preserve % ; that is, the subalgebra B
is primitive.
Case ® = sp(n) can be treated in the same way.

COROLLARY. Let B be a reducible primitive non-maximal reductive
subalgebra of a simple complex classical Lie algebra & and rank‘p <
rank & . Then one of the following cases holds:

2r+1
(@) =0(2r+1)2n+1)), P=oR2n+ @ ---®o2n+1), r>

1, n>1, rank&=2rn+r+n, rankP=2rn+n;
2r

A

(b) 8 =0(2rn+1)), P=oRn+1)@---@®@02n+1), r > 2,
n>1, rank® =2rn+r, rankP = 2rn.

Proof. Note that maximal-range semisimple subalgebras in & =
o(n), sp(2n) have the form [5]:
s

& =0(2n), Po(2k), ZZk-Zn

i=1
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®=o0(2n+1), éo(Zki) ®o(2k+1),

i=1

S
> 2ki+2k+1=2n+1;

i=1
S S
& =sp(2n), Psp(2M;), > 2M;=2n,
i=1 i=1

and compare them with the subalgebras listed in Proposition 3.

Let us say that the reductive subalgebra P is primitive among the
reductive subalgebras of the algebra & if Intp &(£) # £ for any re-
ductive subalgebra £ for which PCc L£C &, L#P, £L#6.

PROPOSITION 4. Let ‘B be a reductive subalgebra of a simple com-
plex classical algebra &, the following provided:
rank‘Pd = rank & ;
B is primitive among the reductive subalgebras of & ;

Z(B) #0;

B is not maximal among the reductive subalgebras.
Then

& =sl(n), m:(@@z(k)) , n=rk, r>3, k>2.
0

Proof. (1) & =sl(n).
The maximal-range reductive subalgebra in sl(») has the form

N

Ry(ny, ..., ns)= (@Sl("i)) s mp=2mp--2ng>1,
0

i=1
s
Z n; =~n.
i=1

The condition of the inequality R4 # Z(R4) (which means that the
subalgebra R, is non-Abelian) is #; > 1. The condition of R, being
the maximal one among the reductive subalgebras is s = 2.

Suppose that s >3, n; > 1 and n; # n;. Then

Ry=Ry(ny, ..., n5) C Ry(ity, fiy) = Ry

where iy =3, -, Ni, fiz =32, 4p ni- If f € Intg sl(n), Lemma 5
implies that f| R, 1s a product of an inner automorphism of R, and
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a permutation of conjugate ideals of sl(n;). Therefore f (ﬁ 4) C Ry:
that is, the subalgebra R4 cannot be primitive in this case.
Let

‘Bz(@@):(k)) , n=rk, r>3, k>2;
0

that is, 8 = Ry(k, ..., k). Any proper reductive subalgebra sl(n),
P = Ry( ) y prop g (n)
r
which contains P strictly, has the form Ry = Ry(n, ..., ny) where

n =Lk, Yi_,li =r, s <r. Let T be such an automorphism
Intysl(n) that 7|p is a permutation of the summands of &£(n)
which is a cycle of the length r. Evidently, TR 4 F R 4, that is, the
subalgebra ‘P is primitive among the reductive subalgebras.

(2) & =sp(2n).

The maximal-range reductive subalgebra k in sp(2n), which satis-
fies the condition Z(k) # 0, has the form

: k
Rs=Ry(My,..., M, ny, ..., n)=EPsp(M;) & P bL;(ny)
i=1 j=1

where ny > --->n > 1, M; are even, Y :_ | M; +2§:’;=1 nj=2n,
k # 0. Consider the inclusion R; C R = Ry(M, i) where M =
Zf-zl M;, = Zf=l n;. Lemma 5 implies that Intg sp(2n)(§s) =R,:
that is, if the subalgebra R, sp(2n) is primitive among the reductive
subalgebras, it has the form R, = sp(M)®®£L(7%) where M +2# = 2n,
n>1, M>0.If M =0, the subalgebra £*(n) is maximal among
the reductive subalgebras of sp(2n) [5]; in the other case M # 0,

Rs CR; = sp(M) & sp(2#1)

and Lemma 5 implies

Intz sp(2n)(R;) =R,

which means that the subalgebra Es is not primitive. Since the subal-

gebra R; is maximal among all the subalgebras of sp(2n), the algebra
sp(2n) has no subalgebras subject to conditions listed in Proposition
4.

(3) & = 0o(2n). Proof is the same as in item (2) substituting o(2k)
for all the subalgebras sp(2k).
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(4) 8 = o(2n + 1). The maximal-range reductive subalgebra in
0o(2n + 1) has the form [5]

RO(k0>-"’ktsnl:---snl)

= 0(2ko + 1) ® P o(2k;) & P BL*(n;) = Ry,
i=1 Jj=1

where 1
t
2ko+1+> 2ki+2> nj=2n+1.
i=1 j=1
Consider the inclusion
Ry C Ry =0(2k + 1) ®o(2L)
where 1
t
2k +1=2kg+1+Y 2k, L= n,
i=1 j=1
Lemma 5 implies that if f € Int R,0(2n+1) then f (Eo) = EO . Hence,

if the subalgebra R, is primitive, Ry = ﬁo. But the subalgebra R,
is the maximal subalgebra of o(2n +1). Thus in o(2n + 1) there are
no subalgebras subject to the conditions listed in Proposition 4.

Note. Let
r
& =sl(n), m:(@esg(k)) , n=rk, r>3, k>3.
0

Any proper subalgebra £ which contains 8 strictly, to within conju-
gation, has the form

£=RA(11k,...,lsk)+‘ﬁ,

where Y ;_,li=r, s<r,and M is a nilpotent ideal:

ok Ak, - Ark,ik
m=| © O Ark,ik
0 0 0
Let
fe€lntsl(n), f(x)=TxT™', xeSln),
op 1 -
Ok

T =
1y
1, - or
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One can see that f(P) = P but f(L) # £; that is, the subalgebra
B is primitive among all the subalgebras of the algebra sl(n). In the
root terms it has been proved in [7].

PROPOSITION 5. Let B be a reductive Abelian subalgebra which is
primitive in a simple complex algebra 3. Then & is an algebra all the
roots of which have equal length and B is a Cartan subalgebra of & .

Let B be an Abelian reductive subalgebra of the algebra &. Since
the equality Normg P = P is a necessary condition for P to be
primitive, the subalgebra ‘8 must coincide with the Cartan subalgebra
h of the algebra &. It is well-known that Inty; & = W - Expad
where W is the Weyl Group of algebra &, which acts transitively
on the roots of one length. If an algebra’s root system consists of
roots which have different lengths, we consider the regular subalgebra
£=b+3c R, Cl;, where Ry is the subsystem of long roots. For any
w € W the action at a root vector /; is defined as follows: w/; =
+/y;. Thus Inty & preserves the subalgebra £ invariant. Let the
root system of the algebra & consist of roots of one length. In this
case any subalgebra £, which contains § strictly, contains some root
vector. Since in this case W acts transitively on & algebra’s root
system, Int, &(£) contains any root vector of the algebra &, that is,
Int, (&) = £, and hence the subalgebra b is primitive in this case.

THEOREM. (1) Let & be a simple complex classical Lie algebra and
B be its primitive reductive subalgebra, 3 not being maximal among
the & algebra’s reductive subalgebras. All the possible (to within con-
jugation) pairs (&, ‘R) are listed in Table 1 (next page).

(2) Let & be a simple complex classical Lie algebra and B be its
primitive reductive subalgebra; let 3 be maximal among the reductive
subalgebras of the algebra & but not be maximal among all the subal-
gebras of &. All the possible (to within conjugation) pairs (&, B) are
listed in Table 2 (next page).

(3) Let &° be a simple compact classical Lie algebra and B° be its
primitive reductive subalgebra, B* not being the maximal subalgebra of
the algebra &*. All the possible (to within conjugation) pairs (&, B*)
can be obtained from the pairs listed in Table 1 by transition to the
compact forms.

Proof. (1) Assertion of Theorem’s first item follows from Proposi-
tions 1, 2, 3, 4 and Note for Proposition 4.
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TABLE 1. Primitive reductive subalgebras, which are
not maximal among the reductive subalgebras.
Algebra Primitive subalgebras Intm &/IntP
r
1. sl(n) (EB 62(k)) regular Symr kr=n,r>3,k>2
0
2. R sl(k). Symr n=k k>2,r>3
3. Cartan subalgebra WA"_l n>3
4. sp(2n) ésp(Zk) regular Sym r kr=n,k>1,r>3
2r+1 2r+1
5. ® sp(2k) Sym(2r + 1) 2n = (k)"
ifk=1,r>2
6. sp(2s) ® sp(2) ® sp(2) z, n=4s,s>1
7. o(n) o~o—o—<1:<§ z, n=4s,s>1
r
8. R o(k) Symr, k odd n=k", k>3,
Symr(zz)2 , k even k#4,r2>3
9. o(s) ® o(4) z,, s odd s>3,5#4,n=4s
Z X Z,, 5 even
2
10. & sp(2k) Sym2r n = (2k)¥
k>1,r>2
r
11. @D o(k) Symr, k odd n=rk,
(regular if n and k Sym r(z )k k even r>3,k>3
are even) L
12. Cartan Wy, n even
subalgebra n

TABLE 2. Primitive subalgebras, which are maximal among the
reductive subalgebras, but not among all the subalgebras.

(2) Above we have presented the list of those subalgebras which are
maximal among the reductive subalgebras of &, but not among all
the subalgebras of & (they certainly are maximal-range subalgebras
with a non-trivial centre). All the primitive subalgebras of this class

Algebra | Primitive subalgebras Int‘p &/ Int;p
sl(2n) (BL(n) ® &L(n)), Z,x Z,
o(2n) o2n-2)® 6L (1) Z,%x Z,

&L (n)

Z, (with n even there
are two classes of
subalgebras which are
not conjugate in
IntO(2n))

were presented in [7].
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(3) Let B* be a primitive non-maximal subalgebra of &*. Assume
that there is such a reductive subalgebra £ that

PCLCSH, L££P, £#6, Intgd(g) =g

Then P C £ C & and P* # £7, £ # &°. Take f € Inty, &°.
Since Intp, 6° < Intp &, we have f(£) = £, whence f(£%) = £ =
&*N L. Thus, we have proved that if PB? is a primitive non-maximal
subalgebra, B is primitive among all the reductive subalgebras of & .

Now let ‘B be a reductive and primitive subalgebra among reductive
subalgebras of the algebra &, which is not maximal. Assume that
there exists such a subalgebra £° that

PCLCB, PTFEL, LT#67, Intp, & (L) # L

For any reductive subalgebra P, which is primitive among the re-
ductive subalgebras, we have presented such a finite-order automor-
phism ¢ that ¢ € Intp &, o(£) # £ for any reductive subalgebra
£ suchthat Pc LcCc &, P#£L, &# L. Since o has a finite or-
der, one may assume (to within conjugation) that o € Int®*. Since
a(P) =P, P'=PN&T, we have o € Intp, B°.

From the supposition made above, g(£’) = £°. But since £% +
iL" = £, we have g(£) = £. The resulting contradiction proves that
our subalgebra P is primitive.
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