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STATIONARY SURFACES IN MINKOWSKI SPACES,
I. A REPRESENTATION FORMULA

JIANGFAN L1

Gu has derived a representation formula for stationary surfaces
in the 3-dimensional Minkowski space using the Legendre trans-
formation. By a different method, we generalize his results to any
Minkowski spaces.

1. Introduction. Given a differentiable map f: (M, g1)— (M,, &)
between two manifolds with nondegenerate (definite or indefinite)
metrics, its energy is defined as

E(f) = /M |df |2 dvol, .

A critical point of this energy functional is called a harmonic map. Let
(M,, g») be any Minkowski space, (M;, g;) an immersed submani-
fold of M, such that the induced metric g; is nondegenerate except
possibly on a subset of codimension at least one. Let f: M| — M,
be the inclusion map. Then its energy is still well defined. If f isa
critical point for the energy (i.e., the mean curvature vanishes), M,
is called a stationary submanifold in the Minkowski space M, ; if M,
has real dimension two, then we call it a stationary surface, since in
general it is not extremal—neither minimal nor maximal. Although
minimal surface theory in Euclidean spaces has been studied for hun-
dreds of years, the analogous stationary surface theory in Minkowski
spaces only has a very short history. Suppose p is a point on the
surface S in a Minkowski space. We call p an elliptic, hyperbolic,
parabolic point if the induced metric on S at p is definite, indefi-
nite but nondegenerate, degenerate respectively. A powerful tool to
study the stationary surface is to use isothermal coordinates, whose
existence is well-known. At a hyperbolic point, if the metric is written
as ds? = f(x,y)dxdy, then (x, y) are called characteristic coordi-
nates. This paper is inspired by Gu’s work [1] and [2], of which many
ideas are carried on here.

2. Representation formula. We denote by R”:"” the Minkowski
space of signature (m, n), i.e., the vector space R™*" with the metric
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= (-5 )

Let
K™"={xeR™"|(x, x) =0},

= {(Cl 3 ey Cm+n) Gcm+n

(-5 )a=of

be the real and complex null cones. We will see that stationary surfaces
are equivalent to maps into null cones.

A. Elliptic stationary surfaces.

THEOREM 2.1. Suppose X: S — R™:" is an elliptic stationary sur-
face, and p € S. Then there exists a neighborhood U of p, and
isothermal coordinates (x,y) on U, such that X can be written

M) XQ=XO+Re [ @Ot C=x+i),
where

(2) ®: U — N™" c Ccm+*

is holomorphic, satisfying

(3) |D||2,. . # 0 everywhere.

Conversely, any holomorphic map (2) satisfying (3) gives rise to an
elliptic stationary surface (1) in R™>",

Proof. Suppose X: S — R™:" is an elliptic immersion. Then under
the isothermal coordinates (x, y) on S, the map X is stationary iff

(4) Xyx + ny =0.
Let
(=x+iy, C=x-
Then
Q= X; = §( Xy — Xy)
satisfies
D=0

¢
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ie., @ is holomorphic Since (x, y) are isothermal, the image of ®
lies in N™-". Since X is an immersion, (3) holds. Conversely, it is
straightforward to derive (4) from (1), (2) and (3). 0

Theorem 2.1 can be stated as the following multi-tuplets phenomena
(as Gu noted in [1], pp. 176):
Let

p:D->NOcck (Dco)
be a holomorphic map. Let
X:D—R™" (m+n=k)

( Re
m :
n

m [o@ac
\ {hia

lli7,» # 0,

X is an elliptic immersion, and is stationary. Thus ¢ can be viewed
as a mother who gives birth to a 2*-tuplet of stationary babies.

X(6) = 4

Then as long as

ExaMPLE 2.1. If m = 3, n =0, then Theorem 2.1 reduces to the
Enneper-Weierstrass representation for minimal surfaces in R3.

ExXAMPLE 2.2. For m = 2, n = 1, Gu [1] developed an excel-
lent geometric interpretation for stationary surfaces in 3-dimensional
Minkowski space R?:!. His formula

X(x,y)= Re/f(C)(cosC, sin, )d¢  (C=x+ip)
can be obtained from Theorem 2.1 by the following fact:

A holomorphic map ¢: D — N*! (D c C), with [jg||3 ; # 0, can
always be locally written as

9({) = f(E)(cos{, sinl, 1)

except when ¢(D) lies in a complex line.
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EXAMPLE 2.3. m =3, n = 1. Up to an isometry of R3:!, every
elliptic stationary surface in R3:! can locally be expressed by

X(x, ) =Re [(47gh, 2g(1~ 1), (1= g)(1+ 1),
f(1+ 8> (1 +h*)d¢
(C=x+1iy)
where f({), g(¢{) and A({) are arbitrary holomorphic functions, and
fg#0, (Img)’+(Imh)*#0.
Proof. Let X be an elliptic stationary surface in R3:1. By Theorem
2.1, locally there exists a holomorphic map
p:D—-N>»1 (DcCQ)

such that
g3, #0
and

X=Re/(p(C)dC.
Write ¢ = (91, 92, ¢3, ¢4); then
o} + 95+ 93 -95=0,
0112 + |@2|* + |@3]* — |pal* # 0.
Without the loss of generality, we may assume
¢1 # 0.
Then, by a rotation in the (x;, X;)-plane, we may assume
p1#0, 97 +93#0.
Thus ¢3 # +¢4, and

1
h= —a(¢2+\/¢f+¢§),
_ _ |94~ 93
£ Vois+os’

_ "
f= dgh
are holomorphic functions. Now it is easy to see that

or=4fgh, 02=2fg(1-h?), ¢3=F(1-g*(1+h?,
9s=f(1+g%)(1+h?). O



STATIONARY SURFACES 357

ExXAMPLE 2.4. As in Example 2.3, up to a rigid motion, an elliptic
stationary surface in R™>" can be locally expressed by

N
X=Re/ (2N—1Hf,~ ,
j=1
N-k+1
2Nk ( II fj) (1= fR—ks2)

j=1
N
x JI A+, k=2,....,m),
j=N—-k+3
N—-k+1
2Nky-1 ( I1 fj) (1= fR—ks2)
j=1
N
x J[ A+, k=m+1,...,N),
j=N-k+3
N
ATl +f,-2)) d¢
j=2
(N=m+n-1),
where f;, j=1,..., N, are holomorphic functions of {.

B. Hpyperbolic stationary surfaces.

THEOREM 2.2. Suppose X: S — R™:" is a hyperbolic stationary
surface, and p € S. Then there exists a neighborhood U of p, and
characteristic coordinates (x,y) on U, such that X can be written

x y
(5 X(x,y):X(O)—{—/O Y(x)dx+/0 Z(y)dy
where

(6) Y,Z:(-¢,¢e)— K™"

are smooth (assume (—¢, ) X (—¢, &) C U), satisfying

(7) (Y(x), Z(y)) #0 forall (x, ).

Conversely, any smooth maps (6) satisfying (7) give rise to a hyper-
bolic stationary surface (5) in R™".
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Proof. Suppose X: S — RMn is a hyperbolic immersion. Then
under the characteristic coordinates (x, y) on §, the map X is sta-
tionary iff

(8) Xgy=0.
Thus
Ysz, Z =Xy

are one-variable functions, and
X y
X(x,y) = X(0, 0) +/ Xo(x, O)dx+/ X,(x, v)dy
0 0

=X(O)+/OXY(x)dx+/0yZ(y)dy.

This proves formula (5). Since (x, y) are characteristic coordinates,
the images of ¥ and Z lie in K™:". Since X is an immersion, (7)
holds. Conversely, it is straightforward to derive (8) from (5), (6) and
(7. 0

Theorems 2.1 and 2.2 can be unified into the following version:

In the elliptic case, let ¢: D — N™:" (D C C) be holomorphic and
||(/)|[$n’,, # 0; in the hyperbolic case, let ¢({) = Y(x) — iZ(y): C —
K +iK (K =K™") be smooth and (¢, @)m.n =2(Y, Z)m,n # 0.
In both cases, let

{
X=Re/£ p(0)d (=x+1iy)

which does not depend on the route from {y to {. Then
X:D — R™:"

is a stationary immersion. In elliptic case, (x, y) are the isothermal
coordinates; in hyperbolic case, (x, y) are the characteristic coordi-
nates. Moreover, every elliptic or hyperbolic stationary surface comes
from this manner.

This statement shows that the stationary surface is heavily related
to the null cone.

EXAMPLE 2.5. Since every regular smooth map F: R — K?:! can
locally be written as

F(s) =s(cosk, sini, 1)
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where A = A(s) is a smooth function, a hyperbolic stationary surface
in R?'! can locally be expressed by

X=/s(cosl, sind, 1)ds +t(cosu, sinu, 1)dt

where A = A(s) and u = (¢) are smooth functions, and cos(A—u) # 1.
If

di du

—d_.; 79 0 ’ 'a_t- # 0 s

then we can use (4, u) as local coordinates, and write the surface as

X = /f(l)(cosi, sind, 1)dA+ g(u)(cospu, sinu, 1)du.

This is Gu’s formula ([1]).

ExXAMPLE 2.6. Every hyperbolic stationary surface in R3:! can lo-
cally be expressed by

X = /s(cosacosﬂ, cosasin B, sina, 1)ds
+ t(cosAcos , cosAsinu, sink, 1)dt
where a(s), B(s), A(z), u(t) are smooth functions, satisfying
sinasind # 1, and {cos(f — u)# £1 or cos(a F4) # 1}.
There is a similar formula for hyperbolic stationary surfaces in R”>" .

ExAMPLE 2.7. There is another representation formula for hyper-
bolic stationary surfaces. By the same method as in Example 2.3, one
can prove that a hyperbolic stationary surface in R3-1, up to a rigid
motion, can locally be written

X=/(4f1fzf3,2ﬁfz(1—J’32),ﬁ(1~J"22)(1+J"32),

A+ DA+ 7)) da
+ (4818283, 28122(1 — £3), &i(1 - &3)(1 + &),
gi(1+83)(1+g3)du
where f;(A), gj(u), j = 1,2,3, are smooth functions satisfying

certain nondegenerate conditions. There is a similar expression for
hyperbolic stationary surfaces in R”>" .,
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3. A construction of the stationary surface of mixed type.

LEMMA 3.1. Let X: S — R™:" be a stationary surface. Suppose y
is a differentiable curve in X, consisting of parabolic points only. Then
y is a null curve. In particular, the borderline in a mixed stationary
surface is a null curve.

Proof. Suppose at some point p € y,

(»(p), ?(p)) #0.

Then there exists a local frame {e;, e;} in a neighborhood of p on
the surface, such that

(e1, e;) = 0 everywhere,
ey is tangent to y on .

Then by integration, we can find a set of local coordinates (u, v) in
a neighborhood of p, such that, the metric can be written

ds? = E du® + G dv?

and the curve y is
v =0.

We have the following information
E#0, G=0ony, F=(X,,X,)=0.
Denote
9) G=v"f (nz21,f#0),
g=EG-F?=EQG.
Since X is stationary, AX = 0 (away from the y). Since F =0,

v

E G 2E e TeA\e
_1 1 f (1 1 E
= E—qu + ﬁ (hl E)uXu +v <7X'U'U -+ ﬁ <1n 7)v X’U)

- -2-’}-7)—(”+1)Xv.

Multiplying the above by v”*!, letting v — 0, we get a contradic-
tion. O

For any analytic surface, once we know a piece of it, we know all of
it. Now from a regular analytic null curve y(8) in R™:"  we construct
an analytic stationary surface of mixed type as follows:
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The hyperbolic part is
(10) X(6,0)= 56 +0) + (6 - 0)).
The elliptic part is
(11) Y(H,a)=%(y(9+ia)+y(0-—ia)).
If an analytic curve y satisfies
(12) (p(s), p()) =0 foralls, ¢

then up to an isometry of R™:"  y can be written as

min(m , n) min—j

j
)= > f(»0O,...,0,1,0,...,0, 1 ,0,...)
j=1

where f;, for all j, are analytic functions. The “generated surface”
X UpyUY either degenerates to y, or becomes a surface with the
induced metric form identically vanishing. Therefore we must exclude
this case. In R*! or R!:*, a curve satisfying (12) is a null straight
line.

LEMMA 3.2. Let y be an analytic null curve in R™-", satisfying
(13) ((s), »()) #0 forallO<s—t<e

for some fixed ¢ > 0. Then in a neighborhood of vy, the point set
XUyUY, obtained from (10) and (11), is an analytic stationary surface
in R™:" of mixed type.

Proof. For small ¢ > 0, from (10) and (13), we have

(Xg, X,) = =(3(8 + ), 78— 0)) £0.

5
But

(Xg, Xo) = (X5, Xo) = 0.
- Therefore X is an analytic surface. For the same reason, Y is an
analytic surface, too. It is easy to see that

lim X(6,0)=1mY(0, g)=y(6).
c—0 o—0
Therefore X Uy U Y is first a continuous surface in a neighborhood

of y. After applying a rotation in the ambient space R™*", the hy-
perbolic part X can be locally written as a graph

(14) z=fx,y) (z=(21,.--, Zmsn-2))
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where f is a vector-valued analytic function. It falls into an identity
if we plug in

x=x1(0,0), y=x0,0), z=(x30,0),..., Xmn(0, 7))
by (10). Since everything is analytic, it also holds for

x =x1(0, iog), Yy =x(0, iog),

z=(x3(0,i0), ..., Xmn(0, i0)),
1.e., the elliptic part Y can also be expressed as the same graph (14).
Thus we verified that X Uy U Y is an analytic surface. Finally, the
induced metric is

. { 3(7(6 + io), $(0 — io))(d6? + da?) (on elliptic part),
L {30 +0), 70 —0))(d0> ~da?)  (on hyperbolic part).
Therefore
AX =0, AY =0.

Thus X UyUY is stationary in R"-", O

Combining these two lemmas, we get

THEOREM 3.3. In a Minkowski space R™ ", every analytic null curve
y satisfying (13) generates an analytic mixed stationary surface through
(10) and (11). Conversely, every analytic mixed stationary surface is
generated by such a null curve.

ExampLE 3.1. In R”:! or R!:", every non-straight analytic null
curve generates an analytic mixed stationary surface. Let (x(8), y(8))
be a regular analytic plane curve (not a straight line). Set

76) = (x(6), »(6), [ /3@ +301248).

Then y is a non-straight analytic null curve in R2:!, from which one
can construct a mixed stationary surface in R?:! by (10) and (11).
This generalizes Gu’s construction in [2], where an extra condition
that the plane curve has positive curvature is required.

ExXAMPLE 3.2. y(6) = (cos@,sinf,chf,shf) in R3-! generates

the mixed stationary surface

X X
tan~!1 22 = th~124

X1 X3
ch™!y/x? +x2 = cos!4/x} — x} (elliptic part),
or
cos™!4/x2 +x2=ch™!y/x2 —x2 (hyperbolic part).
itX; 3 X4
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ExAMPLE 3.3. y(0) = (L cos(af), lsin(af), cosh,sinf) in R?:2
generates the mixed stationary surface

x X
tan~! 22 = gtan—1 2%,
X1 X3
ch™(ay/x2+x3)=ach™'\/x}+x2 (elliptic part),

or
cos™!(ay/x? + x3) = acos™! /x3 + x} (hyperbolic part).

It is elliptic on x3 + x7 > 1, hyperbolic on x3 +x2 < 1.
In particular, if a = 2, this is the mixed stationary surface

{ )Cz(.x_% - XZ‘) = ZXIX3X4 s
—y242_ 1
VXP+xE=x3+xi-3.
If a =3, this is the mixed stationary surface
xox3(x3 — 3x2) = x1x4(3x% — x3),
3y37 +x3 = \/xd + XG40 + x) - 3).

EXAMPLE 3.4. () = (cosf,sind, Lcos26, 1sin26, v26) in
R*:! generates the mixed stationary surface

X3==(x7—x 2———=1,

X4=X1X% 2 L
4 1A2 x12+x22 ’

X
Xs = V2 arctan ;3 .
1

It is elliptic on x? + x# > 1, hyperbolic on x? +x3 < 1.
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