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A theorem of Komlόs is a subsequence version of the strong law of
large numbers. It states that if (fn)n is a sequence of norm-bounded
random variables in L\ (μ), where μ is a probability measure, then
there exists a subsequence {gk)k of (/„)„ and / € L\{μ) such
that for all further subsequences (hm)m , the sequence of successive
arithmetic means of {hm)m converges to / almost everywhere.

In this paper we show that, conversely, if C is a convex subset of
Lχ(μ) satisfying the conclusion of Komlόs9 theorem, then C must
be L\ -norm bounded.

Introduction. A version of the strong law of large numbers in proba-
bility theory states that if (fn)%L\ is a sequence of independent, scalar-
valued integrable functions (random variables), on a probability mea-
sure space (Ω, Σ, μ), each having the same distribution with mean
m, then

) —> m almost everywhere.

In (1967) Komlόs [Ko] showed that arbitrary sequences of integrable
random variables whose absolute values have uniformly bounded ex-
pectations always have subsequences that satisfy a version of the strong
law. Indeed, for all sequences {fn)^Lχ in Lχ(μ) with

swp ί \fn\dμ
n Ja

< oo,

there exists a subsequence (gk)^ of (fn)n and / e L\(μ) such that
all further subsequences (hm)m of (gk)k satisfy

1 NN

f almost everywhere.

This result became the archetype for what Chatterji [C2] in the early
1970s called "the subsequence principle in probability theory". This
heuristic principle led Chatterji [Cl], [C2], [C3] (see also Gaposhkin
[Ga]) to find subsequence versions of the central limit theorem and
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the law of the iterated logarithm, analogous to Komlόs's subsequence
version of the strong law.

Chatterji [Cl] and Gaposhkin [Ga] extended Komlόs's theorem to
all Lp spaces, for 0 < p < 2. Aldous [A] and Berkes and Peter
[B-P], amongst others, continued the investigation of the subsequence
principle using the notion of an exchangeable sequence of random
variables.

A recent extension of Komlόs's theorem, due to N. J. Kalton, may
be found in Godefroy [Go]. Kalton strengthens the conclusion of
Komlόs's theorem so that the Cesaro means converge almost every-
where and in weak L\.

For other recent developments concerning Komlόs's theorem and
further references, we refer the reader to Balder [Bl], [B2], [B3] and
Trautner [T].

In this paper we show that every convex set C in L\(μ) that satisfies
the conclusion of Komlόs's theorem, must be Li-norm bounded. To
prove this we proceed by contradiction. We create a sliding hump
sequence of functions on the domain Ω, each a member of C, for
which certain convex combinations have Cesaro averages with an Lo-
limit that lies outside of L\(μ).

Finally, we characterize those convex subsets of L\ that are almost
everywhere Cesaro compact in the sense of the conclusion of Komlόs's
theorem, using a result of Bukhvalov and Lozanovski [B-L].

I thank Joe Diestel, Nigel Kalton, Amine Khamsi and Anton Schep
for helpful comments and suggestions. Thanks also to Catherine for
typing the manuscript.

The author is grateful for the support of a University of Pittsburgh
Internal Research Grant during part of the preparation of this paper.

1. Preliminaries and Komlόs sets. N denotes the set of all positive
integers, while "the scalars" refers to the real or complex numbers.
For a Banach space X, B^ denotes the closed unit ball of X.

Throughout this paper Ω will be a non-empty set, Σ a σ-algebra of
subsets of Ω, and μ will be a complete, positive, cr-finite, countably
additive measure on Σ. Lp(μ) is the F-space or Banach space of all
(equivalence classes of) measurable functions / : Ω —> the scalars for
which ||/||p < oo,

:= ί\f\dμ,
:= ess-suρ{|/(ω)|: ω e Ω},
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and

Here (En)™=ι is a Σ-partition of Ω into sets with 0 < μ(En) < oo,
for each n. Such a Σ-partition exists as μ is σ-finite. If μ is finite
we have the simpler definition,

The Lo(μ)-topology restricted to L\(μ) will be called the topol-
ogy of convergence locally in measure (elm); or the topology of con-
vergence in measure (cm) when μ is finite, θ will denote the zero
element in L\(μ).

1.1. DEFINITION. A subset S of L0(μ) will be called a Komlόs set

if for every sequence (fn)%L\ in S, there exists a subsequence (gk)fcli

°f C/Λ)£LI
 a n d f € S s u c h that for every subsequence (hm)™=ι of

i >

1 N

ΛΓ z_^ h™ —*• / almost everywhere.

Komlόs showed that BL ^ is a Komlόs set.

Note that if {fn)^L\ is a sequence in L0(μ) a n d fn -* f almost

everywhere, then

1 ^
jr^Y^fn-^f almost everywhere.

It follows that every elm-compact subset S of Lo(μ) m u s t be a
Komlόs set. Consequently, even when Komlόs sets are contained in
L\(μ), they need not be L r n o r m bounded (see §2 for an example).
Further, it is easy to check that Komlόs sets are forced to be L0-closed.
So, the concept of a Komlόs subset of L\ lies strictly between that of
a elm-closed set and a elm-compact set in L\.

2. Convex Komlόs sets in L\ are norm bounded.

2.1. THEOREM. Let (Ω, Σ, μ) be a finite measure space. Suppose
C is a subset of L\ (μ) that is convex and a Komlόs set. Then C must
be || Ih -bounded.
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Proof. Suppose, to get a contradiction, that C fails to be norm
bounded. Then there exists a sequence {gn)^L\ in C such that

ll&illi ^ ° o
By assumption, C is a Komlόs set. So, by passing to a subsequence

if necessary, we may assume that there exists g e C such that

1 N

— ^2 hm -+ g almost everywhere,
ra=l

for every subsequence (hm)m of (gn)n
Note that C — g is another convex Komlόs set in L\ (μ), θ e C - g

and

1 *
T7 5Z (^m ~ S) -^ θ almost everywhere,

m=\

for all subsequences {hm)m of {gn)n Clearly, by relabelling each
gn - g as gn and C — g as C, we have that the following is true.
C is a convex Komlόs set in L\(μ), (gn)n is a sequence in C with
\\gn\\\ —• oo, fleC and for every subsequence (/zw)w of (#„)„ ,

ft

1 *
ΊvΣ,hm -+ θ almost everywhere.

We shall now use (gn)n to construct another sequence (fn)n in C

such that fn-*θ almost everywhere and ||ΛI|i ~* oo. Let U\ := 1

and /i := ^ M j . Since ||g"Λ||i -> CXD, there exists «2 ^ N with ι/2 > ^i

such that

Define 2̂ by

C because C is convex. Also,

Next choose UT, e N with M3 > w2 and
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and define

h : = ^\Sux + gu2 + gu3)-

Then h eC and | | / 3 | | i > 2 3 .
Continuing inductively, we produce a subsequence (guH)%Lι of

(gn)n and a sequence (fn)^L\ in C such that \\fn\\\ —• oc and

7=1

From above, we know that fn-+θ almost everywhere.

We will now inductively construct a strictly increasing sequence
(nλ;)j£:θ i n N, a nonincreasing sequence (£ f

/2)^=0 in Σ and a se-
quence {S^^LQ of positive real numbers with the following properties.
Eι = Ω and for each k E N statements (1) to (5) below are true.

(1) 4<4-i/2.
(2) For each E eΣ with μ(E) < δk , we have that JE \fnk\dμ < 1.

(3) \\fnkXEk\\ι>2k(2 + μ(a)).
(4) H/i,^ ΛEJ|OO < 1, for all n>nk.

(5) /!(£*) < 4 - 1
Define iso := Ω, JQ : = 2//(Ω) and ΠQ := 1. Next define £Ί := Ω.

Since ||/z||i -+ oc, we can choose Π\ E N SO large that rt\ > ΠQ ,
ft

and

II/Λ^XE,HOC < 1, for all n>nλ.

By the absolute continuity of the measure \fnx\dμ with respect to μ,
there exists δ\ e (0, μ(Ω)) such that for every E e Σ with μ(2s) < <Jj,
we have

J\fnι\dμ<l.

Of course, ^(£Ί) < ^o
Fix m E N with m > 1. Suppose that we have constructed a

strictly increasing sequence {n^)™!^ in N, a non-increasing sequence
(Ek)™~Q in Σ and a sequence (4)^Γ0

1 of positive real numbers, such
that statements (1) to (5) are true for each A : E { l , . . . , m - l } . We
know that fn-*θ almost everywhere on Em_χ. So we can find, with

n

the aid of Egoroff s theorem, EmeΣ with Em c Em_\, such that

μ(Em) < δm_{ and WΠXEAE IU "> 0.
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But statement (4) is true for each fce{l,...,m-l}; and hence we
see that

loo < 1, for all n > nm-X.

Since \\fn\\\ -+ oo, it follows that
n

|| Hi = o o .

Choose n M 6 N with nm > nm-\, such that

WfnMXEmh>2m(2 + μ(n)), and

WfnXε ,\E lloo < 1, for all n > nm.
m— 1 λ m

Now, the measure \fnjdμ is absolutely continuous w.r.t. μ. There-
fore there exists δm > 0 satisfying δm < δm-\l2\ and such that for
every E eΣ with μ(E) < δm , we have that

ί\fnm\dμ<L

Our inductive construction is complete.
For convenience, let us relabel each fUk as fa . We note that state-

ments (2), (3) and (4) above still hold true, with n^ replaced every-
where by k. We will refer to (2), (3) and (4), modified in this way,
as (2)*, (3)* and (4)* respectively.

For each k e N, define

k j

V* : = Σ 2/fj

Since θ e C, each ψk e co(C) = C. Also define, for every m e N,

m~l 1
2j\fj\ - l

2

^! a s e Q u e n c e i n C 5 which is a Komlόs set in L\(μ). So
there exists a subsequence (ψk)^ of (Ψk)^ a n d ? G C such that

1 *
: = "Λ7 Σ ^ "^ ^ a l m o s t everywhere.Λ7 Σ ^ ^

1=1
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Moreover, note that q e C c Lλ (μ) so that

(40 lltflli < °°

Let &o := 0. It is simple to verify that for all N e N,

In the calculations below, when we have a pointwise inequality be-
tween two measurable functions, we mean that the inequality holds
almost everywhere.

Fix m e N and consider Em\Em+ι. Note that there is a unique
/ E N such that k^\ < m < kf. Next fix N e N with N > i.
By property (4)* above, |//| < 1 on Em\Em+ι, for all j > m + 1.
Temporarily, let cm := χE \E . Then,

. ί - 1 1
^m ϊv~2^

Thus, we have shown the following.

(•) For all m e N , there exists i G N such that for all
JV € N with JV > / ,

EmJ >Ψm- ^JJ-^
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Again fix m e N . We see that

I (Pmdμ = ̂ - I \fm\dμ

m-\ λ

^ \fj\dμ-μ(Em\Em+ι)
m ^ m+l

\l-*m \^\dμ
** JEm+\

-ΈjjJE E \fj\dμ-μ(Em\Em+ι).

μ(Em+ί) < δm , from (5); and so by (2)*,

/ \fm\dμ<\.

Also, by (5) and (1) we have that for all j e {1, ... , m - 1},

μ(Em\Em+ι) <μ(Em) <

and consequently from (2)*,

IE E lfjldμ<L

Using (3)* above,

/ φmdμ> ^-WfmXE |i -7r
Ja 2m - 2

_x < δj

In summary,

/ φm dμ > 1, for all m e N.
/Ω

We now estimate ||<?||i from below. Fix m € N . By ( • ) , there
exists / G N such that for all N G N with N > i,

|Φv(ω)| > pOT(ω) τr^\fm(ω)\, for almost all ω e Em\Em+v

From (<^), we therefore have that

\q(ω)\ > φm(ω), for almost all ω e Em\Em+\.
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Ex = Ω, and μ(Em) ^ 0, by (1) and (5). Thus, {Em\Em+l)^x is

a Σ-partition of Ω. Consequently, using (•) and (9), we are led to
the following contradiction.

OO - OO p

o° > |k||i = V / \q(ω)\dμ(ω) > V / φm(ω)dμ(ω)
1
 IT? \ IT I 17 V 77

The previous theorem extends to the case where μ is a cr-finite
measure. The proof below is simpler than our original one. It was
suggested by Anton Schep.

2.2. THEOREM. Let (Ω,Σ,μ) be a σ-finite measure space. Let C
be a convex Komiόs set in L\ (μ). Then C must be norm bounded.

Proof. Fix g e Lχ{μ) such that

g(ω) > 0 , foral lωeΩ.

Such a g exists because μ is σ-finite. Define the finite measure v
by dv := gdμ, and define the linear isometry T from L\(μ) onto
Lχ{y) by

Tf:=fg~\ for all fe Lx{μ).

Since μ and v have the same sets of measure zero, it is easy to
see that a subset C of L\{μ) is a Komiόs set if and only if T{C)
is a Komiόs set in L\{v). By Theorem 2.1, Γ(C) is Li(z/)-norm
bounded; and consequently C is Z>i(μ)-norm bounded. D

Note that every elm-compact subset of Li is automatically a
Komiόs set. So the example

C:={n2χ[0Λ/n]:neN}U{0}

is a Komiόs set in Lγ[O, 1] that fails to be Li-norm bounded.
We also remark that a corollary to Theorem 2.1 is that every elm-

compact, convex subset of L\(μ) must be Li-norm bounded. This is
a result of Khamsi and Turpin [K-T], that can be generalized to the
setting of a large class of tvs topologies τ on a Banach space X (see,
for example, Khamsi [Kh]).

3. A second dual characterization of Komiόs convex sets in Lx. In
this section the symbol = will denote isometric isomorphism between
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Banach spaces. Let j be the natural embedding of Lγ into L\*. It
is a fact that

for some subspace S of L\*. Indeed, L\ = L^μ) and so L\* =
L ^ , which is isometrically isomorphic to the space of all bounded,
finitely additive measures on Σ that vanish on //-null sets. Hence,
by the Yoshida-Hewitt decomposition theorem [Y-H] and the Radon-
Nikodym theorem,

where pfa(μ) denotes the space of all bounded, purely finitely addi-
tive measures on Σ that vanish on //-null sets. We identify pfa(μ)
with a subspace S of L**, and we denote by P the natural projection
of L** onto j(Lχ).

Recall the following result, which we will use to establish Theorem
3.1 below.

THEOREM (Bukhvalov and Lozanovski [B-L] Theorem 1). Let C be
a convex subset of Lx{μ) and let W be the weak*-closure of j(C) in
L**

(a) // C is elm-closed then P{W) = j(C).
(b) // C is Lι-norm bounded and P{W) = j(C) then C is elm-

closed.

3.1. THEOREM. Let C be a convex subset of Lχ(μ) and W be
the weak*-closure of j{C) in LJ*. Then the following statements are
equivalent

(a) C is a Komlόs set
(b) C is Lγ-norm bounded and elm-closed.
(c) C is Lγ-norm bounded and P{W) = j(C).

Proof, (a) => (b). By Theorem 2.2, C is L\-norm bounded. More-
over, Komlόs sets are elm-closed, as we observed above.

(b) => (a). Fix (fn)%Lι in C. By Komlόs's theorem [Ko], there
exists a subsequence (gk)^Lι of (fn)^Lι and / € L\{μ), such that
for all subsequences (hm)™=ι of (gk)kL\ w e h a v e

1 N

f almost everywhere.^2 hm y

m=l

C is convex, and hence each qN e C. But C is elm-closed and
consequently, feC.

(b) <* (c). This follows from [B-L] Theorem 1. D
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