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In this paper, we introduce equivariant Nielsen type numbers which
estimate the minimal number of fixed orbits and fixed points of a G-
map f: X — X in the G-homotopy class of /. As an application,
we relate the equivariant Nielsen theory to the Nielsen theory for
iterates of maps.

1. Introduction. Let f: X — X be a self map of an ENR X so
that the set of fixed points Fix f is compact. In topological fixed
point theory, the fixed point index I, ([D2]) is an algebraic count of
the number of fixed points of f so that I, # 0 implies Fix f # &.
When X is compact, this algebraic count is given by the Lefschetz
number L(f) which can be expressed as a trace. However L(f)
does not usually give much information about the size of Fix f. A
more subtle invariant N(f), namely the Nielsen number of f, gives
a lower bound for the minimal number of fixed points of maps in
the homotopy class of f. In many situations, N(f) is a sharp lower
bound (e.g. when M is a compact connected manifold of dimension
>3).

Fixed point theory can be generalized to the study of periodic points,
i.e., fixed points of f* = fo---0 f. In [D3], Dold established a com-
binatorial relation among the fixed point indices of iterates of f. It
was shown by Komiya [K] that Dold’s relation can be derived from a
similar congruence relation on the fixed point indices of equivariant
maps. Nielsen fixed point theory was generalized to iterates of maps
by Jiang [J], Heath-Piccinini-You [HPY], Heath-You [HY] and some
earlier work of Halpern. The objective of this paper is to develop an
equivariant Nielsen theory for G-maps. As an application, we indi-
cate how the equivariant theory generalizes the periodic point theory
in a similar fashion as [K] extends [D3].

For background in Nielsen fixed point theory, we refer the reader
to [Br] and [J]. For equivariant topology, the basic references are [B]
and [tD]. This paper is organized as follows.

! The results in this paper were announced at the Special Session on Nielsen Fixed Point

Theory in the Pre-Congress Topology Conference held at the University of Hawaii, August 12-
18, 1990.
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In §2, we define equivariant Nielsen type numbers via the cover-
ing space approach following [J] (compare [FW] and [W2]). The ad-
vantage of this approach is to be able to consider the empty fixed
point classes which play an important role in relative Nielsen fixed
point theory ([Z]). We show that these Nielsen type numbers enjoy
the usual properties of the classical Nielsen number, in particular, the
G-homotopy invariant property. In §3, we prove minimality theorems
for fixed orbits (orbits of fixed points) and for fixed points. We also de-
scribe a procedure for computing the minimal number of fixed points
in the G-homotopy class. Techniques employed here are those of the
Wecken method used in relative Nielsen theory ([S], [Z]) with a mod-
ification to the equivariant setting. Computations of the equivariant
Nielsen numbers are carried out in §4 by introducing an equivariant
analog of the Jiang condition. Under such condition we relate the
equivariant Nielsen numbers to the equivariant fixed point indices in
[K] (e.g. 4.12) and the ordinary Nielsen numbers {N(f")}. In §5, we
indicate how the Nielsen theory of periodic points developed in [J],
[HPY], [HY] relates to the equivariant Nielsen theory. We conclude
in §6 with some final remarks.

The author would like to thank Jerzy Jezierski for pointing out an
error in the definition of NOg(f#) and the referee for a number of
helpful suggestions.

2. Equivariant Nielsen type invariants. Let 1 be a finite group and
Y be a connected compact W-ENR. let #: Y — Y be the universal
cover of Y and Cov(n) be the group of deck transformations. We
also identify Cov(#n) with the fundamental group n = 7,(Y) of Y.
Consider the group

W = {9 € Homeo(Y)|n7 = yn for some y € W}

consisting of homeomorphisms of Y covering the W-action on Y.
Therefore we have a short exact sequence of groups

lonsWLwot,

DEFINITION 2.1. Let £: Y — Y be a W-map. Two lifts 4 a and 4
are said to be conjugate if there exists J € W such that &' = yhy~!
Denote by [h] = {7h7~ |7 € W} the conjugacy class of 7.

PROPOSITION 2.2. Let h: Y — Y bea W-map and h, ' be lifts
of h.
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[A'] then W (nFixh) =W (nFixk').
7]

(1) If [A] h /
h] then W(nFixh)N W (nFixh') =2

) If [h#1
Proof. (1) Suppose that k' = $h9=! for some Je W. Let x €
nFixh and % € Fixhnn~'(x). Then A (§%) = 7hy~ Ypx) = Phi =
5% = 9% € Fixh'. Thus, npx = mx = yx € nFix %' and hence
ynFixh c nFix k' .
Conversely, let y € n Fix W and y € Fix” Nnn~'(y). Then 9y 'y =
‘lh’y = 5=1(hy=1)y = hy~'y. Thus, 7y e Fixh and y~ly =
y~Iny = n9~19 € nFixh. Hence YEYM Fix & . The assertion follows
from the fact that ynFixh = n Fix /' .

(2) Suppose that xo € W(nFixh) N W(nFix#'). Then there exist
Y1, 72 € W, % € Fixh and %, € Fix}' such that YinxX; = X9 =
v2nX, . Thus there exist ¥;, y, € W with nylxl = n¥, X, and hence
PrXy = a1 X; for some a € n. Let § = J5 'aj;. We have %, =
PX1, h9 TN (%) = PRI (%) = h% = 9% = % and () = %.
By uniqueness of lifts, #’ = 749! and hence [h] = [/']. i

DEFINITION 2.3. Let A: Y — Y be a W-map and / be a lift of
h. The W-subset W(nFixh) is called the W-fixed point class deter-
mined by the conjugacy class [A#] (or simply W-fpc).

PROPOSITION 2.4. Let x,y € Fixh # @. Then x and y belong to
the same W-fpc if, and only if,

(1) y =0x for some a € W, or

(2) there exists a path «: [0, 1] = Y such that «(0) = x, a(l) =
a'y for some a' € W and a ~ ho a (rel endpoints).

Hence, there are finitely many non-empty W -fpcs.

Proof. We proceed as in [J, 1.1.10 and 1.12]. O

Since each W-fpc N of A is open and closed in Fix4, we can
assign the usual fixed point index (A, N) [D2] which is defined to
be zero if N is empty. If I(h, N) # 0 then N is called an essential
W-fpcof h.

Let G be a compact Lie group and X be a compact G-ENR. Let
F = {(H) € Iso(X)||WH| < oo} where WH = NH/H is the Weyl
group and Iso(.X) is the set of isotropy types of X . We assume (for
simplicity) that X = {x € X|hx = x, Vh € H} is connected for
each (H) € ¥ . For any G-map f: X — X and for each (H) € ¥,
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we have the notion of (essential) W H-fpcs by setting W = WH,
h=fH and Y = X7

Let f: X — X be a G-map. For any (H) € ¥, an (H)-fpc of
). xH) _, x(H) ig of the form GN where N isa W H-fpc of fH
determined by some [fH] and X = {x € X|(Gx) > (H)}. Denote
by FPC)(f) the set of (H)-fpcs of fU). We also let Xy = {x €
X‘Gx = H} and fH = f,XHZ XH — XA

Let (K) €% and N’ be a WK-fpc so that N’ = WK (pg Fix fX)
for some lift fX of fK. Suppose that H < K and (H) €. . There
is a unique lift f7 of fH such that pg Fix fX c py Fix ff. Thus
GN' ¢ GN where N = WH(py Fix f¥). There is a (contravariant)
function 7(z)<(x): FPCx)(f) = FPCyy)(f) for (H) <(K)€F . In
this case, T(H)S(K)(GN,) =GN.

DeFINITON 2.5. Let f: X — X be a G-map. For each (H) € .,
define

Ny (fH) = #{essential W H-fpcs},
NOg(fu) = #{essential W H-fpc N|t(1<x)(GN') # GN
for all essential WK-fpc N', (H) < (K)},
No(fu) = |WH| - #{essential W H-fpc N|t<k)(GN') # GN
for all WK-fpc N', (H) < (K)},

NOGg(f¥) = min{ #%Z|2 c |J FPCk)(f), for any essential
(H)<(K)
W L-fpc N', 3 a WK-fpc N € Fsuch that

tn<k)(GN) = GN'}

No(ffy= > Nglf).
(H)X(K)eF
We now show the G-homotopy invariance and lower bound prop-
erties.

ProposITION 2.6 ( G-Homotopy Invariance). Given any G-homo-
topy ¢ ~¢ [,
(1) Nwu(f7) = Nwu(pH),
(2) NOg(fu) = NOs(on),
(3) Ng(fu) = No(oH),
(4) NOg(f) = NOg(p*), and
(5) No(f) = Ng(9*)
for every (H)e & .
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Proof. Let F: X x[0, 1]— X be a G-homotopy with Fy = f and
F, = ¢ and let (H) € ¥ . Note that FF: X# — X# isa WH-map
for t € [0,1]. For i = 0,1, let N; be a nonempty W H-fpc of
FH . We say that Ny and N, are FH-related if there exists xo € Ny,
x; € Ny and a path {X/}epo,1 in X" such that {F”(x,)} ~ {x:}
(rel endpoints). Let F: X x [0, 1] — [0, 1] be defined by F (x,1) =
(F(x,t),t) and FH = F|XH x [0, 1].

It follows that Ny and N; belong to the same (nonempty) W H-fpc
of FH if they are FH-related, in which case I(FH , No) = I(FJ, Ny)
(see [J, 1.3.10]). If Ny is not FH-related to any nonempty W H-fpc
of FH, then I(Fff, Ny) = 0. Hence there is a one-to-one correspon-
dence between the essential W H-fpcs of FOH and those of FIH . Thus,
(1) holds.

Let N be an essential W H-fpc of fi = = F, H and M be the cor-
responding essential W H-fpc of ¢f = Fj " Suppose that for some
(KYe ¥, (H) < (K) and 1(H)S(K)(GM’) = GM, i.e., there exists a
lift X of @K such that M’ = WK (pg Fix 3X). There exists a ho-
motopy FX: XX x [0, 1] — XX covering FX with FX = gX. Now
fX = FK is alift of fX and N’ = WK (px Fix fX) is a WK-fpc of
K. Tt follows that 7(s<k)(GN') = GN and (3) follows.

To prove (2), we need to show that if M’ is essential then so is
N'. This is equivalent to stating that M’ and N’ are FX-related.
Assertion (4) follows from the fact that essential fixed point classes
do not disappear under homotopy and (5) follows immediately from
(3). O

DEerFINITION 2.7. Let f: X — X be a G-map. For each (H) €
Iso(X), define

MOg(f?) = min{# fixed orbits of p*|p ~; f},
Mg(fy) = min{#(Fix o)l ~c [}

PrOPOSITION 2.8 (Lower bound). For each (H) € &,
(1) MOg(fH) > NOG(fH) [fixed orbits in X1].
(2) Mg(fu) = No(fu) lfixed points in Xg].

Proof. (1) Let (H) € & . Choose an admissible ordering (H;), ...,
(Hy,) on {(K)|(K)>(H)} with the associated filtration of G-subspaces
X;C---CXp=XH_If m=1, then NOG(fH) = NOg(fy) =
Nwu(fH) < MOg(f¥). Assume that MOg(fH) > NOg(fH:) for all
i, 1 <i< m. Suppose that ¢ ~; f such that ¢ has MOz(fH)
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fixed orbitsin X7 . Let Z C U <x) FPCix)(f) such that NOg(p™)
=NOg(fH)=#% . If GN' € %, then it corresponds to some essential
GN'’. By the homotopy invariance of Nwr(ff), ¢ must contain
at least #% fixed orbits.

(2) If N is an essential WH- fpc such that GN N Xy # @ for
some (H) < (K) € # , then t<k)(GN') = GN for some WK-fpc
N’ (not necessary essentlal) Thus for any ¢ ~g f, @) must have
at least Ng(fy)/|WH| fixed orbits in Xy = X — | | k) X (k)
Hence in Xy, we have Mg(fy) > Ng(fH) . ]

In classical Nielsen fixed point theory, the ordinary Nielsen number
possesses the commutativity and homotopy type invariant properties.
The following are the corresponding equivariant analogs of these two
properties. The proofs are straightforward so we leave them to the
reader.

PROPOSITION 2.9. Let X and Y be compact G-ENRs and # =
{(H) € Iso(X) UIso(Y)| |WH| < co}. Suppose that X* and YH are
connected for every (H) € # .

(1) (G-commutativity) Let f: X — Y and g: Y — X be G-maps.
Then

NOG((g0 /)") = NOG((f o )",
Ng((g o)) = No((f o &)")
forall (H)e#Z .

(2) (G-Homotopy Type Invariance) Given the following commutative

diagram

X—f—>

4l |

Y — Y
g

where all maps are G-maps and h is a G-homotopy equivalence with
inverse k. Then

NOg(f") = NOg(g"),
Ne(f™) = Ns(g™)
forall (H) e # .

3. Minimality theorems. For most of the results in this section, we
make the following Standard Hypotheses on G and X :
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STANDARD HYPOTHESES. Let G be a compact Lie group and X be
a compact smooth G-manifold. For each (H) € & , we assume that
XH s connected, dim XH > 3 and dim XH — dim(X¥ — Xg) > 2.

Note that .# = Iso(X) when G is finite.

In classical Nielsen fixed point theory, the Wecken method for co-
alescing fixed points in the same class is crucial in proving the mini-
mality theorem. The following is the equivariant analog.

LEMMA 3.1. Assume the Standard Hypotheses. Suppose that f: X —
X isa G-map, @, and @, are two distinct isolated W H-fixed orbits
belonging to the same W H-fpc of ¥, for some (H) € & . Further-
more, we assume that GO, C Xy, GO, C X (k) for some (K) € F
with (H) < (K). Then there exists a G-homotopy {f:} relative to
X>H) = {x € X|(Gx) > (H)} such that fy = f and Fix f; =
Fix fo - Gﬁ] .

Proof. Suppose that (H) < (K). There exist x; € &y, x; € &
and a path o: [0, 1] — X¥ such that ¢(0) = x;, o(1) = x, and
6 ~ fH o0 (rel endpoints). Since x; € Xy and x, € X — Xy and
dim X# — dim(X¥ — Xy) > 2, we may assume that ¢ can be chosen
so that ¢([0, 1)) C Xy . We coalesce x; and x; along o asin [W1,
1.1] (see also [S, 6.1]). Taking the G-translates of N(o), we move
G, to GO, along the paths Go in GN(a). For the case (H) = (K),
it follows from [W2, 5.4] since Xy is a free W H-space. O

THEOREM 3.2. Assume the Standard Hypotheses. Given a G-map
f: X — X, there exists a G-map h ~¢g [ such that

NOG(h") = NOg(f*) = MOg(f*)
forall (H)e% .

Proof. First we can G-homotope f to f’ with only a finite number
of fixed orbits. If (H) € Iso(X) with |WH| = oo, then we can
remove the fixed orbits in Xz [FW, 2.3]. Thus we may assume that
Fix f' C U(K)eg Xk - Furthermore, if N is a fixed orbit in Xy for
some (H) € & with I(f#, N) = 0 then we can remove N and hence
the entire G-orbit GN .

Fix an (H) € & and choose an admissible ordering on {(H;) €
FI(H) < (H)} with X; C --- C Xp, = XH) | If m = 1, then the
assertion follows by removing the inessential fixed orbits and by ap-
plying 3.1 to those orbits of the same class. Suppose that NOg(fH) =
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MOg(fH) for 1 <i < m. Let ¢ ~g f such that MOg(p"n-1) =
NOg(p™»-1) and oy = ¢ n,has only isolated fixed orbits of nonzero
index in Xy . Apply 3.1 to these fixed orbits in Xy . We arrive at
a G-map h ~g f such that NOg(h') = MOg(fH) for 1 <i<m
and Ay has exactly NOg(fy) fixed orbits that cannot be coalesced
with any of the essential fixed orbits in X¥ — X;;. Hence NOg(h')
is mininal. O

THEOREM 3.3. Assume the Standard Hypotheses and let f: X — X
be a G-map. For each (H) € Iso(X), there exists a G-map h ~g f
such that
No(fu) if(H)eS,

0 otherwise .

Mg(fu) = #(Fixhy) = {

Proof. If |WH| = oo then the assertion is obvious. Suppose that
(H) e % . We can G-deform f toa G-map ¢ such that ¢ has only
isolated fixed orbits. Proceed as in the proof of 3.2. We then arrive
ata G-map y ~g f so that yy has exactly NOs(fy) fixed orbits in
Xy . We can further unite those essential W H-fpcs to the inessential
W K-fpcs that they correspond to for some (H) > (H) by applying
3.1. (It should be noted that if the inessential W K-fpc is empty, we
need to “create” a fixed orbit of index zero [W1, 1.1] before applying
3.1.) It then follows that #(Fixhy) = Ng(fx) . ]

REMARK 3.4. In general, we may not be able to find a G-homotopy
h ~g f suchthat Mg(fy) = Ng(fy) forall (H) € ¥ simultaneously.
For example, take G = Z, acting on X =S as an involution so that
X9 =83 Let f: X — X be the identity map. It is easy to see that
Mg(fc) = 0 = Mg(f1)) but the minimal number of fixed points in
the G-homotopy class of the identity is equal to 1.

We now describe a procedure of computing the minimal number of
fixed points in the G-homotopy class of a G-map when G is a finite
group.

Let G be a finite group and X be a compact G-ENR. Given a
G-map f: X — X, for each (H) € Iso(X), let

N;(H) ={GN|I(f*, N) # 0 and for all (K) > (H),
I(f%, N') # 0= 1<) (GN') # GN}

Pr(H) ={(K) > (H)|3GN € #;(H), 1my<x)(GN') = GN
for some N’ with I(fX, N') = 0}.
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For any (K}), (K3) € #¢(H), we write (K;) <gpn (Kp) if

(1) (K1) < (K2) and

(2) there exists a GN € #¢(H) such that 7)<k )(GN1) = GN =
T(H)S(Kz)(GN2) for some (K,)-fpc GN; and (K;)-fpc GN,.

Let

My(H) = {(K) € #r(H)|(K) maximal with respect to <} .
For any (K), (K;) € #;(H), we write (K;) X (K3) if |K | < |K>].
DEFINITION 3.5. For any (Ki) < (K3) € #(H), let

Cmn (K1), (K2))
= #{GN € #;(H)|3GN, such that 7)<k )(GN;) = GN
and 7(g)<(x,)(GN2) # GN for all GN,}.

Note that
> LK), (L)

(K)=(L)

is the number of N € /;(H) that contain a K-fpc but not an L-fpc
for any (L) > (K).

DEFINITION 3.6. Let (H) € Iso(X). The minimal number of fixed
points in X#) in the G-homotopy class of a G-map f: X — X is
denoted by

me(f™) = min{#(Fix \)|h ~¢ f}.

In the proof of 3.2, we showed that f is G-homotopic to a G-
map h with exactly NOg(fH) fixed orbits in X¥ (or in X#)) in
which 2 has at most NOg(fy) fixed orbits in Xy . In order to min-
imize the number of fixed points we should further coalesce those
(H)-fpcs among the NOg(fy) ones, to the inessential (K)-fpcs that
they contain for (K) > (H) as in 3.3. For each (H), there are ex-
actly (NOg(fu)—Ng(fu)/|W H|) W H-fpcs that can be further united
to some lower strata. These fixed point classes can be coalesced with
some inessential (K)-fpc where (K) € #,(H). Since it is possible that
some GN € /4;(H) can contain a (K;)- and a (K;)-fpc for distinct
(K1), (Ky) € #;(H), we use the partial ordering < on .#(H) to
decide where GN should be moved to. Thus for each (K) € #;(H),
we should move to Xk, those fixed point classes that contain a (K)-
fpc but not an (L)-fpc for any (L) > (K). This procedure can be
summarized by the following



162 PETER WONG

THEOREM 3.7. Assume the Standard Hypotheses with G finite.
Given any G-map f: X — X and (H) € Iso(X),

Nosfu) = T+ S Y Lanl(K). (1)
(K)e,(H) (K)X(L

and

Ng(fx) -[G: NK]
(H)<(K)

+ ¥ Z Lo (KT, (L) - [G: K]

(K"ed,(K) (K)=(L)

REMARK 3.8. A similar but simpler formula for mq(f#)) was also
obtained in [W1, 2.2] for the special case f = ly. From 3.7, we
obtain the following inequality

me(f)> Y Ng(fx) [G:NK1> Y NOg(fx) [G: K].
(H)S(K) (H)<(K)

EXAMPLE 3.9. Let X = S! xS! xS! xS xS xS§% and G =Z¢ =
(a) x (B) where Z; = (a), Z3 = (B). Let G acton X via

a- (e, ... e (x,y,2))=(e'%, e, €% el % (x,y, -2)),
i6 i6 _ 7,10 i6 i6 6 6
B-(e%,...,e"%, (x,y,z)=(e", e, e, e, e, (x,y, z)).
Then

X(a) — {(eiH’ ei@ , i, 6194 € [ (X y, 0))} s T5
X (B = {(6,1'0l , et e , 10 , el@ it , (x,y, Z))} ~ T3 % S2,
XG — {(eia’ eia’ €ib, elb ib (X v, 0))} ~ T3
Let f: X — X be the G-map defined by
f(e, ... %, (x,p,2)

:( 120 1201 e129 1204 ei205 (X -y —Z)).
Then f has eight fixed points given by
Fix f={(m,m?,1,1,1,(n,0,0)m3=1; n=1, —1}.
Furthermore,

Fix fC=Fix f® = {(1,1,1,1, 1, m)m=1, -1}
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and Fix f{#) = Fix f. The ordinary Nielsen numbers are given by
N(f)=3; N(f@)=2; N(f=3; N(f9)=2.

Let us compute the minimal number of fixed orbits and of fixed
points in the G-homotopy class of f.

First of all, Fix f consists of three distinct essential (ordinary) fixed
point classes of f with Ng(fg) = Ne(f%) = N(f©) =2, Ne(fiw) =
0, Ng(ﬁﬂ>) =4 and Ng(ﬁl)) =0.

Furthermore, .#;((1)) = {(B), G}, #;((a)) = {G} = #;((B)),
Ms(G) =@ and

NOg(f6)=2; NOs(f)) =0; NOG(fip))=2;
NOG(f1)) =0 andall () ((K), (L)) =0.

Hence, by 3.7,

NOG(f) = NOG(fV) =¥ fg;{;’l) —240+240=4
(H)

and
mg(f)=mg(fM)=2-1+0-1+4-1+0-1=6

since [G: NK] =1 for all (K) € Iso(X).

We conclude that f is minimal in its G-homotopic class and f
has exactly four fixed orbits in which two lie in X¢ and the other two
lie in X(g,. Equivalently, f has two fixed points in X G and four
fixed points in X4, which form two distinct W () = (a)-orbits.

4. Computation. As we have seen in §3, the Nielsen type invariants
NOg(fy) and Ng(fy) are the basic ingredients in obtaining the min-
imality Theorems 3.2, 3.3 and 3.7. However they are in general, very
difficult to compute. In this section, we approximate NOg(fy) and
Ng(fa) by Nwu(fH) which can be computed under certain condi-
tions.

From Definition 2.6, for every (H) € ¥ we have

Nwu(f7) > NOg(fu)

and
Nwu(f?) > No(fn)/|WH|.
Therefore,

NOg(ffy< Y Nux(f*)

(H)<(K)esF



164 PETER WONG

and
Ne(ffy< > |WK| - Nwg(f5).
(H)X(K)eF
Together with 3.2 and 3.3, we obtain

ProproSITION 4.1. Let G and X be as in 3.1. For any G-map
fiX-X,
MOg(f!y< > Nwg(f%)

(H)<(K)eF

and
Mg(fu) < IWH|- Nwu(f7).

For the minimal number of fixed points, we obtain from 3.7 the
following

PROPOSITION 4.2. Let G and X be as in 3.7. For any G-map
f: X — X and (H) € Iso(X),

mg(fH)> > [G:K] Nwx(/5).

(H)<(K)€lso(X)

Let W be a finite group and Y be a connected compact W-ENR
with universal cover Y. Let #: Y — Y be a W-map. Fix a lift
h:Y —Y of h. Recall from n §2, there is a subgroup W C Homeo( Y )
covermg W . For every pe W there exists a unique element @ (7) €
W such that ow(H)h = h Thus we obtain a homomorphism ¢y :

W — W . Note that any hft of h is of the form ok for some a €
n=m(Y).

PROPOSITION 4.3. Two lifts ah and Bh are conjugate if, and only
if, there exists 5 € W such that B = japw (%) .

Proof. The lifts ah and Bh are conjugate iff fh = jahy~! for
some y e W

& ﬁily = jah
& Bow(9)h = joh
~ :quW(f)) = ?a
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DEFINITION 4.4. The group W actson 7 via a — Yapw (7). De-
note by R(pw , m) the set of orbits of this action, called the set of W-
Reidemeister classes of gy on n. When restricted to n, gpw|n: 7 —
7 and hence the Reidemeister action reduces to the ordinary one stud-
ied in [FH].

REMARK 4.5. It follows from 2.2 that W (nFixah) = W (nFix gh)
iff B = Japw(9)~! for some ¥ € W . Hence there is a one-to-one
correspondence between the set of W-fpcs determined by [4] and
R(ow, m).

DEFINITION 4.6. Let

Jw(Y) = {a € 7| there exists a W-cyclic homotopy
1y ~w 1y which can be lifted to 15 ~ a}.

It is straightforward to verify the following

ProrosiTION 4.7. Jy (Y) is a subgroup of J(Y), the Jiang subgroup
of Y. Wecall Jw(Y) the W-Jiang subgroup of Y .

DEFINITION 4.8. Let G be a compact Lie group and X be a com-
pact G-ENR. For every (H) € &, we assume that X# is con-
nected. We say that X is a G-Jiang space if for every (H) € &,
Jwa(XH) = n(XH).

In particular, if X satisfies the G-Jiang condition then X# is a
Jiang space for all (H) € & .

ProOPOSITION 4.9. Let G be a finite group acting freely on a compact
connected G-ENR X . If X/G is a Jiang space then X is a G-Jiang
space.

Proof. Note that the Jiang subgroup of X/G is given by

J(X/G) = {a € ﬂl(X/G)H CYCIiC homotople/G ~ IX/G
which can be lifted to 15 6"~ a}.
Since X & X/G is a finite cover, X = X/’ZJG Suppose that X/G is a
Jiang space. Given a € n;(X) = Cov(n: X — X), we identify a with
a = py(a) € m(X/G) = Cov(p o n7). There exists a cyclic homotopy
{he}: 1x/6 ~ 1x)c which lifts to {A;}: 1y ~@ (= a). Project {A}
on X to obtain a cyclic homotopy {4;}: 1x ~ 1x. It follows from
the Covering Homotopy Theorem that {#;} is a G-homotopy. O
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Since the lens space Lé”“ 1s a Jiang space and is the orbit space of
S2n—1 ynder the free Z, action, any odd dimensional sphere S2n-1 ig
a Z,-Jiang space. More generally, for any positive relatively prime in-
tegers p, ¢, Z, acts freely on L2"~! with orbit space L27~!. Hence
by 4.9, L2"~! is a Z,-Jiang space.

THEOREM 4.10. Let G be a compact Lie group and X be a compact
G-ENR. For each (H) € F , we assume that X! is connected. Suppose
that X satisfies the G-Jiang condition. For any G-map f: X — X
and (H) e &, either

(1) L(fH) = O:>NWH(fH) =0, or

(2) L(f*) # 0= Nwu(f?) =#R(pwn, 11(XH)) < o0,
where L(fH) is the Lefschetz number of fH: X7 — X1

Proof. Let (H) € F and f# be a lift of f#. Suppose that
Ny = WH(py Fifo) and N, = WH(py FixafH) are two distinct
W H-fixed point classes. Since X is a (G-Jiang space, there exists a
W H-cyclic homotopy {/;}: 1y# ~ 1x which lifts to {72,}: 1 Q.
Hence there exists a homotopy f# ~ afH covering a W H-cyclic
homotopy fH ~ fH . It follows from [J, 1.3.10] that I(f¥, N}) =
I(f#, N,). Since o is arbitrary, we conclude that all W H-fpcs
have the same index. By the normalization property of the Lef-
schetz number, L(f#) = S I(f", N) where N varies over the set
of WH-fpcs. Thus, if L(f) = 0 then every W H-fpc is inessen-
tial. If L(f¥) # 0 then every W H-fpc is essential and hence by 4.5,
Nwu(f?) =#R(own, 11(XH)). 0

REMARK 4.11. Note thatif Ny 5 (f7)=0 then the ordinary Nielsen
number N(f7) = 0. Furthermore, a compact G-manifold X such
that X# is 1-connected for (H) € % is a G-Jiang space. Thus we
can deduce the main results in [Wi] and [V] from 4.10(1) together
with [FW].

In [K], Komiya showed that the fixed point index of f(7): x(H)
XH) is given by

(*) (S = Y x(G/K)-au)(f)

(H)<(K)

for some integers {a(x)(f)}.
In the case where G is a finite abelian group and X is compact ()
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reduces to
(#%) L(ffy= Y [G:K]-aux(f).
(H)<(K)€elso(X)

Together with 4.10, we obtain

COROLLARY 4.12. Let G be a finite abelian group and X be a
compact G-ENR such that for each (H) € Iso(X), XH is connected.
If X satisfies the G-Jiang condition, then for any G-map f: X — X
and (H) € Iso(X), there exist integers Iy (f) such that

Nwua(f?) - Iy (f) = > G K] ax(f)
(H)<(K)elso(X)
and
=gy L MK E)Nwal) - Tuy()
) (K)<(H)€elso(X)
where u( , ) is the Mobius function on Iso(X).

Proof. Since X is a G-Jiang space, by 4.10, all W H-fpcs are either
inessential or essential of the same index. We then have L(f7) =
Nwu(fH)-I gy (f) for some integer I z)(f) whichis 0 if L(f¥)=0.
The first equality is then established from (xx). The second equality
follows from the Mobius Inversion formula (see [A]). 0

We conclude this section by relating some of the equivariant Nielsen
invariants to the ordinary Nielsen numbers {N(f7)}.

Recall in 4.4 the Reidemeister action of W on n via a —
Japw (7))L, Let Tw(a) = {J € W|japw($)~! = a} be the subgroup
of elements that act trivially on x.

LEMMA 4.13. Let @ € n. Suppose that Tw(a) C n. If B =
Japw (7))L, then (o) # (B) unless 7 € n where (5) denotes the
ordinary Reidemeister class of 6 € n.

Proof. If B = oa(pw|n)(a)~! for some o € n then
papw (7)! = oapw(0)”!
= a=(6"")apw(c 9"
=0 YeTycn
=>yeEm. O
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THEOREM 4.14. Let G be a finite abelian group and X be a com-
pact G-ENR such that X* is connected for every (H) € Iso(X).
Let f: X — X be a G-map. Suppose that for each (H) € Iso(X),
J(XT) = my(X*), Twu(o) C m(XH), Yo € my(XH), L(f7) #0
and Tg<x) 15 injective for all (H) < (K) € Iso(X). Then for each
(H) € Iso(X),

[G: H]- NOG(fu) = No(fu) = “((H), (K)N(f5).
(H)<(K)€Elso(X)

Proof. Since G is abelian, X5y = Xy and X7 = U<y Xk
for (H) € Iso(X). Since every WK-fpc is a disjoint union of or-
dinary fixed point classes, J(XX) = n;(XX) and L(fX) # 0 imply
that all W K-fpcs are essential. From the Definition 2.6, N 0(;( Jx) =
N6(fx)/\WK|=Ng(fx)/[G: K]. Therefore, Fix /¥ =u lefK
and Fix fx is the union of exactly NOg(fx) many WK fpcs By
4.13, each WK-fpc is a disjoint union of |WK| = [G: K] ordi-
nary fixed point classes. Furthermore, since 7(x)<() injects for all
(K) < (H) € Iso(X), we conclude that any two ordinary fixed point
classes of f¥ from two distinct W H-fpcs must be contained in two
distinct ordinary fixed point classes of fX. Thus,

> NOg(fu)-1G: Hl= Y No(fu).

(K)<(H) (K)<(H)

Applying the Mobius inversion formula to the equality above com-
pletes the proof. O

REMARK 4.15. Since each X¥ is a Jiang space,
N(fH) =#Coker(1 - f)

where fH: 7 (X*) — 7;(XH) is the induced homomorphism. Thus,
the formula in 4.14 can be written as

[G: H]- NOG(fi) = No(fn) = Z u )) - # Coker(1 — f).

EXAMPLE 4.16. Consider the G-space in Example 3.9 as 75 x S2
Here let X = T3 be the first component with the same G = Zg action
as before. Let f: X — X be given by

f(els, ..., eifs) = (¢i20: o206, o=ifs =05 o=iby)



EQUIVARIANT NIELSEN NUMBERS 169
with
Fix f = {(0, 0*, (1, 1, 1)) |@® = 1}.

Note that N(f) =6, N(fl) =2, N(f#) =6 and N(f°) = 2.
One can easily check that for each (H) € Iso(X), X is a Jiang space,
L(f7) # 0 and T(H)<(k) 18 injective for all (H) < (K) € Iso(X).
Furthermore, Ty C n;(XH) for H € Iso(X). By 4.14,

Ne(fw)= Y,  w((H), (K)N().
(H)<(K)€elso(X)

For a finite cyclic group G and (H) < (K) € Iso(X), u((H), (K)) =
u(|K/H|) where u(n) is the number theoretic Mobius function of a
positive integer n. Hence,

No(f5) = n(D)N(f®) = N(f9) = 2;
No(fia)) = N(/*) + u(3)N(f%) =2 -2 = 0;
No(fig) = NP + u)N(fC) =6 -2 =4;
Ne(fiy)) = N(f) + #QQN(f ) + u3)N(fP)) + p(6)N (1)
=6—-2-6+2=0.
See [HPY, 3.8] and §5 for applications to periodic points.

5. Periodic points. We now relate the equivariant Nielsen theory
developed thus far to the Nielsen theory of periodic points developed
in [HPY], [HY] and [J]. We also outline a proof of a result announced
in [Ha] (also [J, II1.4.14]) concerning the minimality of certain Nielsen
type numbers for periodic points.

Let X be a compact connected ENR and f: X — X be a self map.
For any positive integer n, let

Y,=Xx---xX (n-fold product).
The cyclic group Z, = ({) acts on Y, via
C-(Xtyeees Xn)=(Xns X15oves Xn-t), X, €X.
We associate to f a Z,-map gr: Y, — Y, defined by
gr(X1s vy Xn) = (f(Xn), f(x1), ..., f(Xn-1)).
For any positive integer m with m|n,
Y,,Z'" AXx-oxX (n/m-fold product)

and
Fix g = {(x, f(x), ..., /""" (x))|x € Fix f*/"}.
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It is easy to see that there is a 1-1 correspondence between Fix g,
and Fix /. In particular, an f-orbit of a periodic point x of period
n (ie., {x, f(x),..., f"~Y(x)}, x € Fix f*) corresponds to the Z,-
fixed orbit of the fixed point (x, f(x),..., /"~ }(x)) of g,. Recall
from [J, I11.§4], a periodic point class of period » is a fixed point
class of f". A set of periodic point classes (of diverse periods) is
said to be f-invariant if it is a union of f-orbits. In fact, there is a
1-1 correspondence between the set of nonempty f-orbits of periodic
point classes and the set of nonempty Z,-fpcs of g, (here WH = Z,,
H = (1)). To see this, let f: X — X be alift of f where p: X — X
is the universal cover. Let f" = fo---of (n-copies) be the lift of f™
so that every periodic point class of period 7 is of the form p Fixa fn
for some o € m where n = Cov(p) = m;(X). Consider the lift g, of
gr given by

~

gr(x, oo ) = (f(Fa), f(R1), vy F(Enm)), € X.
We have the following commutative diagrams of liftings
¥ 1. x
p| |7
X — X
I
and

~ ~ o~ g <

Xx--xX=Y, — %,

| [J—

XX"'XX=Yn —’Yn

&

Let

@ (f") = { f-orbits of periodic point classes of period »}
= {S|S = {pFixaf", f(pFixaf"), ..., " '(pFixaf™)}}.

If S is the f-orbit of p Fixa f 7 for some o € 7, we associate it to
the Z,-fpc Zn(nFixa,&s) € FPCz (g7) Where ap =1Xx---xX1Xxa €
Cov(n)=mx---xm, ¢: t — n is the homomorphism corresponding
to f. Let p®)(a)=go---0p(a) (k copies).
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PROPOSITION 5.1. There is a function y,: 7 (f")—FPCyg (gy) given
by
Wn(@(pFixaf")) = Zn(nFix ay &)
where @ (p Fixaf") = f-orbit of p Fixaf".
Furthermore, the restriction
W {S€O(fM)IS # 2} — {N € FPCy (g/)IN # @}

is a bijection.

Proof. Let S € @(f") and pFixaf" € S. It follows from [J,
I11.3.3] that every element of .S has the form p Fix g f" = f*p Fix afr
for some 1 < k < n. To show that y, is well-defined, we need to
show that if pFixaf" and pFix /" € S then Z,(nFixa,g,) =
Z,(nFix Byy), ie., 37 € Z, such that B, = Ja,pz (5)~! (cf. 4.5).

Note that Z, acts on Y, via (%1, ..., %) — (Fn, Xis.en s Xnot)
so that the group Z, (cf. §2) covering the Z,-action on Y, is the
semi-direct product of 7 x --- X # and Z,. Furthermore, the homo-
morphism ¢z : Z, — Z, corresponding to the lift g is given by

0z (a1 X -+ X o) - £F) = (p(an) x @(01) X -+ X p(an_1)) - {¥
where ( is the generator of ~Z,, . N
Suppose that f*(p Fixaf") = pFixgf" for some 1 < k < n.
Then following [J, 111.3.3] we have
pFix Bf" = f*(p Fixaf") = pf*(Fixaf") = p Fix ffaf"*
= pFix p®(a) f* /"% = pFix p®(a) /7.
Thus there exists y € n such that # = yp*)(a)p(™(y)~1. Hence,
Bp=1x--x1xyp®(a)p™(y)~".
Let 7 = (yx---x @ D()-{"1 = (p(y) x---x p""D(y) x y) . Then
2e®(@)ppz, () =31 x - x 1 x 9B (a))pz, (7)™
=(1x-x1x 79" ()p™(y)~1) = B,

It follows then that (¢*)(a))y = {¥(1x- - xp®)(a)x---x1)pz ({¥)~!
and by applying ¢z k times to ay,, (1 x---x ®(a) x---x 1) is
¢z -conjugate t0 o .

Let

g (f")={Sead(f")IS # o}
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and
FPC; (g/) = {N € FPCz, (g/)IN # 2}

We will make use of the geometric characterization of nonempty
fixed point classes in the classical sense ([Br] or [J]) and in 2.4. If
(x, f(x),..., "Ux)) and (¥, f(3), ..., /"~ 1(»)) belong to the
same Z,-fpc then either they belong to the same Z,-orbit in which
case, y = fi(x) for some i or y is Nielsen equivalent to f/(x) for
some j. In both cases, x and y belong to the same f-orbit of a
periodic point class. This shows that ¢ is surjective.

Let S; # S, € ¢¢(f") and x;, x, be fixed points in S; and S;-
respectively. Since S; and S, are distinct, x; and X, cannot be
Nielsen equivalent. That they do not belong to the same f-orbits
implies that (x, ..., /" !(x;)) and (x3, ..., f*"1(xz)) must lie in
distinct Z,-orbits. Thus ¥ is injective. O

REMARK 5.2. Aclass N € FPC"’Z"(gf) does not contain any Z,,-fpc
for any m, m|n iff y;!(N) € @°(f") is the f-orbit of a nonempty
periodic point class of period # which does not contain any periodic
point class of period m . A periodic point class of period 7 is essential
iff the f-orbit containing it corresponds under ¥, to an essential Z,-
fpc. Thus, there is a 1-1 correspondence between the set of f-orbits
of irreducible (i.e., does not contain any periodic point class of period
m < n) essential periodic point classes of period n and the set of
essential Z,-fpcs of gy.

Recall from [J] that the height of an f-invariant set of periodic
point classes is the sum of the periods of the f-orbits in the set. The
Nielsen type number of period n 1is given by

NP,(f) = the height of the set of irreducible
essential periodic point classes of period #.

ProproSITION 5.3.

NP.(f)= Nz ((&r)))
where (1) is the trivial subgroup of Z, .

Proof. The set of irreducible essential periodic point classes contains
only periodic points of least period n = |Z,| while the corresponding
set of essential Z,-fpcs lie in Y"a) . The assertion follows from the
definitions of NP,(f) and Nz ((gr)(1)) and Remark 5.2 above. O



EQUIVARIANT NIELSEN NUMBERS 173
The Nielsen type number for the nth iterate is given by

NF,(f) = min{height of Q|Q is f-invariant and every
essential periodic point class of period m
with m|n contains at least one class from Q} .

We also let
P.(f) =Fix f* — | J Fix f™,

m<n

MP,[f]=min{#P,(g)lg ~ f} and
ME,[f]=min{#Fixg"|g ~ f}.

REMARK 5.4. First observe that

MPuf12 Mz ((8r)1y)  (cf. 2.8)

and
MF,[f1>mz ((gn)")  (cf. 3.6)
The minimality Theorem 3.3 together with 5.3 imply that

NP,(f) = Nz ((&r))) = Mz ((&)1)) < MPulf].

These inequalities may not be equalities since gy ~g & does not guar-
antee that ¢ is of the form g, for some 4 ~ f.

THEOREM 5.5 [Ha), [J, 1I1.4.14]). Let X be a compact connected
smooth manifold of dim X > 5. For any self map f: X — X and for
any positive integer n,

(1) MPn[f] = NPn(f),

(2) ME,[f]=NF.\(f).

Sketch of Proof. By the approximation theorem [J, I11.§3 Appendix],
we may assume without loss of generality that # Fix /" < oo and thus
#Fixgr < oo. Let x,y € Fix f* such that x and y are in the
same periodic point class but not in the same f-orbit. In other words,
x=(x, f(x),..., f}x)) and y=(y, f¥), ..., /"'(»)) belong
to the same Z,-fpc but not in the same Z,-orbit. If «: [0, 1] — X is
a path such that o(0) =x, a(l) =y and « ~h, f"a (rel endpoints)
then

a ~n, &rd (rel endpoints)

where a = (a, fo, ..., f"la) is a path in Y, from x to y and
h; = (k, fa, ..., f"1a). The proof of 3.1 suggests that we alter f
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inside a small euclidean neighborhood of a by employing the classical
Wecken method as in [Br, VIII.C] so that we can unite f’(x) and
fY(y) simultaneously for all i. The crucial fact (e.g. [Br, VIIL.C.6
p. 139]) is that {f"({*a)({*a)~"} be trivial in 7(Y,) = 711(X) x - - - x
m1(X). This is precisely the case when dim X > 5 because any two
loops are unlinked by general position. Hence the resulting Z,-map
in 3.1 can be taken in the form of g, for some 4 ~ f relative to the
complement of a small neighborhood of a U---U f" la. Then (1)
follows from the same argument as in 3.3. For (2), we can find 4 ~ f
such that

#Fix g, = mz, ((gp)'))
by 3.7. Thus,
MFE,[f1=mzg ((g)").
Let Q = Fix g, . Itis clear that Q is a union of f-orbits of periodic
point classes of diverse periods and that every essential periodic point

class of period m with m|n contains at least one class from Q.
Moreover, height(Q) = #Fix g, and thus (2) follows. o

6. Concluding remarks. In developing the equivariant Nielsen the-
ory in this paper, we restrict ourselves to compact G-ENRs X and
G-maps f: X — X. We can extend easily to the case f:V — X
where V is an open G-invariant subset of X and Fix f is compact
in V' by considering a restricted class of G-homotopies (e.g. [D4], [K]
and [W2]). We may also generalize in another direction to compact
G-ANRs (e.g. [HPY], [HY]). Furthermore, we may relax the assump-
tions on X by considering connected components X! such that

We showed in §5 how the Nielsen theory for periodic points is re-
lated to the equivariant theory. In particular, we established the equal-
ity NPu(f) = Nz ((gr))) in 5.3. It is easy to see that, for example,
4.14 is the equivariant analog of [HPY, 3.7].
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