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Let X be a compact subset of the plane and / a continuous func-

tion on X satisfying the equation 3 f = 0 in the interior of X .
It is unknown whether / can be uniformly approximated on X by

functions g satisfying the equation ER g = 0 in some neighbourhood
(depending on g) of X . We show that this is the case under the
additional assumption that f satisfies a Dini-type continuity condi-
tion.

1. Introduction. Let L be a constant coefficients elliptic differential
operator in R? . Given a compact X C R let H(X, L) be the closure
in C(X) of the set

{flx: Lf = 0 on some neighbourhood of X}.
It is clear that a function in H(X, L) necessarily belongs to
h(X,L)=C(X)Nn{Lf =0 on the interior of X}.

The uniform approximation problem for the operator L consists
in characterizing those X for which H(X, L) = h(X, L). Since
h(X, L) = C(X) if and only if X is nowhere dense, our problem
restricted to nowhere dense compact sets becomes that of describing
those X for which H(X, L) = C(X).

A complete solution for L = A (the Laplacian) was independently
obtained in the forties by Deny [2] and Keldysh [6] using a duality
approach relying on potential theoretic methods. Denoting by Cap
the Wiener capacity of classical potential theory, their result can be
stated as follows. ‘

THEOREM (Deny-Keldysh). The identity H(X , A) = h(X , A) occurs
if and only if one has Cap(B\X) = Cap(B\X) for each open ball B.

Vitushkin [11] solved in the sixties the problem for L = 8 (the
Cauchy-Riemann operator in the plane) introducing his far reaching
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constructive scheme for the approximation, based on a localization
procedure and the so called matching coefficients technique.

Let o stand for continuous analytic capacity (see [3] or [11]). We
then have

THEOREM (Vitushkin). The identity H(X ,0) = h(X, 0) occurs if
and only if one has a(A\X) = a(A\X) for each open disc A.

In spite of the formal analogy between the above two statements, no
unified proof of them has been found yet. This fact helps to explain
why very little is known for other operators, in particular for A",
n>1,d>2 orfor 8, n> 1, in the plane.

In this paper the special case d = 2 and L = 52 is considered.
Although we have not been able to solve the problem we do prove a
result which seems to be quite close to the most plausible conjecture
one is able to formulate.

THEOREM. Let X C C be compact. Then each Dini-continuous
function in h(X,8°) isin H(X,8").

Conjecture. For each compact X C C one has
(1) H(X,8)=h(X,8).

To understand the conjecture one must realize that the capacitary
conditions in the Deny-Keldysh and Vitushkin theorems arise because
the fundamental solutions of the involved operators are unbounded

functions. This is not the case for the fundamental solution 1Z of

52 and so we get a first reason to rule out the existence of capaci-
tary conditions on X necessary for (1). But it has been pointed out
[7] that one should also take into account the capacities associated to
continuous functions and the kernels given by the first partial deriva-
tives of the fundamental solution, for example, 1/z = 8(Z/z) and
Z/z* = —0(Z/z). One can easily check that these capacities vanish
on lines and thus no examples like those constructed by Hedberg [5] in
connection with the L? approximation problem for 52, 2<p<x,
can be used to disprove the conjecture (see §6).

We list now some particular instances in which (1) has been verified:

1. X is nowhere dense [10].

2. The complement of X has finitely many connected components
[1].

3. The inner boundary of X is countable [12].
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The interested reader is urged to consult [7] in which a formal ana-
log of the problem considered here is solved. In fact the scheme of
the proof of our theorem is parallel to that of [7]: there is a first con-
structive part exploiting a covering lemma due to Mateu and then a
duality argument in which the differentiability properties of certain
potentials play an important role. The Dini type condition allows us
to surmount the difficulties related to the bad behaviour of classical
operators (more concretely Cauchy and Beurling transforms) under
the supremum norm.

In §2 we state some known results and establish some notation to be
used later. Section 3 is devoted to the proof of a technical lemma. In
§4 we show how to approximate some Cauchy potentials of measures.
The proof of the theorem is presented in §5. To support the conjecture
we prove in §6 that (1) holds for the string of beads.

2. Background notation and results. In this section we establish
some notation and we recall some known facts to be used through-
out the rest of the paper.

A. Newtonian capacity. Newtonian capacity is the set function de-
fined on Borel sets £ c C by

(2) C(E) = sup || ull

where the supremum is taken over all positive measures g with com-
pact support contained in E and satisfying I—;_l xu <1 on E (or
equivalently, on C). In fact, one can besides require the continuity
of E * 4 without altering the supremum in (2).

There is a dual expression for newtonian capacity, namely

C(E) = inf ||4]

the infimum being over all positive measures A such that |—;| xA > 1
on E. From that it readily follows that ﬁ * A 1s finite C-almost
everywhere for all complex Borel measures A.

One can easily get a lower bound for C(E) in terms of Haus-
dorff content. Let A(¢), ¢t > 0, be a measure function (that is, non-

decreasing and continuous) of the form A(¢) = w(¢)t with

/w dt < oo

s(é):w(5)+/05@dz, 550,

Set
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Then
M"(E) < &¢(d)C(E)
where d is the diameter of E and M"(E) = inf}>; h(d;), the in-
fimum being taken over all coverings of E by squares of diameter
d;.
We refer the reader to [4] for a convenient account on newtonian
capacity.

B. A4 covering lemma. A family of discs (A;) is said to be almost
disjoint with constant N provided each point in C belongs to at most
N of the discs A;.

Given a set £ and a disc A with radius & we say that A has the
three points property (with constant 7, 0 < < 1) with respect to £
if we can find points z;, z, and z3 in AN E such that |z} — z5| >
né and d(zs, l(zy, z;)) > nd, where [(z;, z;) is the straight line
through z; and z,.

The relevance of this notion in this paper is due to the fact that it
allows us to produce a function annihilated by 8% off a disc and with
a given expansion at co up to order 2. More concretely we have

2.1. LEMMA. Let 6 >0 and O <n< 1. Let z|, z,, z3 be three
points satisfying, for some positive constant C,

|Zj—Zk|SC5, j,k:1,2,3,
and
min{|z, — 25|, d(z3, I(z1, 22))} > 19
Assume ag, ay, by € C and

lag| < Cw, |ayf, |bi| < Cow,

for some w > 0. Then there exists a function g satisfying 52g =0
on C\{zy, z3, z3},

z 1, z 2
g(Z)=00;+a1;b1;+0(|Z| ), as z — oo,

and
llglloo < C’7—27~U-

REMARK. In our application of the above statement, w will be
w(d), the modulus of continuity of the function to be approximated,
and C and 7 constants depending only on w(J).
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Proof of 2.1. Set g = Z x u, where pu = 410, + 429, + 436, and
the coefficients A; are chosen so that g has the required expansion
at oo. 0

2.2. LemMA (Mateu [7]). Let h(t) = tw(t) be a measure function
with w nondecreasing and satisfying w(2t) < Cw(t). Then for any
compact K C C there exist a finite family of discs (Aj) which can be
divided into two subfamilies (Af' ) and (A?) (the superscripts g and b
stand for good and bad) in such a way that the following holds (with
constants depending on w but not on K).

(a) K C U I A K

(b) For some A = A(w) > 1, (AA}) is almost disjoint (with constant
depending only on w).

(c) Each A‘J’f’ has the three points property (with constant depending
only on w) with respect to K .

(d) ¥, h(6%) < CM"(K), where 8¢ denotes the radius of the disc
AL,

J(c) For each disc A of radius ¢

> h(6?) < Ch(s).

Alca
REMARKS. 1. It is not difficult to realize that moreover one has
2 h
() >, w(3;)8} < COM(K).

2. It has been recently shown in [8] that is not possible, for A(t) = ¢,
to construct a family (A;) satisfying (a), (b) and (d) (with A? replaced

3. A lemma. In this section we give a proof of the following tech-
nical lemma.

3.1. LemMMA. Let w(t), t > 0, be a non-decreasing continuous
Sunction satisfying w(2t) < Cw(t) and fol Et@ dt < oo. Suppose that
(A;) is a finite family of discs with centers z; and radii 6; such that
(A4;) is almost disjoint for some 4 > 1. Then the following holds.

(i) For some constant C > 0

52
(3) 3" min <w(6,-), MJ-) <Ce(d), zeC,
J

|z = z;]?
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where d is the diameter of |J;A; and

(4) s(é):w(5)+/063§’—)dz, 5>0.

(ii) If moreover the family (A;) satisfies the packing condition

S w(8)8; < Cw(6)s,
AJCA

for each disc A of radius 6, then

(5) me (w(a) =z w f)Z‘jl) < Ce(d), zeC.

Proof. To prove (3) (and (5)) it is enough to assume z € 2D, D
being a disc of radius d containing U-A-. In fact if z ¢ 2D then

w(5;)6?

5)
me (w(& ), o IZ) Z lt(— S 252 < Cw(d)

where in the last inequality almost disjointness was used.

We argue similarly for (5) applying the packing condition to the test
disc D.

Fix then z€2D. Set J ={j:z ¢ AA;]} and J* = {j: z € 1A;}.

Thus 5 52
Zmln( ;;)(—]Z),lz> <#Jw(d).

To estimate the above sum over the indices j € J we proceed as
follows. Set u; = w(d;)x;({)dxdy, j € J, where x; stands for the
characteristic function of A;. Hence

wG) [ )

|z = zj]> ~ |z =7

w()d; du()
me( |Z—Z,|2)SC Z-Cp
where u =3 ic;u;. Write u(r) = u(A(z, r)). Then u(r) = 0 pro-

vided r is small enough, because z does not belong to the support of
u . Consequently one has

M:/Mdﬂ( +2/3d
0

z—CP P

and so
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Now it is clearly sufficient to show that
(6) u(r) < Cw(r)r?, r>0.

To get (6) one writes

u(r) =3 (A N Az, 1)

jeJ
<> w(d)nsi + > w(@dart =1+11,
6}§r 5}>r

where only indices j € J with A;NA(z, r) # @ are considered in the
above sums.
If §; <r then A; C A(z, 3r) and so

1< Y w(6)d; < Cw(r)r.
A,CA(z,3r)

If 6; >r then r > (A—1)d; and so Il < Cw(r)r’N, where N is the
number of indices j € J with J; >r and A;NA(z, r) # @. It turns
out that N can be estimated by some constant, because

4nr = length dA(z, 2r) > length | J(A; NOA(z, 2r))
J
>CY length A;N0A(z, 2r) > CrN.
J

This completes the proof of (i).
The proof of (ii) is essentially the same. One uses the packing
assumption in estimating the analog of the term I above. O

4. Approximation of some Cauchy transforms. This section is de-
voted to the proof of the following

4.1. THEOREM. Let X C C be compact and let u be a complex
Borel measure whose support does not intersect the interior of X and
such that (1/|z|) = |u| is continuous on C. Then if P = (1/z)+u and
Q = (Z/z?%) * u we have that

P,0,P? and PQeH(X,d).
ReMARK. The function P is continuous on X and analytic on )o( .

Although its modulus of continuity may vanish at zero as slowly as we
wish, some Dini type condition is implicit in the fact that (1/|z|) % |u|
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is continuous. It is not known whether a function f, continuous on X

and analytic on X, belongs to H(X, 52), even under the additional
assumption that f is the Cauchy transform of some measure.
The proof of 4.1 goes by duality. Let 4 be a complex Borel measure

on X annihilating H(X,3"). Then the potential F = (Z/z) * 4
vanishes on the complement of X and, on the other hand, we have

/P(z) di(z) = —/ e*z) di = _/EF(z)du(z).

It can be shown that F is continuous except at those points where

A has a positive mass [10]. This implies that F vanishes on (X)¢
except, eventually, on a countable set. B

Therefore, we are left with the task of proving that JF vanishes
on (X)¢ u-almost everywhere and this will be achieved by studying
ordinary differentiability properties of F .

4.2. LEMMA. Let A be a complex Borel measure and set F =
(Z/z) x A. Then F is differentiable in the ordinary sense except on
a set of newtonian capacity zero.

Proof. We have, in the distributions sense, 0F = (1/z) * A and
OF = —(Z/z%) * . Assume, without loss of generality, that A is
positive and let a be a point with |z|~! * A(a) < co. We are going to
show that

(7)  |F(z)-F(@)-a(z-a)-B(Z-a)|=0o(z]), asz—a,

where a = (—(Z/z2) *A)(a) and B = ((1/z)*A)(a).
To prove (7) we assume a = 0 and according to [9, p. 244] we write

|F(z) — F(0) — (az + fZ| <1+ T1+1II,

where

bl

Cl>2|ZI

/|C|§2|2| z-¢ (C)’

/¢|<2[z| C(M(C)l

( ¢ %) dA({) — (az+ Bz)
Z—

II =

and
I =
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Set A(r) = A(A(O, r)). Since the terms II and III are not greater than
A(2)z]), to take care of them it is enough to realize that A(r) = o(r),
which follows from

Ary<r /|c1< 1¢1"1 dA(g)

We must now estimate I. Fix { # 0 and apply Taylor’s formula to
the function j—:% around z =0 to get

nt SRR A [Edl
any Sl A CZ+0<ICI2)'

Using the definition of o and # we obtain

/ ¢! dml
1£1<2|z2|

N

"\e
LY

I <|z| +|z|

/ T2 dA()
1£1<2]z|

2 -2
+Clef /Mm da(0)

The first two terms can be estimated by |z f; <y, 1{]7" dA({) whichis
o(]z}) . To take care of the third it is enough to show that r [ dA(t)/1?
— 0 as r — 0. This follows from

©dMn | AR [P AQ)
) = / A0 g

) 13

and I’Hopital’s rule, which gives

limr/ A()dt_l M) . o
r—0 r r——>0 r

Proof of 4.1. Keep the notation in the argument following the state-
ment of 4.1. Let E stand for the set of points at which F vanishes
and has a non-zero ordinary differential.

Lemma 2.3 in [7] tells us that £ has o-finite length and conse-
quently zero newtonian capacity. On the other hand, the hypothesis
on u guarantees that u vanishes on sets of zero newtonian capacity.
Therefore VF =0 u-almost everywhere and so

/P(z)dll /aF Ydu(z
/Q YdA(z /BF(zd,u) 0.
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Since 8(P?) =2nPu,
/Pz(z) di(z) = —z/éF(z)P(z) du(z)=0.
To complete the proof of 4.1 we are going to show that
(8) /PQ di=— /EF(z)Q(z) du(z) + /aF(z)P(z) du(z).

Set G = %* 4 and consider regularizations 4, and F, of A and
F . Since F; is a smooth compactly supported function, one has

/Ples - —%/5G8G52Fe dxdy

~- [aR.Qau+ [3R(:36(:1306Gz).

The last integral above is equal to

2
l/ép;éga‘a‘a: l/ma (f—)
T A 2

1 — [ P?
and thus

(9) /Plegz—/EFeQdu+/8FgPdu.

To get (8) from (9) by letting ¢ — 0 one only has to apply the
Lebesgue dominated convergence theorem to the right-hand side of
(9), which is justified by the inequality
1

1
7 Al < Crpedial

and the fact that u vanishes on sets of zero newtonian capacity. O

5. Proof of the theorem. Let f € h(X, 52) be Dini-continuous on
X . We can extend f to a compactly supported Dini-continuous func-
tion on the whole plane C [9, Chapter VI] with modulus of continuity
w(d). Fix d > 0 and consider a J-Vitushkin scheme (A;, ¢;, f;) for
the approximation of f. This means that (A;) is an almost disjoint
covering of C by discs of radius 6, (¢;) is a partition of the unity
subordinated to (A;) satisfying |V'g;| < C5~/, 0 <1 < 2, for all

j.and fi=1Z4y 152 f. It turns out that f; is continuous on C,
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fi € h(X,3), |fille < Cw(3) and f = ¥, f;. Each f; has an

expansion outside A; of the form (we assume A; is centered at 0)
zZ b z b z

f;‘(Z)=C0—+—1+C1—2+"'+Z—Z+CnT+l‘+"‘ ,

where ¢, = 1~ 1(F" fi, z") and b, = @ fi» z""1Z), the brackets

meaning the duality between compactly supported distributions and

C* functions. From these formulas one easily shows that |c,| and

|bn| are estimated by some constant times ¢"w(J).

The goal of the next lemma is to find functions g; in H(X, 52)
whose expansion outside A; coincides with that of f; up to order 2.

5.1. LeMMA. Let A be a disc of center a and radlus 0 and ¢ €
CE(A) with |Vip| < Co, 0<l<2 Set fy=1 *qpafandletE

be the (compact) support of 0 fA. Then there exists gy € H(X, 9 )
such that ||gallec < Ce(d) and

(10)  |fa(2) - ga(2)| < Ce(6)6C(E)|z — a2, |z-al23d,
where €(3) is defined by (4).

Proof. We apply Lemma 2.2 to the set E and the measure function
h(t) = w(t)t, w being the modulus of continuity of f. We then get
a family of discs {A;} satisfying properties from (a) to (e) in 2.2 and
also (f) in Remark 1.

Take now ¢; € C3(24;), |Vip;| < C6~!, 0 <1 < 2, such that
> je;=1o0n{J;A;. Set

Fj= %g 9,0 fa= %—j— + 9,00 f,
so that fa = 37, F; and ||Fjllc £ Cw(d;). Let us call an index ;j
good or bad according to whether the disc A; is good or bad.

If j is a good index, then A; has the three points property with

respect to E C C\)O( , and consequently with respect to C\X . There-
fore, by Lemma 2.1 we can find G; € H(X, 52) satisfying |G|l <
Cw(d;) and Fj =G+ O(]z|?) as z — .

If j is a bad index, then G; € H(X, 3°) can be found [7, p. 310]
with [[G}lle < Cw(d;) and Fj = G, + O(|z|"!) as z — co.

Set Go=}_;G;. Then

[Galloo < 112 — Galloo + Cw ()
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and

< Ceg(9),

ZFG

J good

/2 = Galleo <

Y Fi-G,

j bad

o0
because of Lemma 3.1 and the properties of {A;}.

We need now to modify G, to get a g, satisfying (10). Assume
that the center of A is the origin and expand H = fy, — G5 at oo:

b z b Zz
H(Z)=’—1“+C1"—2+ Z—Z+Cn—z—n+—1+"'

To estimate b, and c, we must also consider the expansions of H; =
F; — G; (zj is the center of Aj):

b CZ-3; b}
Hi(z)=——+c —%H+  + ——;
—-zj  (z-1z)j) (z-12))
. T _F.
teop——L
"(Z-Zj)”+1

Recall that if j is good then b’ = ¢/ =0, so that

> b

j bad

| = < ) Cw(d))d; < CMM(E) < Ce(9)C(E),

j bad

where the last estimate comes from §2(A) and in the next to the last
inequality (d) of 2.2 was used. Similarly one gets |c;| < Ce(d)C(E).

For n > 2, n|c,| is equal to

=2 =2
(0°H, z")| <Y |(8°Hj, z")|.
J

Writing z"=3" o (;) 2] "(z—z;)™ , we can estimate |(52Hj , zM)|

by
n

> (0 )izm@ ;. |—n2( )izt ich.
m=1

Since c’ 0 for good indexes j we have

leal < €61 w(s; 5+E( )5” ’"Zw

j bad
Now properties (e) and (f) of the family {A;} give

len| < C2"1e(8)d" ' C(E).
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One proves the same estimate for |b,| arguing similarly.
Let u4 be a pos1t1ve measure, with support in E, such that T | * U

is continuous on C, |~Z—' *u <1 and 2||u|| > C(E). Set

P =~ e byl + 25 e (/)

Then [|P]lo < Ce(d) and P € H(X, ) according to Lemma 4.1.
Define gy = Gpo+ P. Then the expansion of fA—gr=fa—Ga— P
outside A is of the form

by .z by . Z
@) -ea(z)= S+ 5+ LGt

where b;, = b, — bn(P) and ¢, =c, - c,,(P) , by(P) and c,(P) being
the coefficients in the expansion of P. We wish now to estimate |b;|
and |c;| by C2"1g(8)6" 1 C(E), which is easy, because we have even
better estimates for |b,(P)| and |c,(P)|. For example

len(P)| = < 8" by < C8"'e(6)C(E).

JER RIS

Therefore for |z| > 36 we get

fa(2) — ga(2)| < ) C2"71e(8)6" ' C(E)|z|™" < Ce(6)§C(E)|z| 2,
n=2

and this completes the proof of the lemma. o

We go back now to the proof of the theorem. We used a J-Vitushkin

scheme to express f as ), fj. Fix j. Let E be the support of 3 fi
and let y = C(E). We sublocalize f; according to a y-Vitushkin

scheme (D, ¥, Fr), where F = L2+ w3 f; = 124 y,0,3 7.

nz V4

Thus f; =3 Fy and ||Fy|le < cw(y). Apply now Lemma 5.1 to Dy
and F, to get G, € H(X, 8°) such that ||Gy]le < Cé(y) and

|Fe(z) — Gi(2)| < Ce(p)yC(Ep)|z — z¢ |72, |z — zx| > 37,

where z; is the center of Dy and Ej the support of 52Fk.

We would like at this point to apply a variant of a well known lemma
of Vitushkin ([3, 2.7, p. 202]). We present a proof of the result we
need for the reader’s convenience and also because the argument gives
a quick new proof of Vitushkin’s lemma.



392 JOAN VERDERA

5.2. LEMMA. Let E be a Borel subset of the plane with newtonian
capacity C(E) =vy. Assume that {A,} is an almost disjoint family of
discs of radius y and set E;, = E N Ay . Then for some constant C,

S C(Ey) < CC(E)
k

and

Z —q—EJi)—SC, zeC.

|z—2z,|>2y IZ - Zkl

Proof. By Holder’s inequality with exponents 3 and 3/2

1/3
C(Ey) CED\\ 3
2 S(Z< Y ) ) 2 |z — 23

|z—z,[>2p |2 = 2] k |2z, [>2y
2/3 1/3
C(Ey) dxdy
: (Zki C<E)) (y /lc_zm IC—ZP)
2/3
e C(Ex)
—C(E))

Let u; be a positive measure with support in E;, 2| ui|l > C(Ey)
and ;g <1 on C. For |z — z;| > 2y we have

duel0) _ . C(E)
|z =Cl = "z — z

and hence, setting u = Y, ux,

2/3
au(f) C(Ey)
o7 s <C+C (; ) .

The definition of C(E) now gives

2/3
C(Ex) C(Ex)
i scre(se®)

and so
ZC(Ek) < CC(E),
k

which completes the proof of the lemma. O
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We proceed with the last step in the proof of the theorem. We claim
that

< Ce(d

ZGk

Clearly

> G

k

Gell + Cw(d).

o]

Using the decay estimate (10) and 5.2 we get

k |z—z,|>3y

which proves the claim.
Set g;j = >, Gr and consider the expansions

b -
fi(z) - gj(z) = Z—i + 62% +0(|z|73) as z — oo,

k = =
by k_Z " %k

(z — zx)? ta (z— zz)3 0(|z|™%) asz—oo.

Fi(z) = Gi(z) =

We have by 5.2

sz

and similarly |c;| < Ce(6)C(E)?.
Let u be a pos1t1ve measure, with support in E, such that l [ *H
is continuous, TZT *u <1 and 2|yl > C(E).

Set P = (1/z) * (u/||ull) and @ = (2/z2) % (u/|lul}). Then

|b2| = <) " Ce(y)rC(Ex) < Ce(7)7C(E) < Ce(85)C(E)?,

k

byP%(z) = % +0(zI™%) asz— o0,
2P(2)Q(z) = cz% +0(z173) as z — oo,

162P?||eo < Ce(3) and |lc2PQllco < Ce(9).

The function h; = g;+b,P*+c,PQ belongs to H(X, 52) because
of 4.1. Since
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fi—hj=0(z|3) asz— oo,

ij—hj
J

< C max Hf} - hj“oo < Ce(9),
J

o0

-
J

and thus Y, ; is the desired approximant in H(X, 52) .

6. The string of beads. It is a set of the form X = D\(UJ, D) where
D is the open unit disc, the D, are open discs centered on the interval
I=[-1/2,1/2] such that D, c D, D,nD; =2 if k #1[ and Dy
is dense in /.

We wish to prove that (1) holds for X. Take f € A(X, 52) and
write f = 3, f; using a J-Vitushkin scheme (4;, ¢;, fj). If A;
does not intersect / then f; € H(X, 52) (by [2, Theorem 2]). If
A;NI # @, replacing A; by a disc of comparable size, we can assume
that the center ¢ of A; lies in I. Using two points in A; N (Uy Di)
at distance not less than §/2, we find, by a variant of 2.1, a func-
tion g; € H(X, ") such that ||flls < Cw(d) and fj(z) — g;(z) =
b/(z—-c)+0(|z|72) as z — c0.

We claim now that

(11) bl < Cw(8)a(AA\X).

Once this is proved we consider /; continuous on C, analytic off
a compact subset of Aj\X, ||A)[lc < Cw(d) and Aj(z) =b/(z—c)+
O(z|"2?) as z — co. Then K; = g;+ h; € H(X,8°), |Kjlloo <
Cw(d) and f; —K; = 0(|z|7%) as z — oo.

Consequently

< Cw(d),

Y. fi-K;

ANI#e

and so EA}ﬂ 1o /i + Yanrze K is the desired approximant in
H(X,3).

To prove (11), given & > 0, we cover (A; NI)\(Ug Di) by discs B,
of radius r; = ¢ such that Y, < 24 . It is not difficult to realize that
|UDy can be covered by a family of discs D;, of radii r;, < J such
that " r;, < C length((A;\X)NI). Write now {B;} U{D;,} = {D;*}
and consider a partition of the unity (¢,) subordinated to the above
covering and satisfying |Vip,| < C6~%, 0<i<2.Setd;=f;—g;.
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Denoting by z, the center of D}* we then have
a2 — =2 _
n|b| = (0°d;, Z)| = |(0°d;, Z — z)|
<23°1(@%d;, pu(z)Im 2)|

<2¥ / 1d,(2) — d(za)| | 1m 232 p(2) + Don(2)] dx dy

<SCY wErn+CY w@d)r,
/ m

< Cw(e)d + Cw(d) length (A\X)NT).
Letting ¢ — 0 we get
bl < Cw(d)y(AN\X)NT) < Cw(6)y(A\X) = Cw(d)a(Aj\X),

where we used that four times the analytic capacity y of a subset of
the line is equal to its length and that y and o coincide on open
subsets of the plane.
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