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Let @ be an irreducible root system (sometimes we denote ® by
®(X) to indicate its type X). Choose a simple root system IT in @.
Let ®* (resp. @) be the corresponding positive (resp. negative)
root system of ®. By a subsystem @' of ® (resp. of ®*), we
mean that @’ is a subset of ® (resp. of ®*) which itself forms
a root system (resp. a positive root system). We refer the readers
to Bourbaki’s book for the detailed information about root systems.
Among all subsystems of @, the subsystems of @ of rank 2 and of
type # A; x A; are of particular importance in the theory of Weyl
groups and affine Weyl groups (see the papers by Jian-yi Shi). In
the present paper, we shall compute the number of such subsystems
of @ for an irreducible root system @ of any type. Some interesting
properties of @ are also obtained.

1. The number A(a). Let (, ) be an inner product of the euclidean
space E spanned by ®. For any a € ®, we denote by |« the length
of a, by oV the dual root 2a/{a, a) of « and by s, the reflection
in E which sends any vector v € E to s,(v) = v — (v, a¥)a. For
a, pe®, wewrite a < f if B —a is a sum of some positive roots.

For a € ®, we define the sets D(a) = {f € ®|la + p € D},
D*(a) = D(a) N®*t and D (a) = D(a) N D~ . Let d(a) be the
cardinality of the set D*(«). Also, we denote by ht(a) the height of
a,le ht(a) =3 pcnap if a=3gcnapB with ag€Z.

For any ae®*, there exists a sequence & of roots oy = a, a3, ...,
ar in ®* such that o, € Il and for every i, 1 < i < r, we have
Qi1 > o = s(gl(a,-_l) for some J; € II. Such a sequence ¢ is called
a root path from o to IT1. We denote by h(a, &) the length r of &£.
We shall deduce a formula for the number 4(«a, &), from which we
shall see that h(«a, &) is actually independent on the choice of a root
path ¢ from « to II but only dependent on the root «.

Note that if the root system @ contains roots of two different
lengths and if o =3 4 agp is a long root of @ with a5 € Z then

each coefficient a; with B short is divisible by [|a|?/|8|*.

LEMMA 1.1. Let a =} gcnagB, ag € Z, be a root of ®* and let
& be a root path from o to I1. Then

155



156 JIAN-YI SHI

(1) If either all the roots of ® have the same length or a is a
short root of ® with ® containing roots of two different lengths, then
h(a, §) =ht(a);

(i) If a is a long root of ® with ® containing roots of two different

lengths, then
|1B)?
Z o |2 ag-

pell

Proof. Let a; = a, a3, ..., a, be aroot path from o to II. Then
in case (i), we have ht(a;) = ht{a;,1)+1 forany i, 1 <i<r, by the
fact that (o;, d) = 1, where ¢; € Il satisfies the relation J;(a;_;) =
a;. So assertion (i) follows immediately by applying induction on
ht(a) > 1. Next assume that we are in case (ii). Again apply induction
on ht(a) > 1. If ht(a) = 1, then a € I1 and the result is obviously
true. Now assume ht(a) > 1. Let & : )y = a, ar, ..., o be a root
path from « to II. Then &' : a5, a3, ..., a, is a root path from «,
to IT with ht(a;) < ht(a) and a; = s;(a) for some 6 € I[1. Note
that a, is a long root of ®. Write

a2=ZaQ,/3, ag € Z.
pell
Then by inductive hypothesis, we have
-y 181>
To2?
e leal

Since (a, §V) = |a|?/|6]> by the assumption s5(a) < o, we have

(12 (81
omer 5 5 g (g 90)s

per
B
This implies that
M, &) = hay, &)+ 1= 3 . ‘/” a1
ﬂEH
1B , | 9] ( lazlz) 18I
ZZ 79+ 5 (% + 5 zz_ia/f
gg} %) (% 0] P ]

by noting |a| = |ay]. 0
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We see from Lemma 1.1 that, for any a € ®*, the length of a root
path & from o to Il is only dependent on a but not on the choice
of the path £. So we can denote h(a, &) simply by A(a).

Let @V be the dual root system of @ ,i.e. PV = {aV|a € ®}. Then
IV = {a"|a €1} and ()" = {aV|a € ®*} are a simple root sys-
tem and the corresponding positive root system of ®V, respectively.
We can define the number 4V(aV) for any oV € (®V)* in the same
way as that for a root of ®. That is, #V(«") is the length of a root
path from oV to ITV in (®V)*.

LEMMA 1.2. For any a € ®*, we have h(c) = hV(aV).

Proof. For any J € I1, we have the following equivalence.
() ssla)<ae{a,d’)>0s (a",d) >0 55 (") <a".

Apply induction on A(a) > 1. When A(a) = 1, we have a € Il
and hence a¥ € IIV. So AY(aY) = 1, and the result is true in this
case. Now assume /A(a) > 1. Then there exists some J € I1 with
(a,dV) > 0. So h(ss(a)) = h(a) — 1. By inductive hypothesis, we
have

(2) h(ss(a)) = hY((ss(@))") = B (s5(a")).
But by (1), we have
1Y (s5(@¥)) = h¥(a") - 1.
Thus we get A(a) = hV(aV). O

2. The number d(a). We shall deduce a formula for the number
d(a) for any a € .

For a, p € ®, we call all roots of the form a +iff (i € Z) the
B-string through «. Let a € ®* and J € II satisfy the inequality
{(a, 6V) > 0. Then it is easily seen that o, a —d,...,a — {a, dV)J
is the J-string through a except for the case when «a 1is the highest
short root of the root system of type G, .

LEmMMA 2.1. Given a € ®t and § € II with {(a,dV) > 0. Let
o =sg(a). Then (1) D(d’) = s5(D(a)).

(i1) ss(D*(d/)) = D*(a) U{-3d}, provided that « is not the highest
short root of the root system of type G5 ;

(iii) d(¢/) =d(a)+ 1 under the same assumption as that in (ii).
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Proof. (i) B e D(d') & f+a' € ® & s5(s5(f)+a) e D < s5(B)+a €
® = 55(B) € D(a) & B € s5(D(a)).

(ii) First we shall show s5(D*(a)) C D* (/). Let p € ss(D*(a)).
Then B € D(o/) by (i). If g € D (¢/) C &, then by the fact
ss(B) € D*¥(a) C ®*, we have f = —d. Since a,a—0d,...,a —
(a, 6V)d is the J-string through o by the above remark, we see that
a+Ss(f) = a+d ¢ ® which contradicts the condition s5(f) € D*(«).
Thus we have B € D* (/) and so ss(D*(a)) C D¥(d'), i.e. D*(a) C
ss(D*(a)).

It is obvious that {—d} C s;5(D*(c’)). Thus it remains to show
the reversing inclusion. Now assume B € ss(D*(a’)). Then s5(B) €
D*(d/). This implies that ss(f) + o’ € ® and ss(f) € ®*. Hence
B+ a€® and ss(B) € . But then we have either g € D' («a) or
B = —d, which implies s5(D*(a')) C Dt (a)U{-d}.

(iii) This is an immediate consequence of (ii). O

REMARK. In the case when the type of ® is G,, let II = {y, d}
with J short. Then D*(20+7y) ={d,d+y}, DT (0+y)={J,20+7}
and J + y = s5(20 + y). Thus the results (ii), (iii) of Lemma 2.1 do
not hold in this case.

In @+, let o/ be the highest long root and let o be the highest
short root, where we stipulate o’ = o! in the case when all the roots
of ® have the same length.

THEOREM 2.2. Given a € ®t.
(1) If «a is short and if the type of ®@ is not G,, then

h(a) + d(a) = ht(a!).
(ii) If a is long, then

h(a) + d(a) = ht(c®).

Proof. First assume that the result has been shown to be true in the
case when a = o in (i) and a = o/ in (ii). Apply reversing induction
on A(a) < h(a®) in (i) and on %(a) < A(a!) in (ii). Now assume that
a is either short with A(a) < h(of) or long with A(a) < A(a!). Then
there must exist some d € I1 with (a, dY) < 0. So o = ss5(a) > a
with h(cd/) = h(a) +1. We see (¢/, dY) > 0. By Lemma 2.1(iii), we



SOME NUMERIC RESULTS ON ROOT SYSTEMS 159
have d(a’) = d(a) — 1. So by inductive hypothesis, we get

h(a)+d(a) = (h(a) = 1)+ (d()+ 1)
= h(d') +d(a)
_ [ ht(a!) if a is short,
B { ht(e®) if « is long,

by noting |of = |/|.

Thus it remains to show that assertion (i) is true for a = o® and
that assertion (ii) is true for a = o/ .

In the case when the Dynkin diagram is simply laced, we have
h(a®) = ht(a®) by Lemma 1.1(i). Clearly, d(a®) = 0. So our re-
sult is true in this case. Now assume that @ contains roots of two
different lengths. If ® has type B, then h(a®)=n, d(a’)=n-1,
ht(o!) = 2n -1, d(a!) = 0 and h(ad) = hV((&))V) = ht((a))V) =
ht(a®) = 2n — 2 by Lemmas 1.2 and 1.1(1). If ® has type C,, then
h(o)=2n-2, d(a’) =1, ht(o/) =2n -1 and d(a!) =0. We also
have

h(a') = h"((a')¥) = ht((a')¥) = ht(a’) = n

by Lemmas 1.2 and 1. 1(1) If ® hastype Fy,then A(a’) =8, d(af) =
3, ht(a!) = 11 and d(o!) = 0. By the same reason as above, we have

h(a!) = hY((a)Y) = ht((a!)") = ht(a*) = 8.
If ® has type G,, then d(o!) =0 and A(a!) = ht(a®) = 3. Thus in

all the cases, our result is true. =]

COROLLARY 2.3. Assume that the type of ® is not G,. Then for
any short root o of ®*, we have the equation

ht(a) +d(a)=h -1,

where h is the Coxeter number of ®.

Proof. We have h(a) = ht(a) by Lemma 1.1(i). Since ht(af) =
h — 1, our result follows immediately from Theorem 2.2(i). O

3. The number of certain rank 2 subsystems in ®. Let g(®) be the
number of subsystems of ® of rank 2 and of type other than A4, x A4, .
Then g(®) is also equal to the number of positive subsystems of &+
of rank 2 and of type # A4; x A;. In this section, we shall compute
the number g(®) for ® of any type.
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LeEmMMA 3.1. If the Dynkin diagram of ® is simply laced, then
1
(3) 8(P) =5 > da).

acd*

Proof. Under our assumption, the only possible type for a subsystem
of ®* of rank 2 and of type # A xA; is A, . Each of such subsystems
could be obtained by first taking a root o« € ®* and then taking any
root S in the set D*(a) to form a subsystem {«, f, a+ B}. Since
such a subsystem is obtained twice in the above way, this implies the

required formula (3) for the number g(®). O
Define
H(®)= Y ht(a), H(®)= ) ht(a) and
acd”t acd”
short
H'(®) = ) ht(a).
aed”

long

These numbers could be computed for any irreducible root system ®.

Define (') = ;m:l”—ln—), for any integers m, n,0<n<m.
LeEMMA 3.2.
Type of ® H(®) H (D) H! (D)

a2y | ("37)

By (n>2) n§n+1)6(4n—1) (n + 1) 4 (n + 1)

2 3
Cp (n>2) n(n+1)6(4n—1) n(n—1)6(4n+1) 02
Dy (n>4) | n=ln=l) -
Eg 156
Eq 399
Eg 1240
Fy 110 46 64

G 16 6 10
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Now we can compute the numbers g(®) for ® of types 4,, n > 1,
D,,m>4,and E;, i=6,7, 8 as follows.

THEOREM 3.3.

Type of @ g(®)
An (1> 1) (”;1>

D, (n>4) 4(’;)

Es 120
E; 336
Eq 1120

Proof. By Corollary 2.3 and Lemma 3.1, we have
1 1
g®) =5 Y dla)=5 3 (h—1-ht())

acd” acd?

= 3((h = V[@*| - H(®)).
Thus we have g(®(4,)) = $(n("3') - ("3?)) = ("}') for n> 1. For

n > 4, we have

§(@(Dn) = 5 (2= 3n(n— 1) - W=DE=D) 4 (1),

Also, we have g(®(Eg)) = 3(11-36 —156) = 120,

g(®(E7)) = %(17 .63 — 399) = 336,

and g(P(Es)) = 1(29-120 — 1240) = 1120. 0

Now assume that ® contains roots of two different lengths and that
the type of ® is not G,. Then the possible types for a subsystem @’
of ® of rank 2 and of type # A; x A; are 4, and B,. Let u(®) be
the cardinality of the set

{{a, B}|a, B € " have different lengths with o + g € ®*}.
Then it is easily seen that the following formula for g(®) holds.
1
(4) 8(®) =5 > d(a) - u(®).

acd*
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First let us consider the case when ® has type C,, n > 2. We see
that a subsystem @’ of ® has type A, only if all the roots in @’ are
short. This implies that for each long root g € ®*, the set D*(f)
contains no long root and hence u(®P) = 3> scp+ 1ong 4(B) - So by (4),
we get

§@) =5 Y de)- Y dB) =5 | X de)- Y d(p)

a€<l>+ ped* acd” ped*
long short long
1
=5 | 2 (h—1-ht() Z(z—l
acd”
short

by Theorem 2.2, Corollary 2.3 and Lemma 1.2. Then by Lemma 3.2,
we have

2(®) = 1 ((2n —Dnn—1)- nin-1)(4n+1) n(n- 1))
2 6 2
n(n—1)(4n -5)
5 .

Since the root system of type B, is the dual of the one of type Cj,,
there exists a bijection from the set of subsystems of the root system
of type C, to that of type B, by sending &’ to @ . Sucha bijective
map preserves the ranks of subsystems and also preserves the types of
them whenever their ranks are not greater than 2. This implies that
we also have g(®) = 211 6(4”'5 when @ has type Bj.

Next assume that @ has type F;. By Theorem 2.2, Lemma 3.2 and
Lemmas 1.1, 1.2, we get

2 d@) =5 | X (ht(ah) ~ht(@)) + Y (ht(a’) — ht(8"))

acd* acd* ped*
short long

= % (%@*I(ht(a’) +hi(a’)) - 2HS(¢))

1 /1

= 68.
Also, by a direct computation, we get u(®P) = 18. So by (4), we have
g(®) =68 - 18 = 50.
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Finally, it is easily seen that g(®) = 3 when ® has type G;.
Summing up, we get the following table.

THEOREM 3.4.

Type of @ g(®d)

B,orC, (n>2) ﬂ”———l%ﬂ_—s) .
F, 50

G 3

From the above discussion, we can deduce even more precise con-
clusion. We note that in any irreducible root system @, there exist at
most two different types of subsystems which have rank 2 and types
# Ay x Ay . Let g’(®) be the number of subsystems of @ of type A4,
and let g”(®) be the number of subsystems of ® of type B, or G,.
Then by Theorem 3.3, we have

§/(@(Ba) = &/(V(C,)) = g(@(Dn) =4 () forn 24

by noting that all the long (resp. short) roots of ®(B,) (resp. ®(C,))
form a root system of type D, . Hence we also have

8"(P(Bn)) = g"(P(Cn)) = g(P(Bn)) ~ &'(P(B))
_n(n- 1)(4n—5) 4(71)

o

On the other hand, we have

8" (P(Fy)) = u(P(Fy)) = 18 and
g'(P(Fy)) = g(P(Fy)) — &"(P(F4)) = 50 — 18 = 32.

Finally, it is obvious that g'(®(G;)) =2 and g"(P(G,)) = 1. Sum-
ming up, we have the following table.



164 JIAN-YI SHI

THEOREM 3.5.

Type of ® g'(®) | g"(P)

n n
m.coxa|+(2) [ (2) D
F, 32 18
G, 2 1

Proof. By the above discussion, it remains to show the result for
® being of types B,, or C,,, m = 2, 3. But this could be checked
directly.
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