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A complete solution is given to the classification problem for ori-
ented links which are closed three-braids. The Classification Theo-
rem asserts that, up to a finite list of exceptional cases, links which
can be represented by closed 3-braids are represented by a unique
conjugacy class in the group of 3-braids. The exceptional cases are
the expected ones (links of braid index 1 and 2) and an unexpected
infinite family of invertible links, each member of which has two 3-
braid axes. The two axes correspond to diagrams which are related
by "braid-preserving flypes".

An algorithm is given which begins with an arbitrary closed 3-braid
(or alternatively any link diagram with 3 Seifert circles), and converts
it into a normal form which characterizes its oriented link type in
oriented 3-space. One can decide from the normal form whether the
link is prime or composite, split or irreducible, amphicheiral and or
invertible. One can decide if the braid index is 3, 2 or 1. Using
related results of P. J. Xu, one may determine the genus and construct
a surface of maximum Euler characteristic with boundary the given
link.

It is proved that the stabilization index of a link which is repre-
sented by a closed 3-braid is < 1, i.e. any two 3-braid representatives
of the same link type become conjugate after a single stabilization to
B4.

1. Introduction. This manuscript is the third in a series of six papers
in which the authors have been studying the closed braid representa-
tives of links. The other five are referenced here as [B-M I, II, IV-VI]
In [B-M, I] the authors prove that, with an appropriate definition of
the complexity of a closed braid representative of a link, there are
finitely many conjugacy classes of braids of minimum complexity. In
this paper we work out in detail the first non-trivial example of this
"finiteness theorem": we prove that for links of braid index n < 3
there are at most two conjugacy classes of minimum complexity. We
then use this result to give a complete numerical invariant of link type,
and an algorithm to find it, starting with an arbitrary closed 3-braid.

The complexity function which was used in [B-M, I] relates to in-
compressible surfaces which are bounded by the link. These surfaces
have maximum Euler characteristic, among all oriented surfaces with
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boundary the given oriented link. It was shown in [Be] and in [B-M,
II] that when the link has braid index < 3 these surfaces are especially
simple. As a result, the combinatorial data which was introduced in
[B-M, I] to describe the surfaces reduces to a cyclic word in a special
set of generators for the braid group B^. The algorithm which we
give then not only solves the link problem for links of braid index 3,
it also (with the help of results in [X]) provides a surface of maximal
Euler characteristic with boundary the given link. The long range goal
of the series of manuscripts [B-M, I-VI] is to generalize these results
to arbitrary braid index n .

Let JSP be an oriented link type in oriented S3, let L be a rep-
resentative of S*, and let A be an oriented circle in S3 — L. We
say that L is a closed n-braid with braid axis A if there is a choice
H = {H# θ e [0, 2π]} oΐafibration H of the open solid torus S3-A
by meridian discs H# such that L intersects each H# transversally.
The number n is the number of points in L n H ^ . In 1923 James
Alexander proved in [Al] that every link could be so-represented,
in many ways and for many different values of n. The connection
between braids and links was further developed by Emil Artin. In
his 1925 manuscript [Ar] he introduced the n-string braid group Bn

(n = 1, 2, 3, . . .) and uncovered its structure. In 1935 A. A. Markov
studied the disjoint union B^ of all the Bn 's, describing in [Ma] the
equivalence relation in B^ which relates all of the open braids whose
closures have the same oriented link type. Two elementary equiva-
lences are needed: conjugacy in Bn and a stabilization move which
changes n. In 1968 Garside [Ga] solved the conjugacy problem in
Bn . This was a highly non-trivial step in the translation of Markov's
equivalence relation into an algorithmic solution to the link problem.

The role of "stabilization" in Markov's equivalence relation (and
indeed in many other areas of low dimensional topology such as Hee-
gaard theory, bridge representations of links, Kirby's Calculus, and
Waldhausen's study of the Heegaard splittings of S3) has been some-
what mysterious. The present investigation began with an attempt to
understand what is accomplished when one stabilizes, in the situation
of Markov's theorem. In the papers [B-M, I-VI] and subsequent ones
we hope to establish a version of Markov's theorem which does not
involve stabilization, i.e. in which one studies the braid representa-
tives of a link in Bn , for fixed n, rather than in the disjoint union
Boo of all of the braid groups. In this manuscript we do exactly that
for the first non-trivial case, n = 3. The classification of links which
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are closed 3-braids follows immediately, as there are several known
algorithmic solutions to the conjugacy problem in £3 ([SC], [G], [X]),
each yielding unique normal forms for conjugacy classes.

By the work of Yamada [Y] links which are defined by closed n-
braids have an alternative interpretation as links which are defined by
diagrams with n Seifert circles. A computer program is now available
[F] which begins with an arbitrary link diagram with n Seifert circles
and produces from it a closed n-braid representative (in fact, for n =
3 the program gives a 3-braid which is defined by the special generators
&\, &2> #3 which are introduced in this paper). We also have a second
program which yields normal forms for conjugacy classes in B$. Thus
our results are very concrete.

Two other special cases of Markov's theorem without stabilization
are proved in [B-M, IV] (which is a study of the n-braid representa-
tives of split links and composite links) and [B-M, V] (where the n-
braid representatives of the r-component unlink are studied for fixed
n>r). The pathologies which are investigated in the three papers [B-
M, III], [B-M, IV] and [B-M, V], all come into play if one attempts
to generalize the results of this paper to higher braid index.

To state our result, let σ\ and σ-i be the standard elementary braids
which generate the 3-string braid group # 3 . The central result in this
paper may be stated in the following way:

THE CLASSIFICATION THEOREM (Version I). A link & which is rep-
resented by a closed 3-braid admits a unique conjugacy class of 3-braid
representatives, with the following exceptions:

(i) £? is the unknot, which has three conjugacy classes of 3-braid

representatives, namely the classes of σ\σ2, ^f1^1 and σiσ^1 •
(ii) & is a type (2, k) torus link, k Φ ±\, which has two conju-

gacy classes of 3-braid representatives, namely the classes of o\θ2 and
kσ-\

σ2

(iii) J2? is one of a special class of links of braid index 3 which have
3-braid representatives which admit "braid-preserving flypes". These
links have at most two conjugacy classes of 3-braid representatives,
namely the classes of σ fσ |σ[σ | and σ fσ |σ[σ | , where p, q, r are
distinct integers having absolute value at least 2 and where δ = ± 1 .

The exceptional cases (i) and (ii) are the expected ones, but (iii)
was not previously recognized except in special cases (see [Mu]). It is

σΐσ2



28 JOAN S. BIRMAN AND WILLIAM W. MENASCO

Q 0

FIGURE 1.1: A flype
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FIGURE 1.2: A braid-preserving flype

an infinite family of counterexamples to the long-standing conjecture
that the map from conjugacy classes in 2?3 to oriented link types was
injective on links of braid index 3. The examples in (iii) are especially
important because they generalize to related examples for every braid
index n > 3, so we discuss them briefly.

The left picture in Figure 1.1 shows part of a link diagram (enclosed
in a dotted oval). The right picture shows a different projection of
the same part of the diagram. The left and right pictures differ by
a flype. It is easy to see that diagrams which contain regions which
are related by flypes, but are identical everywhere else, determine the
same oriented link type. Figure 1.2 shows a pair of closed 3-braid
projections of the same link, related by a braid-preserving flype. The
flype occurs inside the disc which is bounded by the dotted curve.
During the flype the link L cuts through the braid axis A. Notice
that the defining open braids have the form of the examples given in
(iii) above.

Figure 1.3 shows the same phenomena from a different point of
view, exhibiting the braid axis A' as it would appear threaded into the
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FIGURE 1.3

projection shown in the left picture of Figure 1.2. At the same time,
Figure 1.3 shows how flypes generalize to produce similar examples for
every n . The strands are labeled with integers n\, ni, ft 3, indicating
that the single strand which is illustrated is to be replaced by n\ > 1
parallel strands. Thus the braid which is labeled P in Figure 1.3 is
a braid on (n\ + πι) strands, and so-forth. The generalized braid in
Figure 1.3 has a very special form, even though P , Q and R are
arbitrary braids on the appropriate numbers of strands.

We wish to answer the question: when can S* be represented by
more than one conjugacy class in J53 ? We choose a representative L
of S*, and study the related geometric question: when can L have
two axes, A and A' for 3-braid structures, with Ar not isotopic to
A in S 3 - L ? We wish to show that this only happens under very
special circumstances. Since it is known exactly how many axes are
possible in the special cases when the braid index of 3* is 2 or 1, we
may assume (and shall do so from now on) that & has braid index
3. It will also be convenient to make the assumption that 3? is prime
and non-split, since composite and split links complicate the proof
even though it is well known (via the work of Murasugi in [Mu] and
Morton in [Mo, 1], or see [B-M, IV]) that composite and split links of
braid index 3 have unique conjugacy classes of 3-braid representatives.
Therefore, from now on, we assume that S* is prime, nonsplit and
has braid index 3.

The first step in our work is to attach extra structure to our braid
representatives. Let S be an oriented surface, with boundary an
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oriented link K of braid index n. We call S a Bennequin surface
(see Figure 1.4) if the following conditions hold:

(i) S has maximal Euler characteristic χ(S), among all connected
oriented surfaces with boundary the oriented link K.

(ii) K = dS is a closed n-braid relative to the braid axis A and
to some choice of a fibration H of the open solid torus S3 - A by
meridian discs.

(iii) S has a decomposition as a union of n discs, each pierced once
by A, joined up by half-twisted bands, each of which has exactly one
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saddlepoint tangency with a fiber of H . Each disc is radially foliated
by its intersections with fibers of H .

Bennequin surfaces were introduced (implicitly) in Proposition 3
of [Be]. They diίfer from the obvious Seifert surface S' spanned by
a closed n-braid in the following way: Both S and S' have K as
boundary, and both are a union of n discs D i , . . . , D n joined up
by half-twisted bands; however the bands in S' are usually limited to
ones which join Dz to D/+i for each / = 1, 2, . . . , « - 1, whereas in
a Bennequin surface S one may have half-twisted bands joining any
pair of discs D7 and D^ .

An arbitrary link Sf of braid index n may or may not have a
Bennequin spanning surface, but links of braid index 3 always do.
Even more it is proved in [B-M, II] that the following holds:

BENNEQUIN'S THEOREM (see [B-M, II]). Let <S? be prime and non-
split and have braid index 3. Let L be a representative which is a
closed 3-braid relative to the axis A. Let H = {Hθ θ e [0, 2π]} be
a fibration of the open solid torus S3 - A by meridian discs. Then
any connected, oriented surface F' of maximal Euler characteristic
with boundary L is isotopic to a Bennequin surface F with the same
boundary, relative to H.

A Bennequin surface for a closed 3-braid has a natural decompo-
sition as a union of three horizontal discs joined up by half-twisted
bands. We label the discs Di , D 2 , D3 and let α, denote a half-twisted
band which joins D/ to D/+i (mod 3) > in the standard disc-band de-
composition of F relative to H . See Figure 1.5 (next page). Then F
and L = d¥ can be described by a cyclic word:

in the symbols a\, a-i, a^ and their inverses, which records the se-
quence of half-twisted bands encountered as the polar angle varies over
the interval [0, 2π]. This word describes the surface F as an embed-
ded surface in S3 - A. It is a shortest such word because χ(¥) is max-
imal. This is one of the very nice features of Bennequin surfaces—the
braid word which describes L also describes a very nice spanning sur-
face F.

By hypothesis, our link Jϊ? has two axes A and A; for 3-braid
structures, with associated fibrations H = {Hθ θ e [0, 2π]} and
H' = {H^ φ e [0, 2π]} . If we arrange things so that L = OF, where
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F is a Bennequin surface relative to H, then Bennequin's Theorem
tells us there is an isotopy h$ of S3 , s G [0, 1 ], with /zn = identity
such that Ai(F) is a Bennequin surface relative to H' . Therefore,
by modifying the fibers of H as we modify F, replacing each h^ by
h\(Hθ), we obtain as an immediate corollary:

COROLLARY 1.1. We may assume that F is simultaneously a Ben-
nequin surface relative to both H and H'. Moreover, there is a sec-
ond shortest word W = W'{h), necessarily of the same length as
W = W(L), in generators b\y hi, Z?3 which describes the Bennequin
disc-band decomposition of F relative to H' .

We now describe the strategy of our proof of the Classification The-
orem, which is contained in §§2-6. Motivated by the results in an early
version of this paper, P. J. Xu has studied cyclically symmetric pre-
sentations of i?3 using the generators a\, a^, a^. She gives in [X]
an algorithm for finding a shortest representative for each conjugacy
class, and she also investigates the collection of all shortest words in
each conjugacy class. Using one of her results (see Lemma 2.2) we
show in §2 that we may choose among all Bennequin surfaces with a
given 3-braid as boundary ones with additional structure. Their defin-
ing words W and W have two properties: first, they have the shortest
possible syllable length, and second they use all three generators. We
call them "admissible" words.

In §3 we introduce additional geometric structure in the form of a
family Ω of essential discs which we call digons which "plug up the
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holes" in the standard disc-band decomposition of F . The foliation
of the digons by their arcs of intersection with fibers of H and H7

will be the key to our proof. The standard axis A is disjoint from
Ω and the foliation of each digon which is induced by the standard
fibration H is free of singularities in the interiors of the digons. The
non-standard axis A7, however, may pierce Ω repeatedly, and we
need to understand the relationship of A7 and the fibers of H7 to Ω.
We prove that S3 split along FuΩ is a union of three 3-balls Bi, B 2 ,
B3 and a solid torus T. We show that L has a natural "projection"
onto dΎ. We show that W can be determined from the projection
of L on <9T. We then prove that A7, like A, may be assumed to be
disjoint from the union of all the digons.

In §4 we study the foliation of the digons which is induced by the
fibration H7 of S3-A'. We show that its singularities are very special,
and begin to show (see Corollary 4.9) how knowledge of the foliation
enables us to draw conclusions about W.

In §5 we show that we may assume that A7 is inside T .
In §6 we use all of this structure to prove the Classification Theorem.
In §7 the Classification Theorem is translated into an algorithmic

solution to the link problem for links which are defined by closed
3-braids. The algorithm depends directly upon known solutions to
the conjugacy problem in B3. In addition to giving a unique and
complete invariant for links defined by closed 3-braids, the algorithm
answers other questions: Is J2?7 invertible or amphicheiral or both? Is
the braid index 3, 2 or 1? Is £? split or composite? With the help of
[X], one can also answer the question: what is the genus of £? ? We
also prove that the stabilization index for two 3-braid representatives
of the same link is one.

Knowing a complete invariant for a class of links such as links of
braid index < 3, it is natural to ask how this invariant compares to
"Jones invariants" i.e. the Jones polynomial [J] and its generalizations.
We call a link type invariant a Jones invariant if it is constructed from
traces in matrix representations of the braid group. The key prop-
erty is that the traces in question change in a very simple way when
one changes the defining braid by the moves which generate Markov's
equivalence relation. It is to be expected that Markov equivalence
will imply the existence of trace identities in any representation of #3
which admits a Jones invariant. We discuss this question briefly at the
end of §7. We prove that, for any N > 0, there exist infinitely many
sets, each of which contains N distinct links of braid index 3 which
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share the same 2-variable Jones polynomial. It would be important
to know whether any finite collection of Jones invariants suffices to
classify links of braid index 3.

Section 8 contains a brief discussion of the closed braid representa-
tives of composite links of braid index 3. They have unique conjugacy
classes of 3-braid representatives; however our proof would have been
more complicated if we had included them in the main body of the
proof. That was a hint to us of pathology which needed to be under-
stood. That pathology will be investigated in detail in the next paper
in this series, [B-M, IV], which studies the closed braid representatives
of split and composite links.

REMARKS. (1) While links defined by closed 3-braids are special,
they are also in many ways a rich class of links. Their "crossing num-
bers" are unbounded, unlike the links of < 13 crossings which have
served as a principal source of examples for knot theorists up to now
(e.g. see the Appendix to [Ro]). "Most" of them are non-amphicheiral
and non-invertible (we will make this precise in §7). Their geometry
includes many examples of hyperbolic link spaces. Their Alexander
and Jones and Kauffman polynomials are special (see [J], [Ta], [Bi, 2]),
yet they are not fully understood at this writing, suggesting interesting
new questions for investigation.

(2) The Classification Theorem is striking for its simplicity, but our
proof is long. This raised a question which has troubled us repeatedly
during the four years when the work reported on here was in progress:
Knowing the correct statement of the Classification Theorem, it seems
possible that there is a very easy proof. For, if one has a finite collec-
tion of link type invariants which sufficed to distinguish link type for
the special class of links which are defined by closed 3-braids, then all
one would need to do would be to show that braids in distinct conju-
gacy classes defined links with distinct invariants. Unfortunately we
do not know of any such collection. It would be interesting to know
if there is such a collection, and in particular if there is one which is
adapted to the normal form in this paper.
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2. Admissible words. In this section we begin the new work needed
for our proof of the Classification Theorem. Let <S?, L, F, A, A7,
W, W be as in § 1. We say that W is admissible if W is a shortest
representative of its conjugacy class in 2?3, also if among all shortest
words it has shortest syllable length k, and finally if it involves all
three generators a\, a2 > #3 non-trivially.

LEMMA 2.1. Given any closed 3-braid L which represents a prime,
non-split link of braid index 3, there is a Bennequin surface F with
d¥ - L such that W = W(L) is admissible.

Proof. We may assume that L is the boundary of a Bennequin
surface F with defining word W. From this it follows that W is a
shortest representative of the conjugacy class of L, for if not the Euler
characteristic χ(F) would not be maximal. Among all Bennequin
surfaces with boundary L, assume we have chosen ours so that the
syllable length of W is also minimal. Then either W uses all three
generators, in which case we are done, or (up to conjugation by a
rotation which cyclically permutes the generators) we may assume that
W = {aι)P^a2)

p2(aι)P^ " (a2)
p2s, where each pt φ 0 and s > 1. If

s = 1 then £f is the connected sum of a type (2, p\) and a type
(2, p2) torus link, so s > 2. Thus W contains a subword

U

of syllable length 4.
Since the assertion of Lemma 2.1 can be proved for any choice of

orientations on J& and on 3-space, we may if necessary replace W by
its inverse for the purposes of the proof, so we may assume without
loss of generality that p$ > 0. Now observe the following relation
holds:

(2.1) a2ax = a3a2 = axa3.

But then, we may apply the relation a2a\ = a\a?> repeatedly to the
subword (a2)

pi{a\) of U, replacing it by {a\){a{)pi. Thus U has the
equivalent form (a\)pι+ι(a^)p^(aι)p^~ι(a2)

p4. Since W is by hypoth-
esis a shortest word and has shortest syllable length, each of the four
syllables in the new expression for U must be non-trivial, and the
lemma is proved. D
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For future use we record the following consequences of the relations
(2.1):

(2.2) (ai)
δ(ai±x)

δ(aiγ = (ai±ι)
r(ai)

δ(ai±ι)\ δ = ±l, any r φ 0.

(2.3) ai = (ai+ι)-1(ai-l)(ai+ι)

(2.4) (fl/)p(fl/-i) = (fl/-i)(fl/+i)p, any p ,

(2.5) 01-iβΓ1 =fll"
1fl/+i

where ι = 1,2, 3 and subscripts are always understood to be mod 3.
P. J. Xu has taken a new look at the conjugacy problem in #3 and

has found a constructive procedure to determine all admissible words,
starting with an arbitrary representative of the conjugacy class of L.
She has proved the following important fact:

LEMMA 2.2 [X]. Any two shortest words W, W" which represent the
same conjugacy class in 2?3 are related by a finite sequence of shortest
words W = Wo, . . . , W/ = W" of shortest words, such that each W/
differs from W/_i by a single application of relations (2.1).

By Corollary 1.1 the surface F is a Bennequin surface with respect
to both H and H' . Therefore we can assign to it a second defining
word W in elementary braids b\, bi, 63 which describes the second
disc-band decomposition of F .

COROLLARY 2.3. We may assume that L = <9F, where F is a Ben-
nequin surface with defining words W (with respect to H) and W
(with respect to H'), such that both W and W are admissible.

Proof. By Corollary 1.1 we may assume that F is a Bennequin
surface relative to both H and H', with defining words W and W .
By Lemma 2.1, we may assume that W is admissible. If W7 is too, we
are done. If not, we know from Lemma 2.1 that there is a Bennequin
surface relative to H' which has an admissible defining word W ;. By
Xu's Lemma 2.2 the words W and W" are related via a sequence
of shortest words, with adjacent members in the sequence differing
by a single application of relations (2.1). Since each of the relations
in (2.1) can be realized geometrically by an isotopy of F (a simple
picture will show this), there is an isotopy hs of S3 taking F to a new
Bennequin surface Ai(F) which has the defining word W" relative to
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FIGURE 2.1

H'. As in the proof of Corollary 1.1, we may then replace each fiber
H<9 of H by h\(Hβ) in order to preserve the relationship of F to
H, to obtain a new surface with the desired properties. Thus we
could have assumed to begin with that both W and W were admis-
sible. D

We record and review notation which will be used throughout this
paper. Fibers in the standard (resp. non-standard) fibration will be
parametrized by polar angle θ (resp. φ). We will depict fibers of
H and H' so that their boundaries (the braid axes A and A') are
oriented clockwise, as in Figure 2.1. With this convention the polar
angle functions increase clockwise. The symbols Hθ, pj9¥iθ9 ... 9

(resp. Hφ, p'j, Fjψ, . . .) will be used to indicate a non-singular fiber,
a point where the axis pierces F, an arc of intersection of the fiber
with F, . . . in the standard (resp. non-standard) case. See Figure 2.1.
Braids will always be oriented top to bottom in our pictures, as in
Figure 1.5. The axes A and A' are oriented by the right hand rule,
relative to the given orientation on L. The outward-drawn normal
to F is also determined by the right hand rule relative to the given
orientation on L. Notice that with this convention the axes A and A'
pass from F~ to F + as they pierce F . A tangency of a fiber of H or
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H' is a positive (resp. negative) singularity if the sense of the oriented
normal bundle to F at the point of tangency agrees (resp. disagrees)
with the direction of increasing θ or φ. With this convention the
elementary braids depicted in Figure 1.5 are positive.

We will regard the surface F and its boundary, the link L as
being defined by two words: a standard word W in the elemen-
tary braids a\, ci2, a^ and their inverses, and a non-standard word
W' = W\b\, bι, 63) in elementary braids b\, b-χ, 63. There is
a homeomorphism h of S3 which takes A' onto A, fibers of FT
onto fibers of H , and L onto a closed braid Λ(L) about the axis
A. The braid Λ(L) will be defined, up to conjugacy, by the word
X = W'(a\, aι, Λ3). Since A' is not isotopic to A in S3 - L, this
implies that W and X represent distinct conjugacy classes in B3. As
we will see, most prime, non-split links of braid index 3 do not have
two such representatives, and none has more than two.

3. Digons. In this section we will introduce additional structure
into S3 - L, beyond that provided by a Bennequin surface F . The
additional structure will be in the form of a set Ω of discs called
"digons" which are properly embedded in S3 split along F . We will
prove that S3 split along F u Ω is a union of four components whose
closures are 3-balls Bi, B2, B3 and a solid torus T. (See Proposition
3.1.) We show that there is a natural and symmetric way to visualize
our 3-braid via a link diagram on the boundary <9T of the solid torus
(Proposition 3.2). We prove that the non-standard axis A' may be
assumed to be disjoint from all of the digons (Proposition 3.4).

We focus for the moment on the geometry determined by the stan-
dard axis A and fibration H . Consider the closure M of the 3-
manifold obtained by splitting S3 open along F, dM = F + U F~,
F + n F~ = L. A disc Δ which is properly embedded in M will
be called a digon if Δ is essential and if dA meets L in exactly
two points. We now construct a collection Ω = {Δj(fc) 1 < k < rx?,
1 = 1,2,3} of digons. Let {D, , / = 1, 2, 3} be the discs in the stan-
dard disc-band decomposition of F and let {b/(fc) k = 1, 2, . . . , r/}
be the bands which join discs D, and D / + i . The construction begins
with a rectangle • which is a model for a typical digon, its boundary
being divided into four arcs labeled e\, eι, ^3, 4̂ in clockwise order
about d • . We want to attach • to F along d • . To describe the
attaching curves it will be convenient to think of the bands as rectan-
gles, the singular leaves in the standard foliation being parallel to the
sides and through the center of the band. In Figure 3.1(b) we have
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FIGURE 3.1

sketched two arcs ciλ and ci2 on the band b/(fc). Our rules are:
Attach β\ to F+ along Dz between bz (fc) and b/(fc+l),
close to L.

Attach e2 to b, (fc+ 1) along ci2.

Attach ^3 to F " along D / + 1 , between b/(fc + 1) and
b, (fc), close to L.

Attach 4̂ to b, (fc) along c z l .
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to D i + 1

to D.•i-i

Example of an embedded dίgon

FIGURE 3.2

The decomposition of F into

subsets Γ, 1", 2} 3

FIGURE 3.3

The intersections of the attaching curves with a typical disc are shown
in Figure 3.1 (c). The visible side is F + . Figure 3.1 (b) and (c) use solid
and dotted arcs to distinguish places where the digons are attached to
F + from places where they are attached to F~ .

An example is given in Figure 3.2 of a digon as it would appear
when F is imbedded in 3-space. Notice that each digon is properly
embedded in M and that the digons are pairwise disjoint. In particu-
lar, we have attached Δz (fc) to Dz along F + and to D/+i along F~ ,
to insure that A((k) nΔ ί+i(/c) is empty.

Figure 3.3 shows a decomposition of the surface F into subsurfaces
which are defined via the structure introduced here. We will need
it later (see the discussion before Lemma 3.3 and the proof of the
lemma).

On the other hand, if we regard the digons as subsets of S3 rather
than as subsets of M, then distinct digons Δz(/c) and Δ ;(m) may
intersect, but only in a very special way:

(i) Int(Ai(k))nAj(rn) = 0.
(ii) dAi(k)ΠdAj(m) = 0 unless \k-m\ = 1, and both digons pass

through the singular point on the band or bands which they share.
(iii) dAi(k) intersects <9Δz±1(m) in either 0, 1 or 2 points on the

disc Di.

Each digon Δ/(fc) crosses L twice, once on bj(k) and once on
bi(k + 1). The crossover points will be called crossing dots. The
crossing dots on b/(/c) cut off a subarc of L which we have labeled
Lz(/c) in Figure 3.1(b). There is one of these arcs on each band, the
one on the band bj(k) (resp. bt{k + 1)) having its endpoints on the
digons Aj(k - 1) and Aj(k) (resp. Δ/(/c) and Δ/(fc + 1)). The two
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L;(K) — — ^ i / \ degenerate leaf
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crossing dots

degenerate leaf

standard foliation of Δ.(k)

FIGURE 3.4

crossing dots on the digon Δ/(fc) divide dA((k) into two sub-arcs,
one of which is in F + and the other in F~ . The subarc of L which
lies between the two crossing dots on b, (fc) is labeled L/(fc). There
is one such subarc of L on each band. We call these r, arcs the
undercrossing arcs (for reasons which will become clear shortly).

The fibration H induces a standard foliation of each digon Δ (fc).
The fact that F is in a very nice position relative to the axis A and
the fibers in H implies that this foliation may be assumed to be free
of singularities in the interior of Δ/(/c) (see Figure 3.4). There will,
however, necessarily be two degenerate leaves in the foliation. Notice
that the crossing dots are nearby to but do not coincide with the de-
generate leaves. A degenerate leaf can be in F + or in F~ . One of the
four possibilities has been illustrated in Figure 3.4. The undercrossing
arcs are of course transverse to the fibers of both H and H' .

PROPOSITION 3.1. S3 split along F u Ω has four open components.
Their closures are 3-balls B{f B 2 , B 3 and a solid torus T. The bound-
ary dBif i = 1 , 2 , 3 , is made up of r, digonsf a disc subset of F+
which contains D/+i and a disc subset of F~ which contains Df . The
boundary dΊ is a union of r - rx+r2 + r3 digons and subsets of F +

and F~.

Proof. We study how FuΩ meets a generic fiber Hθ of the standard
fibration H . See the top left picture in Figure 3.6 on p. 43, which is
the same as Figure 2.1 (a), but labeled to stress different aspects of the
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singular point

——.... _L —v—-

FIGURE 3.5

geometry. We have added the intersections of HΘ with the digons, i.e.
the three arcs λχθ , λ2θ , hθ By 0 U Γ r u l e s f° r attaching the digons to
F, the arc λiθ begins on the plus side of ¥iθ and ends on the minus
side of F z + 1 6 >. Thus, if θ is non-singular, Hθ split along HθΓ\(¥\jΩ)
will be four discs, labeled Biθ, B2Θ , B30 and T# . The 3-balls B!,
B2 , B3 and the solid torus T are defined to be the regions swept out
by B10, B2Θ, B 3 0 and Ίθ as θ is varied from θ\ to θ\+2π.

The only possible complication in the above description is that as
θ is varied we will pass through singular fibers and crossing dots,
so we need to be sure our four discs are always well-defined. Some
preliminary remarks are in order. See Figure 3.5. Let S\ be a surface
and S2(φ) a family of surfaces, with S\ transverse to S2(Φ) except
at φ — φo, where a saddle point tangency occurs. Then there are arcs
x and y in S\ ̂ ΛS2{φ) which coalesce as φ —• ΦQ. We show in Figure
3.5 a pair of joining arcs a(φ) and β(φ) and a disc A(φ) which the
joining arcs cobound. As φ —• φo the joining arcs and the disc shrink
to points. The joining arcs are a convenient way to describe the future
singularity.

Now see the eight snapshots in Figure 3.6. We have chosen to
illustrate a positive singularity of type a2 (which occurs at 0 = 0 5 ).
Our conventions dictate that for a positive singularity between the
disc D 2 and D 3 in the standard disc-band decomposition of F the
joining arc β (illustrated at θ\ as a dotted arc, but omitted from
succeeding pictures) runs between the negative sides of F20 and F30 .
As we approach the instant of the singularity, this arc shrinks to a
point. The arc λ2θ will also shrink to a point as we pass through
the band, because the attaching curves for the digons run through the
singularities of F . Therefore, just before the instant of degeneracy the
endpoint of λ2θ which is on F + must "migrate" from the + to the -
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FIGURE 3.6

side of F 2 0, as it has done in the passage from 02 to Θ4. A crossing
dot lies on the fiber at 0 3 . At the instant of crossover the digon will
intersect L, and the intersection point (illustrated earlier in Figures
3.1-3.4) is one of the crossing dots. The F-singularity occurs at θ5.
At #6 the arcs of F n Hβ draw apart again, but in a new way. At θη
the arc λ2β migrates across L a second time, now from the - side
to the + side of F 3 #, to restore the generic configuration at θ$. It
is clear from these pictures that the discs Bϊθ, B2Θ , B3# and Ύθ are
well-defined, even at 0 3 , θ5 and ΘΊ. The fact that the region swept
out by T# is a solid torus results from the fact that ΎΘΓ\ΎΘ> is empty
if θ φ θf. On the other hand, if we denote the subarc of A which
runs between pt and p / + 1 by A/, / = 1, 2, 3, then Biθ nB iθ» = A/
for all (9, <9'e[0,2π]. D
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Typical 2-sphere dB^

viewed from inside B.
Decomposition of F into subsets

Γ, 1", 2 and 3, viewed on dBj

FIGURE 3.7

PROPOSITION 3.2. There is a natural diagram for L on the bound-
ary dΊ of the said torus T, visible to an observer who is inside T.
The overcrossing arcs are on dT. The undercrossing arcs are the arcs
{Lt(k), k = 1, . . . , n:, ι = l , 2 , 3 } . They are on ΘBλ U dB2 U <9B3,
and thus are not visible to an observer who is inside T.

Proof, The link L is in <9T except for small ^-intervals about each
F-singularity, e.g. [0 3, θΊ] in Figure 3.6, when L penetrates into B2 .
A few moments reflection should make it clear that the part of L
which penetrates B2 is precisely the subarc we called L2(fc) in Figure
3.1(b). Figure 3.7 shows how these arcs look on a typical 2-sphere
<9B;. They are the connecting threads which join up the digons in a
circular ring. For later use, we have also illustrated in Figure 3.7 how
the decomposition of F into subsets 1', 1", 2 and 3 will appear on
0B f .

It follows immediately that if we stand inside T and look out onto
dT, we will see the link L minus the union of the r subarcs L/(fc),
k = 1, 2 , . . . , rxr, one for each crossing point in the diagram on dΊ.

EXAMPLE. When we defined the planar projection of the elementary
braids aγ, a2, <z3 in Figure 1.5 we showed them as they would appear
to a viewer who was standing outside T, between p\ and /?3 with his
feet on the plane of the paper and his head above the paper, and also
as they would look to a viewer inside T.
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FIGURE 3.8

In the pictures at the left in Figure 3.8 we have augmented the pic-
tures in Figure 1.5 by adding the digons and shading the two sides of
F . On the right in Figure 3.8 we show an example of a link diagram
on <9T. The reader is advised to return to Figure 3.8 later, as needed.
In future pictures we will omit the shading which we use here to high-
light F + and F~ . The rule is clear: parts of F which are to the right
(left) of the oriented link L, with orientations from the top of the
page toward the bottom, are in F + (F~).

One more illustration is in order. Figure 3.9 (next page) shows the
region which abuts on two digons, from two points of view: first, as
it would appear on 9T and second as it would appear on <9B;. The
undercrossing arc is missing from the former and visible in the latter.

We need to use one more feature of the geometry in order to de-
fine the complexity function. The union of all of the digon-attaching
curves (regarded now as curves on F and not on F + or F~) divide
F into a number of connected components. We call these subsets #1,
2 and 3 of F . They are defined uniquely by the following conditions:

(a) If a component is intersected by A it is in subset #3.
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viewed on dT
viewer insideT

viewed on dBj
viewer inside

Region abutting on two digons. viewed on dT and dB;

FIGURE 3.9

(b) If a component meets L, it is in subset #1. Also:
If it meets the undercrossing arcs, it is in subset 1"
If not it is in subset V

(c) If a component has empty intersection with A and L, it is in
subset #2.

Figure 3.3 illustrates the subdivision of F into subsets V, 1" , 2 and
3. Using it, we are almost ready to define our complexity function.
Notice that we have already standardized the geometry in the following
ways:

1. F is a Bennequin surface with respect to H and H 7 .
2. W and W are admissible words.
3. A is disjoint from the digons, by construction.
4. The standard foliation of the interior of Ω is singularity-free.

We now need to standardize the intersections of fibers of FT with the
digons:

LEMMA 3.3. Let Ω be the union of all the digons. We may assume
that

(i) The intersections of A! with F U Ω are finite in number and
transverse.

(ii) The non-standard foliation o / F u Ω is radial near each pierce
point

(iii) All but finitely many fibers H', ofH' meet F u Ω transversally.
Those which do not (the Ω-singular fibers) are each tangent to FuΩ
at exactly one point in the interior of Ω.
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(iv) Each component of intersection of a non-singular fiber H^ with
F {respectively with Ω) is an arc. There are no simple closed curves in
the foliation of ¥ (respectively Ω).

Proof. The arguments are identical with those used to prove Lemma
2 of [B-M, I]. All of the new modifications which are needed can be
achieved by isotopy of Ω, so they won't upset earlier standardiza-
tions. D

Finally, we have the long-promised definition of complexity. If S is
a set, we write \S\ for the cardinality of S. If X and Y are families of
surfaces in general position, we write |X Y| to denote the cardinality
of the set of tangencies between X and Y. Our complexity function
is a 5-tuple C = (c\, . . . , C5), defined as follows:

C\ — the number of syllables in the word W = W{a\, a2, #3),

c2 = the number of syllables in the word W = W'(b\, b2, b$),

C3 = |A / Π(FUΩ)|,

c4 = |A' Π (subsets #1" and #2 and #3 of F) | ,

c5 = |H / . (Fu(int(Ω)) | .

(Remark: The meaning of c 4 , and of our subsets of F, will become
clear later.)

We assume that we have chosen W and W to minimize c\ and
c2 . Our next proposition deals with the minimization of C3.

PROPOSITION 3.4. We may assume that the non-standard axis A! is
disjoint from all of the dίgons.

Proof. The proof will be based upon a study of the foliation of
a single digon Δ by its arcs of intersection with the non-standard
fibration FT. Call this the non-standard foliation of Δ. Let H^ be a
non-singular fiber of H' . If H^ is not one of the exceptional fibers
which is tangent to F, the set F n H^ will be a union of three arcs, as
in Figure 2.1(b). Figure 2.1(c) depicts the fiber H^ split open along
those arcs. We have labeled the sides of the split-open fiber with the
numerals 0, 0', 0", 1, 2, . . . , 6 so that sides 0 , 0 ' , 0" are subarcs
of A7, sides 1, 3, and 5 are subarcs of F~ n H^ and sides 2, 4 and
6 are sub-arcs of F + n H^ . There is a natural projection π from the
split-open fiber to the closed fiber and a "lifting" π~x. Thus we can
describe each leaf in Δ n H^ by the unordered numbers of the sides
towhich its endpoints in the split-open fiber belong. We call these
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numbers the name of the leaf. Define two leaves to be equivalent if
they are equivalent under one of the six symmetries of the split-open
fiber generated by the rotation which changes 0, 07, 0" to 07, 0", 0
and the flip which changes 0, 0', 0" to 0, 0", 07. Let [pq] denote
the equivalence class of the leaf pq in H^.

We want to prove that A7 does not intersect the digons. This is
equivalent to the assertion that no arc in H7^ n Ω has an endpoint on
A', i.e. leaves with name pq, where p or q is 0, 07 or 0" do not
occur. Up to equivalence, it suffices to prove that leaves of name Oq
do not occur, for q = 0, 07, 0", 1 , 2 , 3 , 4 , 5 , 6 . As the first step in
this direction we prove:

LEMMA 3.5. We may assume that there are no leaves in the equiv-

alence classes [00] and [01]. Also, choosing any fixed fiber H7^ we

may assume that there are no leaves of type [11] in this fiber.

Proof of Lemma 3.5. A leaf a (resp. α7, β) in the class [00] (resp.
[01], [11]) cobounds with a subarc of A7 (resp. subarcs of A7 U F ,
subarc μ of F n H7^) a disc d (resp. d', dπ) on H7^, as illustrated
in Figure 3.10. These leaves are in Ω Π H7^, so they lie both in some
digon Δ and on H7,, as illustrated. Figure 3.10 also depicts these

OUype [00]

1 type [01]

(3 type [11]

α, has type [00]

FIGURE 3.10
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p has type [11)

Possible complications in removing arcs of type [11]

Picture in 3-space when digons intersect

FIGURE 3.11

arcs and associated discs in 3-space, for types [00] and [01]. The
corresponding picture for type [11] is in Figure 3.11.

In the case of leaves of type [00], the only leaves which could
intersect the disc d are other leaves of type [00], so we may assume
that we have chosen a so that d is innermost. We may then push
A' across d to remove a from Δ n H^. This also removes leaves of
type [00] from nearby fibers of H' . Since our isotopy of A' reduces
C3, it reduces complexity. Thus we may assume there are no leaves of
type [00].

In the case of leaves of type [01], there could be leaves of type
[01] or [11] inside the disc df, so we begin by removing the latter.
Passing to Figure 3.11 we see that leaves of type [11] could intersect
a component of F Π H', on both the positive and negative sides of F,
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and in fact there are three ways this could happen. If the endpoints of
two such arcs β and β1 of type [11] do not separate one another, as
in the two left sketches, we simply choose β to bound an innermost
disc dπ, so that no other leaf of type [11] intersects the arc μ in
Figure 3.10. Assume this to be the case. Then, since β is an arc with
its endpoints on F± n Δ, it cobounds with a second arc μ! (also in
F) another disc dA C Δ, as illustrated. The two discs dπ and d& fit
together to give a disc dπ U d& with boundary μ U μ' a simple closed
curve on F, as depicted in Figure 3.11. Now, F is incompressible,
so d(dπ U dΔ) must also bound a second disc dp c F . The three
discs dπ^d^U dp form a 2-sphere S2 in S3 - L. Since S3 - L is
irreducible, this 2-sphere must bound a 3-ball B in S3 - L. We can
then remove the intersections by changing the fibration, pushing H^
across this 3-ball. After a finite number of repetitions of this argument
we will obtain a half-disc on H^ whose interior contains no leaves of
type [11].

We now examine the same move, when the endpoints of our arc
β of type [11] are separated by the endpoints of another arc β" of
type [11]. Notice that the only way this can happen is if β and β"
are on opposite sides of F, because digons are embedded, and by our
construction distinct digons have disjoint interiors. So the situation in
3-space must be as illustrated in the bottom sketch in Figure 3.11. It
is clear that our change in fibration will not increase the intersections
of fibers of H' with Δ', so in every case the complexity is reduced.

Returning to Figure 3.10, we may now proceed to remove leaves of
type [01]. We begin with an "innermost" leaf of type [01] that is, as
we proceed along a component of H ^ n F , starting at the A7 endpoint,
we choose the arc a' of type [01] whose F-endpoint is encountered
first. The disc dr in Figure 3.10 then meets no other leaf of type [01].
Pushing A' across d1, we remove the leaf of type [01] from this fiber
and also from nearby fibers. Since complexity is reduced, we conclude
that leaves of type [01] do not occur. D

Proof of Proposition 3.4 [continued). In view of Lemma 3.5, we are
reduced to showing that q φ 0', 0", 2, 3, 4, 5. Now, since W' is
admissible, we know that W' contains the letter (b^)±ι. So there is
an F-singularity of type (bs)±ι at, say, Φo. The joining arcs for a
singularity of type (b^)~ι run between the arcs we have labeled 2 and
6, whereas those for £3 run between sides 1 and 5. Thus q{φo) cannot
be 0', 0", 3 or 4 in either case,because such a leaf is an obstruction
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Effect of a type bt singularity on digon-crossing arcs

FIGURE 3.12

to the joining arc, also if (b3)~ι occurs it cannot be 5, whereas if £3

occurs it cannot be 2. Assume the former. Then g(Φo) must be 2. But
now Figure 3.12 shows how a singularity of type (/>/)"ι can result in a
change in name of other arcs. If q(φ) = 2 before an F-singularity of
type bjι, then after the singularity there will be a leaf with name 06.
But this is impossible by Lemma 3.5 because [06] = [01]. Similarly,
if an F-singularity of type b3 occurs at φ0 then the only possibility
is that q(φo) = 5, but in that case there will be a leaf with name 01
after the singularity, and again we have a contradiction to Lemma 3.5.
Thus we conclude that for ^-values which are close to φo there are
no leaves of type Oq, because all values of q have been ruled out.

Now notice that the points where A' pierces Ω are independent of
φ. Thus if there is a leaf with name Oq in some fiber H'φ, there must
be a leaf with name 0. . . in every fiber of H' . However we have just
shown that no such leaf can occur when φ is close to φo. Thus it
cannot occur at any other ^-value either.

But then, by symmetry, there are no leaves of type 0'q and 0"q
either. Thus A7 is disjoint from all of the digons. •

4. The non-standard foliation of the digons. We have shown that A'
is disjoint from all of the digons. Thus the entries C\, c2, c3 in our
complexity 5-tuple have now been minimized. In this section we will
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(a) degenerately
foliated region

qq 11

(b) Singularity of
type (p-q)-»,p=1,q=4or 6

FIGURE 4.1

(c) Singularity
of type [12]

deal with consequences of the minimization of c$. We have not yet
dealt with the consequences of the minimization of C4 . This will not
matter. The actual value of C4 depends upon the location on F of
the three points in A7 n F . In this section we will regard A' as rigidly
fixed. The minimization of C5 can thus be carried out, independently,
for each of the possible values of C4. Later, when we need to move
A' in order to minimize C4 we will be sure that no matter where it is
located, subject to earlier restrictions, we will be able to achieve the
standardizations of this section.

The central result of this section will be to show that the assumption
that C5 is minimal implies that the possible singularities in the non-
standard foliation of the digons are quite limited. See Figure 4.1. The
precise restrictions, which can only be stated in terms of the notation
set up below, are given in Proposition 4.8. We will end this section
with a result (Corollary 4.9) which shows that these singularities are a
key to the geometry, because we can use them to deduce an important
property of W.

As in §3, a leaf in the non-standard foliation of a digon has name
pq, where (by Proposition 3.4) p and q belong to the set {1, 2, 3, 4,
5, 6} . Its equivalence class under symmetries of H^ is denoted [pq].
There are 5 equivalence classes of leaves, listed in Table 4.1. Some-
times it will be useful to refine this classification by distinguishing
equivalence classes with different signs, where the signs + + , — and
H— distinguish the cases when the endpoints of a leaf are both in
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TABLE 4.1
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type
[22]

[24]

[14]
[12]
[23]

Sign

++
—
++
—
+ -
+ -
+ -

Members of class
22,44,66
11,33, 55
24,46,62
13,35,51
14,25, 36
12,34, 56
23,45,61

c?Δ+, both in dA or one in each. The 5 equivalence classes of leaves
divide into 7 subclasses when we consider signs, and these are also
listed in Table 4.1.

As the fibers of H' pass through Ω-singular or F-singular fibers the
names of the leaves will change. If two leaves have names mn and
pq before the singularity, and np and qm after it, we can describe
the singularity by the symbol " mn +pq —• np + qm ". We choose our

notation so that the labels m, n, p, q have that order on \ . The
surgery is then uniquely specified. The equivalence class of a surgery
[mn + pq -> np + qm] means equivalence up to symmetries of H^
and (if the symbol " —•" is replaced by * —•") reversal of the sense of
the fibration.

LEMMA 4.1. Singularities in the class [mq + qq
occur.

qq + qm] do not

Proof. See Figures 4.2 and 4.3 (next page). The top picture in Figure
4.2 shows the leaves which would be involved in the surgery, as they
occur on three fibers in the nonstandard fibration, at φ = φo, φ\ and
φ2. The middle picture is the singular fiber and the other two are
fibers just before and just after the singularity at s. The point p' is
on A', and the point ί(φ) is on the link L. The heavy arc joining
pf to L(φ) is on F Π H'±. The lighter arcs are on Δ Π H',. Two discs
d and δ have been labeled in the middle picture. The next picture
in Figure 4.2 shows the foliation of the digon Δ in the region under
investigation. Its boundary dA is on F, and we notice that the entire
region of interest is attached to either F + or F~, i.e. dA does not
cross L. We have labeled two regions of Δ as dr and δ', noting that
dd = ddf and d δ = dδf. The final picture in Figure 4.2 shows the
region ofinterest on Δ, embedded in 3-space.
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PICTURE ON A SEQUENCE OF Fl BERS

PICTURE ON THE DIGON PICTURE IN 3-SPACE

FIGURE 4.2

SAME PICTURES, AFTER THE MODIFICATIONS

F I G U R E 4.3

Let D = d U df or δ U δ'. Then D is a disc, and its boundary
<9D is a curve in F . Since F is incompressible, the curve dΌ also
bounds a second disc, say D', in F . Now D u D ' is a 2-sphere in
M = S3 - L, and since M is irreducible, this 2-sphere must bound a
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3-ball B in M . Then we can use B to isotope dr to d. Similarly,
we can isotope δr to δ. After the change we tip the discs d and
δ a little bit, to make the new digon transverse to the fibers of H' .
The effect of the isotopy is to eliminate the given singularity of the
foliation. See Figure 4.3. This reduces c$, keeping C\, . . . , C4 fixed.
Since C is by hypothesis minimal, this cannot happen. Notice that
these changes can't increase |H' (F U IntΔ') |, even if there is another
digon Δ' in the picture, because distinct digons which intersect always
do so in a very controlled fashion (cf. the bottom picture in Figure
3.11), because near a point which is in Δ n Δ ' the digons Δ and Δ'
will always be attached to opposite sides of F . D

A region T on a digon Δ is said to be degenerately foliated if it
is foliated by parallel arcs of decreasing lengths, with a single degen-
erate leaf as in Figure 4.1a. Our first observation is that degenerately
foliated regions sometimes tell us that there is a fiber H^ which is
tangent to F at a 0-value near the value at the instant of degeneracy:

LEMMA 4.2. (I) Let T be a degenerately foliated region on Δ. Sup-
pose that each nondegenerate leaf in T has name 24 (respectively 46,
62, 13, 35, 51). Then within a small φ-neighborhood of the instant
of degeneracy a braiding of type b^1 (resp. b^1 > b^1, b\, #2, 63)
occurs in F.

(2) If a leaf a in the foliation of a digon A has type [24] then the
side of A- a which does not contain the crossing dots is degenerately
foliated.

Proof. (1) See Figure 4.4 (next page), where we have depicted T as
a "tongue" which is orthogonal to some non-singular H^, its bound-
ary being glued to F . Typical leaves α, a', a" are shown. Let
{a{φ) φ e[φo, φ\]} be the leaves in the foliation of Γ, with a(φ0)
the given leaf of name 24 and a(φι) the degenerate leaf. (See also
Figures 3.6, which can now be reinterpreted as a series of pictures
on fibers of H', with the dotted arc which is labeled β there now
reinterpreted as our a(φo).) Each a(φ) has name 24 and each begins
and ends in F+. The length of a(φ) decreases monotonically to 0
as φ —• φ\. This means that near φ\ there must be an F-singularity
between arcs of F + n H^. By our conventions it is a singularity of

type ftf1.
(2) Let a = a(φ) be the given leaf of name 24. Then a divides

Δ, and since both endpoints of a are in the same component of
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FIGURE 4.4

dA — dA n L, the two crossing dots are on the same side of Δ split
along a. Let T be the closure of the region of Δ\α which does not
contain the crossing dots. Then T must meet Hψ transversally, as in
Figure 4.4, also the 2 (respectively 4) endpoint of a lies on the arc
F2ψ (resp. F4<^) of F + n H^ which runs out to p\ (resp. p'2). Now,
dT c dA is in F, so F necessarily forms a bridge over T, joining
¥2φ to F 4 0. But then, possibly after a small change in H', the region
T will be degenerately foliated. D

LEMMA 4.3. If a has type [22] then the side of A- a which does
not contain the crossing dots is degenerately foliated.

Proof. The assertion follows easily with the help of ideas used in
the proof of Lemma 3.5. Refer to Figure 3.10, and consider the leaf
β which is shown there. Suppose that both sides of Δ split along β
contain singularities of the foliation. Without loss of generality we
may assume that β is innermost on EP,, i.e. the interior of dπ has
empty intersection with Δ. Since the portion of dd& which is in F
lies entirely in F + , we conclude that d& cannot contain the crossing
dots. As in the proof of Lemma 3.5 we may construct a new digon by
discarding d& and replacing it by dπ. If dA contained a singularity
of the foliation then c5 would not be minimal. Thus d& must be
degenerately foliated. D

LEMMA 4.4. Surgeries between two leaves which have sign ++ (or
two leaves which have sign — ) do not occur.
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FIGURE 4.5

Proof. Let aγ and a2 be the leaves to be surgered. From Table 4.1
we see that each α, has type [22] or [24]. Let 7) , y = 1, 2, be the
region of Δ - αy which does not contain the crossing dots. Then 7)
is degenerately foliated, by Lemmas 4.2 and 4.3. Now <97) = α, U βj
where βj is in <9Δ+ for j = 1 and 2. There are two possibilities
(depicted in Figure 4.5):

(i) β\ contains β2 (or β2 contains β\)
(ii) β\ Π β2 is empty.

In case (i) the singularity is in T\, contradicting the fact that T\
is degenerately foliated, so this can't happen. In case (ii), after the
surgery we will have two new leaves of type [22] or [24], and one
of them will bound a region Γ3 which contains both T\ and T2 and
does not contain the crossing dots, and is not degenerately foliated,
contradicting Lemma 4.3. D

LEMMA 4.5. A-surgeries between leaves of sign ++ (or — ) and
leaves of sign H— do not occur.

Proof. Suppose that the surgery in question is pq + rs —> qr + sp ,
where pq has sign + + and rs has sign H—. Our first assertion is
that the surgery either begins or ends with a leaf in the equivalence
class [24]. For, suppose it does not. Then [pq] Φ [24], but [pq]
has sign + + or — , so from Table 4.1 we must have [pq] = [22].
Assume that pq = 22. Since rs has sign type H—, and since the
names 25, 12, 23 are ruled out by Lemma 4.1, we see from Table 4.1
that rs = 14, 36, 34, 56, 45 or 61. The six surgeries may therefore
be described as 22 + r4 -> 2r + 42 and 22 + r6 -* 2r + 26, where
r = 1, 3, 5 . Up to equivalence the latter is 44 + r2 —> Ar + 24, where
r is still 1, 3 or 5. Thus, up to equivalence we may assume that our
surgery produces a leaf of name 24.

By Lemma 4.2 the leaf with name 24 which is produced by the
surgery bounds a degenerately foliated region on Δ, and near the
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instant of degeneracy there must be a braiding of type b^1. Now,
there is no obstruction to changing the ίibration a little bit so that the
braiding occurs before the surgery. The effect of the braiding of type
b^1 is to change the names of the leaves which are involved in the
surgeries to 44 + rA —> 4r + 44 or 22 + rl -> 2r + 22. However, that
violates Lemma 4.1.

It remains to consider the case when the surgery both begins and
ends with a leaf in the class [24]. Up to equivalence, we may assume
that it begins with a leaf of name 24. Consulting Table 4.1, we see
that the surgery must be between our leaf and one of type [14], [12]
or [23], and on running through all the possibilities we see there are
exactly 2 which produce a leaf of type [24], namely 24 + 61 -+46 + 21
and 24+56 —• 45 + 26, and these two are equivalent up to a change in
the sense of the fibration, so we may assume our surgery is 24 + 56 —•
45+26. The argument now proceeds as before. By Lemma 4.2 the leaf
with name 46 which is produced by the surgery bounds a degenerately
foliated region, so the surgery must be followed by a braiding of type
b^1 - By a small change in fibration, we may assume that the braiding
occurs before the surgery, so the sequence may be assumed to be b^1,
2 6 + 16 —• 6 6 + 12. Reversing the order of fibration, this becomes
66 + 12 —> 16 + 26, &2. Now, the leaf 26 which is produced by the
surgery has type [24], so it bounds a degenerately foliated region and

so must be followed by a braiding, of type b^1, that is the sequence

must be 66 + 12 —• 16 + 26, b^1, £2 Changing the fibration, we
may reverse the order of the surgery and the first braiding, obtaining
the sequence bjι, 66+16—> 61+ 66, b^1 However, this violates
Lemma 4.1. D

LEMMA 4.6. Let Δi and Δ2 be the components of Δ split along a
leaf a of type [12]. Then (possibly after a small modification in H ;)
we may assume that either Δi or Δ2 is degenerately foliated.

Proof. Figure 4.6a shows a leaf a of type [12] as it appears on the
fiber Hφ. Let I J be the endpoints of a and let β be the arc of
F Π H'φ which runs between x and y . Then a U β is the boundary
of a disc D on H^ which is pierced once by the link L at the point
z .

Figure 4.6b shows the same leaf a on the digon Δ. It divides Δ
into subdiscs Δi and Δ 2 , with dAj = aU δj, j = 1,2, where δj
lies in F . The link L meets Δ twice, at the crossing dots wj c δj,
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(c) picture in 3-space

FIGURE 4.6

j = 1,2. The sub-arcs δ\+ and 62+ are in <9Δ+, while <5i_ and £2_
are in dA~.

Figure 4.6c puts the pictures in 4.6a and b together to give view
in 3-space. The disc Δi, together with a triangular region in F, is a
cone C\ on αUjS with vertex W\. The union of C\ and D is then
a 2-sphere S\ which is pierced twice by L, at w\ and at z . There is
also another cone C^ with vertex w2 on the other side of H^, with
d n C2 = α U β , determining a second 2-sphere S2 which is pierced
twice by L at z and w2. Let j = 1 or 2. Then £, divides 3-sρace
into two 3-balls? Bj and £) and one of them meets L in a trivial arc,
because by hypothesis L is prime. Suppose the notation to have been
chosen so that B\ ui?2 is the 3-ball which contains D. We claim that
L Π Bj must be unknotted for either 7 = 1 or j — 2. For, if L Π Bj
were knotted for both j = 1 and 2, then L n Ej would be unknotted
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for j = 1 and 2, and since L = (Ln£Ί) U (LnE2) that's impossible.
We assume the notation to have been chosen so that Li =LnB\ is

unknotted. This means that the triangular region of F with vertices
z, y, W\ is a disc. Let N be a neighborhood of Li in 3-space
which includes Δi . Then we can modify FT, if necessary, by pushing
the fibers up a little bit through N, to insure that Δi is degenerately
foliated. D

LEMMA 4.7 (cf Figure 4.1b). Every A-surgery between two leaves
in the foliation of a digon Δ may be assumed to be type pp + qq <->
PQ + QP > where one ofp,q is even and the other is odd.

Proof. Since every leaf in the foliation has sign + + , — , or —h
Lemmas 4.4 and 4.5 imply that the only surgeries which are possible
are ones which exchange a leaf of sign + + and a leaf of sign — for
two leaves of sign H— . Up to equivalence we may assume the leaf of
sign + + has name 22 or 24. Since there are six leaves of sign — in
Table 4.1, there are at most twelve surgeries which exchange a leaf of
sign + + and a leaf of sign — for two of sign H— . Our task is to
show that the nine surgeries 22 with 13, 35, 51 and 24 with 11, 33,
55, 13, 35, 51 do not occur.

The first observation is that the first three surgeries in our group
of nine are identical with the second three up to equivalence, so we
forget the first three. Also, we can eliminate the surgeries 24 with 13
and 35 because the leaves in question are not disjoint and therefore
cannot both appear on a single same fiber. Thus we are left with four
possibilities:

[24 + 11 -> 41 + 12], [24 + 33 -> 43 + 32],

[24 + 55 -> 45 + 52], [24 + 51 -+ 45 + 12].

We consider the first, second and last, choosing a new representa-
tive of the equivalence class so that the surgeries in question begin
with 12 + 41, 12 + 61, 12 + 45 respectively. (In the case of the sec-
ond surgery this requires us to reverse the sense of the fibration.) By
Lemma 4.6 the leaf 12 bounds a degenerately foliated region T on
Δ which contains one of the crossing dots. Since the degenerate leaf
in that region does not coincide with the dot (by our choices, in §4,
of the attaching curves for the digons) the region T necessarily also
contains leaves of type 11 or 22. By a small change in the fibration
the surgery can be changed to one between 11 or 22 and 41, 61 and
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45. However, since 11 has sign — and 22 has sign + + , while 41,
61 and 45 all have sign H— this contradicts Lemma 4.5.

The surgery 24 + 55 —> 45 + 52 remains. The leaf 24 divides Δ
into two regions, one of which contains the singularity of the given
foliation. The other one must be degenerately foliated by Lemma 4.2.
Moreover, there is a braiding of type b\1 at the instant of degeneracy.
By a small change in the fibration, we may assume that the braiding
occurs before the surgery. This braiding changes the leaf of type 24 to
a leaf of type 44 or 22 and leaves the leaf of type 55 unaltered. The
new surgery is 44 + 55 -> 45 4- 54 or 22 + 55 -+ 25 + 52. Each is
equivalent to one of those given in the statement of Lemma 4.7. D

We may now simplify our notation. The symbol [pq + rs <-• qr+sp]
which we originally needed to describe the digon singularities has now
been replaced by the simpler symbol [pp + qq <-* pq + qp]. We now
simplify it still further to [p - q], with the symbols [p - q]~* and
[p - q\~ used to distinguish the cases [pp + qq —• pq + qp] and
[pp + qq <— pq + qp]. The symbol [p - q] means either [p - 1]~* or
[p - qY~ . Similarly, we have representatives (p - q), (p - I)"* and
(p - Q)4^ of [p - q], [p - q]~* and [p - qY~. Using this notation, the
results of this section are summarized below.

PROPOSITION 4.8. (1) A leaf of type [12], [22] or [24] necessarily
splits off a degenerately foliated region on a digon, as in Figure 4.1a.
In the cases of types [22] and [24] the region is the one which does not
contain the two crossing dots.

(2) If a digon is not standardly foliated {Figure 3.4) then its singu-
larities are one of the following three types:

type [1 - 2], with representatives (1 - 2), (3 - 4) and (5 - 6);

type [1 - 4], with representatives ( 1 - 4 ) , (3 - 6) and (5 - 2).

type [1 - 6], with representatives ( 1 - 6 ) , (3 - 2) and (5 - 4).

(3) If a singularity of type [ 1 - 4 ] or [ 1 - 6 ] occurs in a digon Δ,
then a neighborhood of the singular leaves in Δ is foliated as in Figure
4.1b.

(4) If a singularity of type [1-2] occurs in a digon Δ, then it is the
only singularity in Δ, and all of Δ is foliated as in Figure 4.1c.

Proof. The only part which is not simply a restatement of earlier
results is assertion 4, and even that assertion is essentially obvious.
For, assume that the given singularity is 11 + 22—> 12 + 21. The
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leaves of type 11 and 22 each divide Δ into two pieces, one of which
contains the two crossing dots. By Lemma 4.3, the side which does
not contain the dots is degenerately foliated. Two leaves of name 12
are produced by the surgery. Each divides Δ into two regions, one
of which contains the singularity. By Lemma 4.6 the other must be
degenerately foliated. But then, all of Δ is foliated, with exactly one
singularity. D

We are now able to use information about the foliation of the digons
to deduce a strong property of the braid word FF(L).

COROLLARY 4.9. If the non-standard foliation of a digon Δ/(fc) con-
tains an Ω-singularity in the equivalence class [1 - 2]~* then there is
exactly one digon joining disc D; to D ί + i , and one of the braid gener-
ators (at)±ι occurs exactly once in W(L). Moreover, the non-standard
foliation of the entire 2-sphere <9BZ contains exactly one digon-singula-
rity, namely the given singularity of type [1 — 2]"*.

Proof. By hypothesis, there is a digon Δ/ = Δ/(l) whose foliation
contains a singularity of type 11 + 22—•12 + 21 . By Proposition
4.8 we conclude that Δ, is foliated with exactly one singularity, as in
Figure 4.1c.

We examine a split-open fiber of H' just before, during and after
the singularity at φ = φ0. The first thing that will happen is the
appearance of a pair of leaves, of names 11 and 22. The surgery
produces a pair of parallel leaves of name 12. After the surgery these
leaves will "migrate" across L, changing their names to 11 and 22.
The latter will then shrink and disappear. See Figure 4.7.

Let a and a1 denote the parallel leaves of name 12, as in Figure
4.8a. Notice that a and ar and two subarcs β and β' of H', ΠF
form a simple closed curve x = a\JβUa'\Jβ' type. We claim that
this simple closed curve is in the boundary of one of the 3-balls B;.
For, if we split Ή!ώ open along x we obtain three components, and
since the one which is closest to the axis A! must be in T the middle
component is in some B z . Thus x is in 5BZ.

Figure 4.8b shows x as it would appear to an observer inside B,
who is looking out at the boundary. Notice that x bounds a disc d on
9B, which contains at least one undercrossing arc L; = L, ( l ) , and in
fact it contains exactly one because the entire disc d is foliated during
the ^-interval studied in the sequence of pictures in Figure 4.7. Since
there is a digon singularity between a and a1, the two half-digons
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(a)Picture on a fiber of
after the singularity (b) Corresponding picture in aβi

F I G U R E 4.8

which are illustrated in Figure 4.8b must be part of the same digon.
But then, this digon must be joined to itself by the undercrossing arc
L|, so our digon is the only digon which joins the discs D, and D +i .
Since the number of digons between D, and D / + 1 is equal to the
number of bands between Df and D / +i this shows that αz or its
inverse occurs exactly once in W{JL). •

5. Moving Af into T. We have dealt with the minimization of
every entry in C except C4. In this section we study the minimization
of C4 and consequences. The principal result is:
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PROPOSITION 5.1. The non-standard axis A! is inside the T com-
ponent in the decomposition of S3 split open along F u Ω .

The proof will occupy most of the section. After it is completed we
will establish a significant corollary.

Proof of Proposition 5.1. We begin by describing a set of partial "co-
ordinates" for the non-standard and standard axes. By Corollary 2.3
we know that A and A' each pierce F three times, and so each is
divided into 3 segments by its intersections with F . The segments
on A (respectively A7) have a natural cyclic order on A (resp. A'),
determined by the orientations on A and A'. By construction we
know that A is disjoint from the union Ω of the digons. By Propo-
sition 3.4 we know that A' is too. Thus each segment of A and
each segment of A' is in one of the four components Bi, 82, B 3 ,
T of the torus-3-ball decomposition of S3. We assign labels to the
segments of A and A' to obtain a cycle of labels, a cyclic word of
length three in the symbols Bi, B2 , B 3 , T. The cycle of labels for
A is, of course, B!B2B3. Clearly A7 is isotopic to A if its cycle of
labels is also BiB2B3 . Our goal is to show that with our definition of
complexity the cycle of labels for A' is TTT.

We can make the information in the cycle of labels more precise by
placing restrictions on the points at which A' pierces F . Recall that
we gave a decomposition of F into subsets # 1 , #2, #3 in §3. See
Figure 3.3. There are three components of set #3, one in each disc.
The manner in which set #2 meets a band can be seen from Figure
3.1(b). There are two components, one of which connects to D; and
the other to D/+i. Recall that the digons which join the discs Di
and D, +i (respectively D, _i) are attached to D, along arcs parallel
to <9D/. We now make the convention that when there are digons
attached to both D/_i and D z + 1 the attaching arcs for the digons
going to D, +i are closer to <9D; than those going to D,_! . Thus set
#2 separates sets #1 and #3 on the disc parts of F . Set #1 will be
discussed in more detail shortly.

Clearly F is the disjoint union of #1, #2, and #3. Therefore we
have a second cyclic word, now in the symbols 1, 2, 3, which describes
where A' pierces F . The possible cycles of pierce points are: 111,222,
333, 122, 133, 211, 233, 311, 322, 123, 132.

The cycle of pierce points and the cycle of labels are, of course,
related. If A' pierces F in set #1 its label will not change; if it pierces
F in set #2 its label will change from T to B, or B, to T if it
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pierces F in set #3 its label will change from Bz to B / + 1 . This shows
immediately that the cycles 222, 133, 211, 233, 311, 123, 321 do not
occur because they do not correspond to cycles of labels. Also, the
cycle of labels is B1B2B3 if and only if the cycle of pierce-points is
333. This reduces things to the pierce-point sequences 111, 122 and
322.

The subset #1 of F, which contains L, merits special attention.
As noted earlier, it splits into two subsets. The first contains the r
undercrossing arcs L/(/c) and the adjacent triangular regions Ti(fc),
/ = 1 , 2 , 3 , k = 1, ... , r, . It is subset # 1 " . The second is every-
thing else. It also has r components, each of which is made up from
a triangular region opposite some L/(fc), together with long narrow
strips on either side of the triangular region, which run parallel to L,
out to the disc parts of F and along the discs from one band to the
next. It is subset # 1 ' .

LEMMA 5.2. Distinct points of A! Π F are in distinct components of
subset #1' or 1".

Proof. Suppose that p\ and p + 1 are in the same component X of
subset V or 1". Each component X is a topological disc. This is
clear if X is set 1". As for set 1', the only way this could fail to
be the case is if there is a pair of bands bi(k) and bi+\{k) which
are not separated by any band bi±\{q), and the bands have opposite
senses; however in that case W would not be freely reduced. Thus X
is a disc. Its boundary is a union of two arcs. One of them (call it
Lo) is a subarc of L and the other is in the boundary of one of the
digons. See Figure 5.1 (next page). The fact that F is a Bennequin
surface relative to FT tells us there is a neighborhood of p\ and of
p'i+χ which is radially foliated, also the foliation of X is everywhere
transverse to L. This implies, immediately, that there is a singular
leaf in the foliation which joins p\ to p'i+ι. Even more, there must
be a transverse singular leaf, say β, with both of its endpoints on Lo .
The endpoints of β divide Lo into three components. Let Li be the
middle one. The leaf β separates X into two subdiscs. Let Xi be
the one with dX\ = β U L!. Then X! must be radially foliated, as
in Figure 5.1, and if we split F along β we will obtain a new surface
F ; , with d¥f = h — h\+ β a new braid representative of the same link
type 1. The new representative is a 2-braid. That is impossible. D

With our refinement of set #1, the pierce-point cycles which can
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FIGURE 5.1

3 4

Positions of the p '̂s, the ays and of 1,2,3,4,5,6
-m~

3

cased) case(ii) case(iii)

FIGURE 5.2

case(iv) case(v)

occur are 1 Ί T , l ' Ί ' Ί " , I'll, 1"22 and 322. Notice that the axis
A' necessarily passes from T to T if it punctures F in set # 1 ' , from
B/ to B, if it punctures F in 1". Thus our five pierce-point cycles
correspond to the cycles of labels and pierce-points which are listed in
Figure 5.2. Note that we have fixed notation, so that (for example) in
case (ii) the pierce-points p[ and pf

2 are in subset 2 of F and pf

3 is
in subset 3, so that a\ is in B; and «2 and a?> are inside T.

Case (i) of Figure 5.2, with pierce-point cycle l ' l ' l ' , is the only one
in which the cycle of labels is TTT. Thus the truth of Proposition
5.1 is equivalent to the assertion that cases (ii), (iii), (iv) and (v) do
not occur. This, in turn, is equivalent to the assertion that the entry
<?4 in the complexity function C is zero, because C4 is the number of
points in A ' n F which are not in set V. We will prove that cases (ii),
(iii), (iv), (v) cannot occur.

In what follows, the reader may find it helpful to refer back to Fig-
ures 3.3 and 3.7 as needed. The former illustrates the decomposition
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picture in 3-space picture on djor dQr

Choosing H1*

FIGURE 5.3

of F into subsets V, 1" ,2 and 3 and the latter illustrates the induced
decomposition of 9B, .

Case (ϋ). Assume that case (ii) occurs. We begin by examining the
geometry near the pierce-point p\, which (unlike p[ and p'2) is in
subset #1' of F . See Figure 5.3 (and set / = 3). The facts that:

(1) L is transverse to every fiber of H' ,
(2) the foliation of F is radial near each pierce-point,
(3) points in subset 1' are arbitrarily close to L, and
(4) the point p'3 is the only point of A' n F in subset V of F

imply that (possibly after a small modification in H') we may choose
a fiber H', which meets F in an arc β which joins p'3 directly to

L in subset 1', without crossing any digons. Therefore, when S3 is
split open along F u Ω the arc β will go over to an arc β~ Uβ+ in
<9T which joins 5 to 6 without crossing any digons, as in the right
sketch in Figure 5.3. The arc β is drawn in thickly, as it occurs on
H^ , in Figure 5.4(a) (next page). Call it μsβ(Φo) in what follows, to

stress the fact that this arc is the component of

joins 5 to 6.

Π ( F u Ω ) which

We now turn our attention to other components of H', Π ( F n Ω ) .

Stepping inside B f , we look out at <9B,. See Figure 3.7. The subarc

arc OL\ of A; is inside B z, with its 2 endpoint in the F + part and its

3 endpoint in the F~ part of dBt, and since a\ c 9 H ^ there must

be a component μ2s(Φo) of FF, Π ( F u Ω ) which joins 2 to 3. We

have sketched in the part of it which we know with a thick line.
Using Figure 5.2 and the right picture in Figure 3.7 we may describe

β23(Φo) i n another way. The arc β23{Φ) begins at the point 2, which
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3 4

The arcs μ23(Φ0) and

μ5g(Φ0) viewed onHV

(a)

The arc μ23(Φ
viewed on d

(b)

FIGURE 5.4

The disc δ

(c)

is in subset 2 of F + , cuts across the L/(fe) 's and various digons as
it passes from F + to F~ , then across additional digons and possibly
across Lz(fc) again in F~ , ending at the point 3, which is in subset 2
of F~ . From our earlier observations, we know that μ23(Φo)^β56(Φo)
is empty. Thus, if the digon-crossing arc in μ2s(Φo) h a s name pq,
then neither p nor q can be 5 or 6, so p, q e {1, 2, 3, 4}.

We next claim that we may assume that μ23(Φo) does not cross
L. The fact that μ2$(Φo) is in <9B/ shows that if it crosses L it
must cross it along one of the undercrossing arcs L (λ ). Therefore
its image on F must pass through one of the triangular regions 7/(fc)
which constitute subset # 1 " . Since A' does not pierce subset # 1 " ,
and since every leaf of the foliation is transverse to L, it follows (again
possibly after a small modification in FT) that we may assume that
Ti(k) is foliated by parallel arcs which are orthogonal to L, (fc), as in
Figure 5.5. Therefore we may modify the fibration by pushing FT,
forward in the fibration in a neighborhood of Γ (Λ ) to remove the
intersection.

We next claim that after another modification we may assume that
[pq] φ [12] or [11] or [24]. For, by Proposition 4.8, part 1, a leaf
in any of these equivalence classes splits off a degenerately foliated
region on a digon Δ, so we may push H^ forward in the fibration
in a neighborhood of Δ to eliminate the intersection from H7, Π Ω,
as in Figure 5.6. With all of these restrictions there are only two
possibilities, i.e. pq = 14 and 23.

We now return to Figure 5.4. From Figure 5.4(a) it is clear that
if both 23 and 14 occurred, our arc μ2^{Φ) would necessarily cross
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L. Thus, going to Figure 5.4(c) we conclude that the only possibility
is that μ23(Φo) begins at 2 in F+, proceeds in set 2 to one of the
adjacent digons, crosses that digon to subset 2 of F~ using a single
digon crossing-arc of name 23, and then proceeds in subset 2 of F~
to 3. From Figure 5.4(c), we notice that the subarc a\ of A' and
β23(Φ) bound a disc δ in H^. But then, we may push a\ across δ
into T. The fact that μ23(Φo) only crosses one digon shows that this
move decreases the complexity. Thus case (ii) does not occur.

Several of the techniques which we used to eliminate case (ii) will
be used again when we treat the other cases, so we record them for
future use. Call a fiber of FT generic if it does not contain a point of
tangency with F or with Ω and if in addition it does not contain any
of the crossing dots.

LEMMA 5.3. Assume that the pierce-point p\ is in subset #V (or
1"). Then (after a modification of H') we may choose a generic fiber
Ή!φ with the property: H'̂  n F includes an arc β which is entirely in
set°#V (or #1") and joins"p\ to L.
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LEMMA 5.4. Suppose that p\ and p'i+ι are in subsets #2 and/or #3

of F Π <9Bj•. Let H^ be any generic fiber. Then {after a modification

of H') we may assume that an arc in Ή!ώ Π <9B/ which joins pi to

Pi+ι does not cross L.

LEMMA 5.5. Let H^ be any generic fiber. Then we may assume

that H'φ nΩ does not include any digon crossing-arcs of type [12], [11]

or [24]. °

In addition, using the picture proof in Figure 5.7, we obtain:

LEMMA 5.6. Let Ή!ώ be any generic fiber. Then we may assume that

Hφ n dBi (or H'φ n dΎ) does not contain any simple closed curves.

We continue the proof of Proposition 5.1.

Case (iii). Assume that case (iii) of Figure 5.2 occurs. Our first
task is to prove that if H^ is a non-singular fiber of the non-standard
fibration, then (as in case (ii)), there are no arcs of type [23] in H^ n
Ω. Suppose the contrary. Among all such arcs, choose one which
is outermost, i.e. closest to A', as in Figure 5.4(c). Without loss of
generality we may assume that its name is 23. Passing to the picture on
H^, as in Figure 5.8(b), we see that a\ cobounds with jS+UωUy" a
disc δ in H^ . We may push a,\ across δ into T, and the complexity
will be reduced if we can show that this does not introduce other,
unexpected, intersections of a\ with other digons. To prove that,
notice that the fact that ω was chosen to be innermost shows that
int(/?+) c F + and i n t ( y ) c F~ are disjoint from all digons. But
then, since p[ is in subset V of F , we see that the arcs β~ c F~
and y+ c F + also do not meet any digons (see Figure 5.8(a) again).
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FIGURE 5.8

Thus pushing a\ across δ into T, reduces complexity. Therefore
there are no digon-crossing arcs of name 23.

The fact that p[, pf

2 and p'3 are in distinct components of subset 1"
of F shows that we may apply Lemma 5.3 three times to choose a fiber
H^ such that H^ Π<9B/ is a union of arcs {//2/-i,2/(0o), / = 1 ? 2 ? 3}
which join 2i — 1 to 2i, crossing L once and missing all digons.
Pushing I!', forward in the fibration, we follow the evolving arcs.
There must be a singularity in the foliation of <9B/. By Proposition
4.8 the surgery is limited to the equivalence classes [2 - 3], [2 - 5]
or [2 - 1]. Since digon crossing arcs of type [23] cannot occur, we
conclude that the first surgery which occurs must be [2-5] or [2 - 1].
Suppose it is [2 - 5]. Reversing the order of the fibration if necessary,
we may assume it is 22 + 55 -> 25 + 52. See Figure 5.9 (next page),
with 2j = 2, 2/ - 1 = 5 . On the left is a region on <9B; which contains
the singularity, and on the right is the same region foliated without a
singularity. There are no changes anywhere else in the foliation. The
change in H' can be realized by a local modification which does not
introduce new singularities. Thus the complexity was not minimal.
We are reduced to the case where the first surgery is type [2 - 1]. But
then, by Corollary 4.9 the entire 3-ball Bz is foliated with exactly one
singularity. However, this contradicts the fact that p[, p'2 and p3 are
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in distinct components of subset 1". Thus case (iii) does not occur.

Case (iv). Assume that case (iv) occurs. By Lemma 5.4 applied 3
times, we may choose a fiber H^ of H' which meets <9B/ in a simple
arc μ23(Φo) which joins 2 to 3 without crossing L, meets <9B;+i in
a simple arc μtsiΦo) which joins 4 to 5 without crossing L, and
meets dΎ in a simple arc μβi(Φo) in <9T which joins 6 to 1 without
crossing L. By Lemma 5.5 we may assume that μ23(Φo) and μ4s(φo)
do not contain digon-crossing arcs of type [12], [11] or [24], so that
the only possibilities for digon-crossing arcs are names 23, 45, 61, 14,
36, 52. Using these, the only way we can construct the required arcs
μ23(Φo) a n d μ45(Φo) are by using digon-crossing arcs of name 45 and
61. Thus H', Π (FnΩ) is as illustrated in Figure 5.10. The endpoint
of either β\ or of β-χ is closest to p'2, say β\. Then we may isotope
OL\ through the subdisc δ\ of Ή!ώ , pushing it into T. After that we
may isotope c*2 through δι to push A' into T. This reduces the
complexity. We conclude that case (iv) does not occur.

Case (v). Assume that case (v) occurs. Using Lemma 5.5, select
a fiber Ή!ώ such that Ή!ώ Π <9B; includes an arc which joins 5 to
6, crossing L once but not intersecting any digons. Since the points
1 , 4 , 5 , 6 are in #B, it follows that there is a simple arc μu(φo)
in H^ Π <9B; which joins the points l c F " and 4 c F + without
crossing L. We may then apply Lemma 5.4 to conclude that when
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Pi

FIGURE 5.10

crosses a digon, the digon crossing-arc will have a name pq e
{13, 14, 24 or 23}. However, the names 13 and 24 cannot occur by
Lemma 5.5, and the name 23 cannot occur by Lemma 5.6, so pq can
only be 14. Thus, we may assume that we have a disc fiber H^ for
which H^ Π ( F n Ω) is as illustrated in Figure 5.11 (a) (next page).
That is, μu(Φo) begins at 1 c F~, proceeds in F~ until it meets a
digon Δ, crosses it in a single arc of name 14, and then proceeds to
4 in F + . The view we would have of FT, Π B/ when we are inside
B; is shown in Figure 5.1 l(b). The point 5 (resp. 6) will be in the
F~ (resp. F+) part of some 1" region on <9BZ. The points 1 (resp.
4) are in the F~ (resp. F+) parts of subset 2 on dB/. We suggest
that the reader go back to Figure 3.7 (the decomposition of dB/ into
subset 1", 2, 3) as an aid in understanding the various subcases which
we now discuss.

Subcase v. 1. The 1" region which contains 5 and 6 is adjacent
to the digon Δ which μu(Φo) intersects. See Figure 5.1 l(c). Then
we may push a portion of A', say a.2, into T as follows. First, we
push the arc which has endpoints 5 and 6 into Δ to form a digon-
intersection arc of name 55, as illustrated in Figure 5.1 l(c) and the
sequence of pictures in Figure 5.1 l(d). Then we may form the digon
singularity 14+55—> 45+ 15. The 45 arc which is created by this
surgery is parallel in a disc fiber to 0̂ 2, so we may isotope a^ through
the disc δ which is illustrated in the final snapshot in Figure 5.1 l(d).
However, this contradicts minimum complexity.

Subcase v.2. The 1" region which contains 5 and 6 is not adjacent
to Δ. Then we deform μu(φo) as in Figure 5.1 l(e), so that a surgery
1 1 + 4 4 ^ 14+41 occurs. Now there are again two possibilities (easily
understood by looking back at Figure 3.7): Either the deformed arc
μu(Φ) intersects subset 3, or it does not. If it does, then digon arcs
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of name 22 or 33 will be introduced in pairs (two 22's or two 33's),
as in Figure 5.1 l(f), because μu(Φ) will meet a type 3 region on
both sides. Since the surgeries pp + pp —• pp + pp cannot occur, the
only possibility for foliating the intermediate digons is with a surgery
22 + 33 —• 23 + 32. However, notice that the regions between the two
22's in H'φ has label B/_i and the region between the two 33's has
label Bz +i, so this is impossible. We conclude that when μu(Φ) is
deformed, it cannot intersect subset 3.

But then, after the 11+44 <-> 14 + 41 surgery, we will be back in
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the situation of subcase v.l, with the same contradiction to minimum
complexity as before. Thus case (v) does not occur.

We are reduced to case (i) of Figure 5.2. The cycle of labels is
TTT and the cycle of pierce-points is I71717. The integer c4 in the
complexity 5-tuple is 0. The proof of Proposition 5.1 is complete. D

A simple closed curve (sec) c = c(φo) in the foliation of <9T is es-
sential if there exists a parallel sec c(φ) in the foliation which bounds
a disc δ(φ) which has non-empty intersection with L. Otherwise, c
is inessential. A sec c = c(φo) in the foliation of <?B, is special if c
is disjoint from L and is a union a\ U β\ U a2 U β2 of four arcs: an
arc β\ in F~ , an arc β2 in F + , and two arcs a\ and α 2 , each of
which crosses a single digon in <9B/ once. A special sec c is essential
if there exists a parallel simple closed curve c(φ) in the foliation such
that each component of <9B/ split open along c(^) has non-empty
intersection with L. Otherwise, c is inessential.

LEMMA 5.7. We may assume that every sec (resp. special sec) c on
ΘΎ (resp. <9BZ) is essential.

Proof. Let c be an inessential sec in the foliation of <9T. Then c
is a union of arcs in F + U F~ U Ω, and can be viewed both as a sec
in dΎ and as a sec in a fiber of FT. Looking at c as it occurs in
fibers of FT it is easy to see that by replacing c by parallel copies if
necessary, we may assume that a digon-crossing arc α in c has one
of its endpoints in F + and the other in F~ . Thus a is type [12] or
[14] or [16]. However, if a were type [12] then by Proposition 4.8,
part 1, we could push c through the foliation to eliminate a without
encountering any singularities. But then there is a c' which is parallel
to c and which meets L non-trivially, so c was essential. Thus a has
type [14] or [16]. In fact, since c cannot cross L, the only possibility
is that up to symmetries c contains exactly two parallel digon crossing
arcs, both of type 14 or both of type 16. Thus an inessential sec c in
<9T is a special sec.

From now on we allow c to be in either <9B/ or dΎ. Pushing c
forward or backward in the foliation, we encounter the first homoclinic
point, which will be on a singular leaf c' parallel to c. See Figure 5.12
(next page). Now c' bounds two discs, one in a fiber of FT and the
other in d T or <9B;. These discs fit together to form an S2 which
bounds a 2?3 which is disjoint from L (because L is non-split). We
can then modify the fibration by pushing fibers of H' across the 2?3
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to eliminate the sec. Thus without loss of generality we may assume
that every simple closed curve in the foliation of 9T and every special
simple closed curve in the foliation of <9B; is essential. D

COROLLARY 5.8. We may assume that there is a fiber H^ with the

property: H', ΠdT is a union of three arcs μn, μ$4, and μ^y where

μn-i,2i joins the pierce points 2/—1 and 2i, crossing L once, without

intersecting any digons.

Proof. This follows directly from Lemmas 5.3 and 5.7. For, by
Lemma 5.3 we know we may find a fiber of FT which satisfies the
property we need for at least one i, say H^ n dΊ contains the arc
μ 1 2 . But then if μ3 4 and μ5 6 did not have the stated properties there
would be inessential simple closed curves in the foliation of dΎ, a
possibility which is ruled out by Lemma 5.7. D

6. The Classification Theorem. All of the pieces are in place, and
we are ready to prove the theorem which is the central result of this
manuscript. Our proof will occupy the rest of this section.

THE CLASSIFICATION THEOREM (Version 2). Let 3* and Jf be orh
ented link types of braid index < 3 in oriented 3-space. Let L, M be
closed 3-braids which represent 3? and J£, and have the same braid
axis A. Let W = W(ax, a2, a$) and X = X(a\, a2, a$) be words
which define the conjugacy classes of L and M in B^. Then the link
types S* and J£, coincide if and only if W is conjugate to X, with
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the following exceptions:

(i) W is conjugate to a\a,2 and X to a\a^x or ( ^ I ^ ) " 1 and L
represents the unknot, which has braid index 1.

(ii) W is conjugate to a\ai and X to ctfa^1, where \p\ Φ 1, and
L represents a type (2, p) torus link, which has braid index 2.

(iii) W is conjugate to (a^(anγ\am)r or (a^(an)<*(am)r(an)
±ι,

where {i9 n, m} — {1,2,3} and X is conjugate to W read back-
wards. The 3-braid L represents a prime, non-split, invertible link of
braid index 3 which has at most two conjugacy classes of 3-braid rep-
resentatives. These classes are related by braid-preserving flypes.

Proof of the Classification Theorem. W. Magnus and A. Pelluso
proved in [M-P] that the unknot has three conjugacy classes of 3-
braid representatives. The three are defined by the admissible words
{a\a2)±x and a\a^x. This is case (i) of the classification theorem.

A complete list of the links of braid index 2 includes the type (p, 2)
torus links, \p\ Φ 1, and the 2-component unlink. It was shown by
Murasugi in [Mu] that each of these has two conjugacy classes of
3-braid representatives, defined by admissible words a^af1, p e Z.
This covers case (ii) of the classification theorem. Thus we are reduced
to links of braid index 3.

Morton proved in [Mo, 1] that composite links of braid index 3
admit unique conjugacy classes of 3-braid representatives. See [B-M,
1] for a proof that split links of braid index 3 admit unique conjugacy
classes of 3-braid representatives. Thus we are reduced to the case
where S* is prime, non-split, and has braid index 3. These are the
hypotheses we used in §§2-5 of this manuscript. We ask when such
an 3* can be represented by more than one conjugacy class in B^ ?

It will be convenient to adopt the point of view which has been
used everywhere in this paper up to now, i.e. we begin with a single
representative L of the link type 3 and two axes A and A' for
3-braid representatives. As was observed at the end of §2, there is
then a homeomorphism h: S3 —> S3 such that λ(A') = A; also h
maps fibers of H to fibers of FT and maps L to a new representative
M = Λ(L). If W = W'φ\, b2, b3) describes L relative to the axis
A7, we obtain a defining word X in the elementary braids a\, #2 > a2
which represents M by setting X = W\a\, a-i, a^).

We review what we learned in §§2-5. By Corollary 2.3 we may
assume that both W and W' are admissible, i.e. they are shortest
words, also among all shortest words they have shortest syllable length,
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and also they use all three generators. By Proposition 5.1 we know that
the non-standard axis A' is in the interior of T. By Proposition 3.2
we know that there is a natural link diagram for L on ΘΎ. We begin
to investigate the non-standard foliation of dΊ. We are interested
in its Ω-singularities and F-singularities. By Proposition 4.8 the Ω-
singularities are restricted to types [1 - 2], [ 1 - 4 ] and [1 - 6]. By
Corollary 4.9 there cannot be more than three singularities of type
[1 - 2], since there are only three distinct letters α z .

Suppose that the non-standard foliation contains three singularities
of type [1 - 2]. Then Corollary 4.9 implies that W has letter length
three and uses all three generators. Up to conjugation and possibly
replacing L and M by their mirror images we may assume the first
letter is a\. So W = a\{anγ{am)γ, where β, γ = ±1 and {n, m) =
{2,3}. Of the 8 possible words of this form, we see from relations
(2.1) that the only one which cannot be replaced by a word of syllable
length 2 is W = αi^flβ Now W is also admissible, so it also contains
all three letters. Since the genus of F is an invariant of the link type
J ? , we know that W also has letter length 3. By [J], the exponent sum
of W is a link type invariant for links of braid index 3, so every letter
in W' is positive. But then, by the argument just given for W the
only possibility is W' = b^b^ , which implies that X = <2i<22#3 = W.
Thus Sf is represented by a unique conjugacy class in B$.

Now suppose that there are two singularities of type [ 1 - 2 ] in the
nonstandard fibration. Then two of the braid generators a\ and ak

each occur once in W, with exponent ± 1 . Up to conjugation we
may assume that (a\)±ι and {ak)

±x occur once, where k = 2 or 3.
Replacing W by its inverse if necessary we may assume that a\ and
(dk)±x occur once. The syllables a\ and {ak)

±ι in W could either
be separated by powers of ar or not.

If d\ and {μk)±x are separated by powers of ar then the cyclic
word W is (ak)±ι(ar)

pa\(ar)
q. But then, using relations (2.4), we

see that if (k9 r) = (2, 3) we may replace W by (a2)
±ι (a3)

p(a2)
qax,

whereas if (k, r) = (3, 2) we may replace W by (a?)±xa\(a?>y(a2)q .
In the revised forms for W the only braid generator which occurs
exactly once is a\. Therefore after the change in admissible word
the non-standard fibration will have at most one singularity of type
[ 1 - 2 ] .

If d\ and (tfA:)̂ 1 are not separated by powers of ar then W =
aι{ak)

β(ak)
p, where β = ±1 and where {k, r} = {2, 3}. We now

argue as we did in the case where there are three singularities of type
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[1 —2], to conclude that W = a\a2a\, with \p\ > 2. Interchange
the roles of the standard and non-standard fibrations. The new non-
standard fibration has n = 3, 2, 1 or 0 singularities of type [1 - 2].
Now if n = 3 we are done by the argument used earlier for the
standard fibration. If n = 2, then W or (W)" 1 must also have
the form a\a2{a^)q, where \a\ > 2. If W = aχa2a\ , W = a\a2a\,
then the fact that W and W have the same exponent sum implies
that p = q and W - W . If W = a{a2a

p

3 , (W)" 1 = axa2a\, then
the exponent sum argument gives p + 2 = —q — 2, which implies that
p = -q-4. On the other hand, the fact that F is a surface of maximal
Euler characteristic for both L and L', together with the fact that the
Euler characteristic depends upon the number of bands (but not upon
their signs) shows that \p\ = \q\ or p = ±q . The case p = -q cannot
occur because p = -q - 4. So p = q = - 2 . Thus W and W both
represent the Figure 8 knot and & — £?'. Therefore from now on
we may assume that there is at most one occurrence of [1 - 2].

The F singularities are types (b\)±ι, {b2)
±ι, (bi)±ι . They may

be further subdivided, as follows:
(i) It may happen that there is solid cylinder D2 x 1 in S3 - A such

that each fiber D2 x {t} is included in both a fiber of H and a fiber of
FT also the link L meets each fiber D2 x {t} of this cylinder twice,
transversally. In this situation, if an F-singularity occurs inside the
cylinder, it will be an F singularity in both fibrations. That is, a band
in the standard disc-band decomposition is foliated in the same way
by the standard and non-standard fibrations. Call this a standard F-
singularity. A block is a maximal sequence of standard F-singularities,
as depicted in Figure 6.1. We use bold-faced type (b/)p to indicate
that the syllable (b()p in W comes from a block.



80 JOAN S. BIRMAN AND WILLIAM W. MENASCO

(ii) The second possibility is that the foliation near an F-singularity
is not isotopic to the standard foliation. We call this a non-standard
or NSF-singularity.

Thus the non-standard fibration of S 3 - L is described by a sequence
of events, each of which is either a block of standard F-singularities,
an NSF-singularity or an Ω-singularity. We call the NSF and Ω-
singularities events. The cycle of events is the cyclic list of NSF-
singularities (described by a single letter (bj)±ι, j = 1,2,3) and
Ω-singularities (described by a type symbol (p — q)~* or {p — q)*~).
The augmented cycle of events is obtained from the cycle of events by
adding the blocks (each being described by a symbol (bk)

m), where
^ = 1 , 2 , 3 and where m e Z - {0} .

By Corollary 5.8 we may choose an initial fiber H^ which is disjoint
from all of the digons and meets <9T in three arcs, an arc μγi which
joins the pierce-points 1 and 2, an arc μ^ which joins 3 and 4
and an arc μ5β which joins 5 and 6. In each case the arc beings in
F~ and crosses L once and passes into F + , meeting no digons. In
what follows we will always assume that our cycles begin with such an
initial fiber.

We now prove that the cycle of events contains at least four distinct
events. The initial forward (resp. backward) sequence is the cycle
of events, starting with an initial fiber and pushing it forward (resp.
backward). Notice that the initial forward (resp. backward) sequence
contains at least two events, for the following reason: The foliation of
F is radial in a neighborhood of each of the points where A7 pierces
F . Therefore we know that each of the three arcs μu, μ$4, μsβ
must be modified by a singularity which "changes its connectivity" at
some time during the complete augmented cycle. For example, after a
singularity of type (2 — 3)"*, the arcs μn(Φ) and μ^{Φ) > which join
1 to 2 and 3 to 4 will be replaced by arcs μu(φ) and μ2${φ) which
join 1 to 4 and 2 to 3. Since blocks do not change connectivity,
whereas NSF and Ω-singularities do, this means that there must be at
least two NSF and/or Ω-singularities in the initial forward sequence.
But then, the same must be true for the initial backward sequence,
because the forward and backward sequences cannot meet unless the
connectivities agree. Therefore the cycle of events has length at least
four.

The proof of the Classification Theorem will be completed in three
main steps: the first main step is to prove (Lemma 6.1) that the con-
ditions of the theorem are satisfied if the augmented cycle of events
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contains only blocks and Ω-singularities of type [1 - 4]. The second
main step is to prove (Lemma 6.4) that the conditions of the theo-
rem are also satisfied if the augmented cycle of events contains no
singularities of type [1 - 4]. The third main step (Lemma 6.5) is to
prove that the augmented cycle of events either contains only blocks
and Ω-singularities of type [1 - 4], or else it does not contain any
Ω-singularities of type [1 - 4]. Thus every case is covered by Lemmas
6.1 and 6.4.

The basic technique which we use is explained in some detail in
the proof of Lemma 6.1, below. That lemma will be followed by two
others, Lemmas 6.2 and 6.3, which apply the same general methods
to many different cases. After we have all the cases in hand it will be
easy to prove the main Lemmas 6.4 and 6.5.

LEMMA 6.1. Assume that the cycle of events contains only ^-singula-
rities in the equivalence class [1-4]. Then W andX both have syllable
length three, and X is W read backwards.

Proof of Lemma 6.1. We push H^ forward in the fibration to a

fiber H^ which is just after the first event. By our hypotheses that

event is a singularity in the equivalence class [1 — 4]. Since there are

no arcs of type [14] in H^ we know that singularity cannot be type

[1 - 4]*~, so it must be [1 - 4]"". Up to symmetry we may assume it

is ( 1 - 4 ) - .
The evolving situation in fibers of H', as we approach and pass the

(1 —4)— singularity, is depicted in the three snapshots at the top of
Figure 6.2 (next page). The corresponding picture on dΎ near this
first singularity is then as illustrated in the bottom picture in Figure
6.2. To see this, the first thing to notice is that since the singularity is
preceded by the appearance of a pair of digon-crossing arcs of name 11
and 44, the leaves μn and /Z34 which are closest to the pierce-points
1 and 4 in H^ must be deformable in dΎ - L U Ω to arcs which
are on opposite sides of the same digon. Since the pierce-points 1
and 2, and also 3 and 4, are on opposite sides of L this determines
the location of the four pierce-points (up to an isotopy in which they
are moved without crossing L or penetrating any digon). The second
thing to notice is that the (1—4)— singularity creates a pair of parallel
digon-crossing arcs a\ and OL2 of type 14 in, say, H^ . These arcs
a\ and c*2, together with an arc β\ in F + n H^ and an arc βι in
F~ n H^ , form a simple closed curve c = c(φ\) = OL\ U β\ U c*2 U βι.



82 JOAN S. BIRMAN AND WILLIAM W. MENASCO

3 4 3 4

initial fiber 11 and 44 diqon after the singularity
crossing arcs appear

Snapshots on fibers of H'

evolving foliation of aT

type (1-4)"* singularity

FIGURE 6.2

This curve bounds a disc d in H^_j, which (by the discussion in the
proof of Lemma 5.7) is necessarily in one of the 3-balls, say B,. The
subarcs ax and a2 are also in dΊ, but β\ and β2 are not.

Figure 6.3 shows the curve c as it might look on dB;. In our
example there is a chain of two digons, joined up by undercrossing
arcs (cf. Figures 3.7 and 3.9). Our curve c meets one of the digons
in two arcs (a\ and a2) and bounds a disc δ, which also intersects
the digon. The curve c is a special simple closed curve in dBj so
by Lemma 5.7 it must be essential. This means that the disc δ must
be a subdisc of a larger disc δ' on dB,, which contains at least one
undercrossing arc and which is foliated by non-singular simple closed
curves parallel to c. Also dδf is a special simple closed curve c; which
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FIGURE 6.3

is parallel to c and which intersects distinct digons. Thus δf contains
one or more of the undercrossing arcs. This means that the singularity
must be followed by a block P = b?, p / 0 . The integer p is the
number of undercrossing arcs between a\ and a\, in δ', on <9B/,
when φι is chosen so that p is maximal. The digon-crossing arcs a\
and a\ both have name 23, and they are separated on dT by the
block. Thus we have shown: if the cycle of singularities begins with
an initial fiber, which is followed by the singularity (1 — 4)~* , then the
second event must be a non-empty and maximal block b? .

The argument we have just given is sufficiently important so that
we interrupt our proof to state a generalized version, for future use:

SUBLEMMA 6.1.1. A digon singularity of type [1 - 4]~~* or (2 - 3)~*
creates a special simple closed curve in the boundary of some B z. The
digon singularity must be followed by a non-empty block (Bi)p, for if
not this curve is not essential.

Proof of Sublemma 6.1.1. We proved Sublemma 6.1.1 for the case
of (1 - 4)"". The proof for (2 - 3)~* is identical, with one small
modification: the pierce points 1, 2 and 3, 4 on <9T must be changed
from their positions in Figure 6.2 to their positions in Figure 6.4 (next
page).

We return to the proof of Lemma 6.1. What can happen after the
block P ? Let H^ be a fiber of FT just after the singularity which
follows the block. By the hypotheses of the lemma, we are only allowed
to have singularities of type [ 1 - 4 ] or blocks. Since p is maximal,
and since there is only one arc in H^ ΠdΎ which crosses L twice, no
further blocks can occur. Singularities of type (2 - 5)~* or (3 - 6)~*
are impossible, because the two digon-crossing arcs of name 14 are
an obstruction in H', . All singularities of type [1 - 4]*~ except for
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(1 — 4)"~ are impossible, because the initial arcs which are required
for such a singularity don't exist. So we are reduced to (1—4)"* or
( 1 - 4 ) - .

We now claim that the initial forward sequence cannot begin with
(1 - 4)~% (1 - 4)~\ For, suppose that it did. After the second (1 - 4)"~*
the picture in H^ will be as illustrated in Figure 6.5. There are
now two pairs of parallel digon crossing arcs of name 14. Each pair,
together with subarcs of F+ and F~ , splits off a disc in the fiber of
H', and this disc will be in one of the regions Bi, B2 or B 3 . We label
it accordingly. After the second singularity there are two such regions,
with labels Bi and B^, and a region between them with label T . In
principle, we could have i = k or iφk. There are three special
simple closed curves in the final snapshot: c in 9B/, c' in dBk and
c" in dΎ. All must be essential. The four digon-crossing arcs of name
14 are all in dΊ.

We now observe that if / = k there is no way for the curve c" to
be essential, because the second singularity would necessarily occur
in a digon which is directly below the block P of Figure 6.2 and
by Sublemma 6.1.1 that digon would necessarily be followed by a
block Q which joins the same two strands, so the two blocks could be
amalgamated and the digon-singularity eliminated. Thus iφk.

If iφk the local picture on 9T after the second singularity must
be as in Figure 6.5. The curve c" is essential. However W is seen
to include a subword (aι)p(a2)~ι(aι)~ι(a2)

g, where p Φ 0, q Φ 0,
By relations (2.2) such a word is equivalent to {a\)pJrq(a2)~ι{a\)~x,
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which has shorter syllable length. So, W is not admissible and this
case does not occur.

We are reduced to the case where the initial forward sequence begins
with (1 - 4)~>, followed by (1 - 4)*~ . Recall that the (1 - 4)~> and
subsequent block resulted in the foliation of a disc δ1, with dδ' = c',
on <9B/. After the (1 - 4)*~ singularity we will have foliated a second
disc, also with boundary c', in 9B, . Thus we will have foliated an S2

in dBj. But then we must have foliated all of B z . This means that
the braid generator b\ occurs as a single block bj in W . Thus b\
occurs as a single syllable bf in W , and a\ occurs as a single syllable
a? in W.

When the sequence (1-4)~*, block, (1— 4)*~ is completed we will
have a new initial fiber. The next singularity could be either of the
two singularities which are symmetrically equivalent to (1 - 4)~*, i.e.
(3 - 6)-* or (5 - 2)~*. The argument we gave for (1 - 4)"~ί> applies
equally well to these cases. Thus there is exactly one syllable a\ , one
syllable a\ and one syllable a\ in W, also W contains three syllables
b\, b\, br

3. Thus X contains three syllables a\, a\, ar

3. But then,
the only possible difference between W and X is the order in which
the three syllables occur. By hypothesis L has two distinct axes, so X
and W cannot be identical cyclic words. We conclude that the cyclic
word X is the cyclic word W read backwards. D

In the proof of Lemma 6.1 we showed that certain initial sequences
could not occur. The next lemma generalizes the phenomena which
ruled them out.
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LEMMA 6.2. The cycle of events does not begin with any of the follow-
ing, or with any other sequences equivalent to these under symmetries:

(6.2.1) ( l - 4 Γ , ( l - 4 ) - \
(6.2.2) (2-3Γ,(2-3Γ,
(6.2.3) (δiΓMftiΓ1,
(6.2.4) bx,{bxYx orψxy\bx.

Proof of Lemma 6.2.

Proof of 6.2.1 and 6.2.2. Assertion 6.2.1 was proved in the course
of the proof of Lemma 6.2.1. The proof of 6.2.2 is identical, using
the modification described in the proof of Sublemma 6.1.1.

Proof of 623. To prove the assertion we need to understand the
foliation of d T in the region near the singular leaves for an NSF-
singularity. See Figure 6.6, which depicts the case of a singularity of
type όj"1. (All other cases can be obtained from this one by symme-
tries.) It will be helpful to begin by studying that singularity on F,
rather than on 9T. The singularity affects the leaves of the foliation
of F which emerge from the pierce-points p[ and p'2. See Figure
6.6(a). Recall that by Lemma 5.2 the points p\ and pf

2 are in dis-
tinct components of subset V of F. By our assumptions about H^
at φ = Φo there will be a leaf π(μ12(</>o)) i n the foliation of F which
joins p[ to L in set Y and another arc ττ(//34(0o)) which joins p'2
to L in subset 1'. As φ increases these arcs will experience the F
singularity under investigation. Since π(μ12(Φo)) and τt{μ^{φo)) are
in distinct components of subset 1', it follows that the evolving arcs
must cross the digon attaching curves, which are illustrated in Figure
6.6(a) as dotted arcs, because they are on F~ .

Figure 6.6(b) shows the identical situation on <9T. It can be under-
stood by noticing that subset #1' of F opens up to two regions on <9T
which meet along L. There is a subtle and important point. As the
positive sides of μn(Φ) and μ^iΦ) come together for the future sin-
gularity, we will see them penetrate into nearby digons, and since the
digon attaching curve which is in the region of interest is on F~ , the
penetration will be by digon crossing arcs on the F " part of <9T. Fig-
ure 6.6(c) shows the same situation on <9T, but redrawn to emphasize
that in order for this singularity to be possible, there must be a joining
arc between μ12 and μ^ on the F + side of the braid strand. Figure
6.6(d) shows the same situation on a sequence of fibers of H'. As the
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arcs of H'φ Π F come together for the future type (bι)~ι-singularity
we see a pair of digon crossing arcs of name 11 and 33 appear. The
endpoints of each are separated by the endpoint of the joining arc for
the singularity. Therefore, after the singularity there will be a pair
of parallel digon-crossing arcs of name 13. If, instead, the singularity
had been type b\, the corresponding digon-crossing arcs would have
name 24.

It is now easy to see why the sequence {b\)~x, (bχ)~ι cannot occur.
The first (^i)"1 creates a pair of digon-crossing arcs of name 13 and
these arcs are obstructions in the fibers of H' to a joining arc for the
second (b\)~ι.
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Proof of 6.2.4. W is freely reduced, so b[ and (6/)"1 cannot be
adjacent in W . D

For future use, we note that events b^x, [1 - 6]"* and [1 - 4]~^
each result in the creating of a pair of parallel digon crossing arcs in
fibers of H'. We call these arcs bridges. The name of the bridge is
the name of its digon-crossing arcs. The bridge region is the region on
fibers of H' cut off by the bridge together with subarcs of F± . The
boundary of the bridge is the simple closed curve c which bounds the
bridge region. The label of the bridge is B/ if the bridge region is
contained in the 3-ball B/.

LEMMA 6.3. We may assume that the initial forward sequence in the
cycle of events does not begin with any of the following sequences, or
with other sequences equivalent to these under symmetries:

(6.3.1) ( 1 - 4 ) - , ( 4 - 5 ) - ,
(6.3.2) ( f t 1 ) - 1 , ( 2 - 3 Γ ,
(6.3.3) ( & 1 ) - 1 , 6 2 , ( 2 - 3 r ,
(6.3.4) ( & i ) - 1

? ό 2 , ( 4 - 5 Γ ,
(6.3.5) \
(6.3.6)
(6.3.7)
(6.3.8) ( 1 - 4 ) - , ( 2 - 3 ) - ,
(6.3.9) ( 2 - 3 ) - , ( 4 - 5 ) - .
Also, the following sequences are equivalent after a change in H':
(6.3.10) (2-3)-, (fc)-1 and (b2)-ι,(2-3Γ.

Proof of Lemma 6.3. The arguments are all variations on ones used
earlier. The reader will not lose the thread of the argument by omitting
the proofs.

Proof of 6.3.1. Suppose that ( 1 - 4 ) - , ( 4 - 5 ) - occurs. Let H'φ
be a fiber on FT after the (4 — 5)~* event. By Sublemma 6.1.1 the
(4 — 5)"^ event must be followed by a block b^ which will move one of
the type 45 arcs onto a different digon in <9B/. However, from Figure
6.7 we see that there are only three leaves in the foliation of dT at
φ = φ2, and the two which contain the 45 digon crossing arcs are the
leaves which join 4 to 5 and 6 to 1. The former does not cross
L at all and the latter crosses L once. Since a leaf in the foliation
can't sweep through a block unless it crosses L twice, we conclude
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4

that p = 0, contradicting Sublemma 6.1.1. Therefore this case does
not occur.

Proof of 6.3.2, 6.3.3, 6.3.4, 6.3.5. The arguments are all essentially
the same as the one used to prove 6.3.1. The final event is a singularity
of type (q - r)~*, where qr — 23, 23, 45, 45 in the four cases. By
Sublemma 6.1.1 that bridge must be followed by a non-empty block.
Part of the picture on a fiber of FT after the (q — r)~* singularity is
like the right picture in Figure 6.7. Neither of the type or bridge arcs
is on a leaf of the foliation of dΎ which crosses L twice, so no such
block is possible.

Proof of 6.3.6. The right picture in Figure 6.7, with p, q, r, s =
1 , 2 , 3 , 4 , may be identified with the picture on a fiber of H' after
the two events (2 - 3)"*, (bι)~ι. The singularities create two bridges,
the first with name 23 and label B^ and the second with name 13
and label B,. Figure 6.8 (next page) shows the foliation of dΎ in
the two cases / = k and i Φ k. The techniques for constructing it
are just like those we used in the proof of Lemma 6.1. Both begin
with the local picture in Figure 6.4, after the (2 - 3)~* singularity. In
order for a (b\)~ι singularity to occur next, there must be a joining
arc in F + between the " 2 " side and the " 4 " side of the arc which
joins pierce-points 1 and 3 in Figure 6.4. If i = k the local picture
must be as illustrated on the left in Figure 6.8. But then, the block P
is not maximal. If P is extended to include the crossing just below it
the complexity will be reduced. So this case cannot occur.
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If i Φ k the local picture on 9T must be the one on the right in
Figure 6.8. It is essentially identical to Figure 6.5 and is ruled out
for the same reasons as were used to rule out the sequence (1 — 4)~*,
(1 — 4)"~* in the proof of Lemma 6.1.

Proof of 6.3.7. The events b^1 and (2 — 3)"* result in the creation
of bridges in fibers of H' : first a bridge of name 35 with label B/, and
then a bridge of name 23 and label B^ . There are two cases: i Φ k
and i = k. We will discuss the case / Φ k first, and then we will
show that the argument which rules out the case ί Φ k also rules out
the case i = k.

The local picture after the initial b^1 singularity can be deduced
from Figure 6.5. After the singularity, there will be a leaf joining the
pierce-points 3 and 6, and the leaves μ$4 and μn , as in Figure 6.9.
In order for the (2 - 3)"" singularity to be possible, the " 3 " side of
μi4 and the "2" side of μ π must be accessible to opposite sides of
the same digon, and this dictates that the six pierce-points are located
as shown, relative to the evolving link projection. By Sublemma 6.1.1
there must be a non-empty block P = b^ after the type ( 2 - 3 ) ^
singularity, and a leaf which we have labeled ζ which joins 1 to 6
and runs below the block P.

Our task now is to extend this picture to include the third key event,
i.e. (1 - 6)"*. Referring to Figures 3.5 and 3.6, we recall that we will
need to find joining arcs α in 9T and β in fibers of H', between
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the " 1 " side and the "6" side of the leaf ζ. The arcs a and β must
cobound a disc Δ in S 3 , and the singularity will be realized by an
isotopy along Δ. Since the block P is maximal, the only way that a
can exist is if P is followed (in the projection of L onto <9T) by a
crossing a^x, as illustrated in Figure 6.9. The (1 - 6)"* singularity
produces digon crossing arcs of name 16 in a digon which lies between
the 3rd and 1st braid strands, Sublemma 6.1.1 says there must be a
non-empty block Q = b^ after the (1 - 6)""* singularity.

Passing to the standard word W, we see from Figure 6.9 that W
contains the subword ... (ΛIY fa)"1 (&3)q... By relation (2.3) that
subword is equivalent to α ^ " 1 ^ 1 . Thus W does not have shortest
syllable length.

The identical argument applies if i = k. The only change is in the
picture above the block P, which is now as in Figure 6.10. The block
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FIGURE 6.10

P, the crossing we called a^x and the block Q exist as before. Again
W does not have shortest syllable length.

Proof of'6.3.8. If the sequence (1 - 4)"", (2 - 3)"^ occurs, the local
picture on <9T begins with the configuration which was illustrated in
Figure 6.2. We leave it to the reader to extend it to the full picture,
using the following considerations: In order for the ( 2 - 3 ) " " event
to be possible, the "2" side and the " 3 " side of the arc which joins 2
to 3 in Figure 6.4 must be on opposite sides of the same digon. The
only way this can happen is if the block P shown there is followed
by a crossing of type [ci2)~x in the projection of L onto dΎ. Then
after the ( 2 - 3 ) " * event there must be a second non-empty block
(b3)* between braid strands 2 and 3. So W contains the sub word
{aι)p{a2)-ι{a3)

(ί. This word is equivalent to {aι)p+q{a2)~ι. There-
fore W does not have minimum syllable length and this case does not
occur.

Proof of 6.3.9. Suppose that the sequence (2 - 3)~^ followed by
(4 - 5)""* occurs. After the two singularities there will be a bridge of
name 23 and label B/ and another of name 45 and label B^. The
partial projections on dT in the two cases are shown in Figure 6.13
(seep. 98). Sublemma 6.1.1 implies that the blocks P and Q in both
pictures are both non-empty. This shows immediately that the case
/ = k is impossible because the block P is not maximal.

We pass to the case i Φ k. Recall that the leaves of the foliation
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in the initial fiber, i.e. the arcs μ12 , /*34, βsβ > cross L once, without
crossing any digons. In Figure 6.13, right picture, we have shown, in
addition to the blocks P and Q, a (possibly empty) block R = (α3)

Γ

located above μ^ and below P. To show that the block R must be
non-empty, we notice that the three arcs //2/-1,2/ c u t directly across
L shows that A' loops directly under L between the pierce-points
2i — 1 and 2i. But then, if r = 0, A' would cut directly under all
three strands and so be isotopic to A, which is impossible. Thus
rφO.

But then, W contains the subword (a\)p{a$)r\ai)q , where p Φ 0,
r φ 0, q Φ 0. This implies that r φ -1, for if r = - 1 we could
use the relations ( t f i )^^)" 1 = (a^)~ι(a2)p to amalgamate syllables,
contradicting the assumption that W has shortest syllable length.

We now consider the initial backward sequence. It cannot contain
an Ω-singularity of type [1-2] because if it did then (by Corollary 5.8)
one of the 3-balls would be completely foliated after this singularity,
however we already have three non-empty clocks P, Q and R, one
in each 3-ball. Thus the initial backward sequence satisfies all of the
same restrictions as did the initial forward sequence. In particular,
this means that it begins with a singularity of type [2 - 3]~* or b~ι.
However, it cannot begin with an NSF singularity, because from Figure
6.13 we see that there are obstructions to the required joining arcs on
<9T. It also cannot be an Ω-singularity of type (2 — 3)"", for if so
the forward sequence would contain a singularity of type (2 — 3)""
followed by another of type (2 - 3)""* without any intervening block,
and this is ruled out by Sublemma 6.1.1. The same argument rules
out a singularity of type (4 — 5)~*, because in the forward sequence we
can reverse the order and do the (4 — 5)"* before the (2 — 3)"*. It also
cannot be an Ω-singularity of type (1 — 6)"* because there is no way
for arcs of name 11 and 66 to be on opposite sides of the same digon.
Thus there is no way to complete the projection to a cycle. Thus the
sequence (2 - 3)~*, (4—5)"* cannot occur.

Proof of 6.3.10. The sequence (b2)~ι, (2 — 3)"" was considered ear-
lier, in 6.3.7. It was shown that the case i = k does not occur. We
now claim that the case ( 2 - 3)""*, (&2)"1 also does not occur if / = k.
For, the projection of L onto <9T is unchanged. The region which
is foliated in unchanged. One need only reverse the order of the two
singularities. But then, the same reason as was used earlier to rule out
(Z?2)"1, (2 - 3)"" shows that the case (2 - 3)"^, (b2)~ι also does not
occur if i = k .
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For the case (2 - 3)"*, φi)~x with / φ k, we refer to Figure
6.10, focusing on the foliation shown there on <9T after φ2)~ι,
(2 - 3)"" and before the subsequent (1 - 6)"". There is no obstruc-
tion on d T to reversing the order of the singularities and doing the
(2 — 3)~* singularity first. There is also no obstruction in fibers of H' .
Therefore the two cases are equivalent, after a change in fibration. D

LEMMA 6.4. If the singularities in the non-standard foliation do not
include any singularities of type [1 — 4], then W either has syllable
length three, or else it has syllable length four and one of the braid
generators occurs exactly once.

Proof of Lemma 6.4. We investigate the initial forward sequence.
We have already shown that we may assume that there is at most one
singularity of type [1 —2] . We may therefore assume that if one
occurs, it is in the initial backward sequence. Therefore the initial
forward sequence only involves Ω-singularities of type [ 1 - 6 ] and
NSF singularities, augmented by blocks. We study the possibilities
for the first two events.

Our first assertion is that the first two events create bridges which are
in distinct sectors of fibers of H' . This is so because all possibilities
for two events in the same sector are ruled out by Lemma 6.2 and by
Lemma 6.3, parts 6.3.6 and 6.3.2.

Our next assertion is that the first two events cannot both be Ω-
singularities. For if they are, then up to symmetry we may assume
they are (2 - 3)~", (4 - 5)"*, however that possibility is ruled out by
6.3.9.

We next claim that the first two events cannot both be NSF-singular-
ities. If they are, then up to symmetry we may assume they are (b\ ) ~ ι ,
φi)3, where δ = ± 1 . What can happen next? The possibilities for
the third key event are: another NSF singularity or an Ω-singularity
of type [1 - 6]"". The only NSF singularities for which there are no
obstructions to a joining arc in the fibers of H' are φi)~δ and b\.
However if φi)'6 occurred then W' would not be reduced. If b\
occurred W' would contain the subword (b\)~~ι(b2)δb\, which could
be replaced by the shorter subword φ$)δ. So, the third event must
be an Ω-singularity of type [1 - 6].

The sequence ( έ i ) " 1 , φi)±ι, (4 - 5)""" is ruled out by 6.3.4 and
6.3.5. The sequence φ\)~ι

 9 b2, (2 - 3)~* is ruled out by 6.3.3.
The sequence (^i)" 1 , (62)" ι > (2 - 3)"* is ruled out with the help of
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6.3.10, for we can exchange the order of the (62)" ι and the (2 - 3)"",
which reduces things to a sequence in which the first two events are
not both, NSF singularities. The same reason rules out {b\)~ι, b2>
(1—6)— because b2, (1 — 6)~* is equivalent under symmetries to
to)"1, (2-3)-*. The sequence to)"1, to)"1, (1-6)-" is ruled
out because if it occurs, then after the (1 - 6)"* there must be a block
b£. But then, W will contain the subword (bι)~ι(b2)~ι(b3)

p , which
is equivalent to to)p-1 to)"1, so W does not have shortest syllable
length.

Thus we have shown at least one of the first two events must be
an Ω-singularity, and that the two events occur in distinct sectors on
fibers of H'. Up to symmetry we may assume the Ω-singularity is
(2 - 3)-*. The distinct possibilities are then:

(2-3)-, to)"1,
to)"1,(2-3r,
(2-3)-,fc,

v $ 2 , ( 2 - 3 ) - .
We claim that the sequences to)"1 followed by (2 - 3)— and

(2 - 3)— followed by to)"1 do not occur. By 6.3.10 the two cases
are equivalent, so we may pass back and forth between them as con-
venient. What can the third event be? Assuming first that the order of
the first two events is (62)" ι, (2—3)— , we see (by 6.2.2) that the third
event cannot be an Ω-singularity of type (2 - 3)~*. By 6.3.7 it cannot
be (1 - 6)— and by 6.3.9 it cannot be (4 - 5)— . To see that it cannot
be b2, reverse the order of the first two events to (2 - 3)— , to)"1

and use the fact that W is freely reduced. There are obstructions in
fibers of H' to the third event being bfι or to)"1 The only remain-
ing possibility is b\. Now use the fact that by Sublemma 6.1.1 the
(2 - 3)~* event is necessarily followed by a nonempty block b^, so the
augmented cycle is (2 - 3)—, (bi)p , (b2)~ι But then W' contains
a subword of the word . . . (bi )p to)"1 to)* > which is equivalent to
the subword . . . to)"1 to)p+* Since the latter has fewer syllables,
this can't occur.

We are reduced to exactly two cases, up to symmetry, i.e. (2 - 3)— ,
b2 and b2, (2 - 3)— . Each of these results in the creation of two
bridges. Let the labels on the bridges be B/ and B^ . There are two
cases to consider: / = k and / Φ k. When we take this fact into
account the two remaining cases expand to four cases, namely:

Case 1. (2 - 3 ) - , b2 with i = k,
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FIGURE 6.11

Case 2. b2,(2- 3)"* with i = k,

Case 3. (2 - 3)~*, b2 with

Case 4. b2,(2- 3)~" w i t h

To handle Case 1 we reason as follows. Since the first singularity
is type (2 — 3)~* we know that the initial local picture is as in Figure
6.4. In Figure 6.11 we have illustrated the same situation, but omit-
ted the digons and the leaves of the foliation in order to emphasize
new aspects of the geometry. In particular, we have shown how the
non-standard axis must look in the part of the picture which is of in-
terest. The non-standard axis is inside T, however it pierces dΊ at
the point-pairs 1-2, and 3-4. Each of these points actually represents
a single point on F but two points on 9T. The non-standard axis
A' is actually disconnected when we cut open F in our torus-3-ball
decomposition. We have shown it instead in Figure 6.11 as looping
under the braid (as it must) between 1 and 2 and also between 3
and 4. In between the points 3 and 4 it is inside T. But then, we
may always push the block P over the axis, without changing the fact
that A! is an axis for a closed braid representation of L or changing
the complexity, to change things to the case where the first singularity
is b2 instead of (2 — 3)"" . Thus Case 1 is reduced to Cases 2 and 4.

We next consider Case 2. Figure 6.12 shows the partial foliation on
dΎ after the sequence b2, (2 - 3)"*, with the two bridges having the
same label. The portion of the braid which is labeled P(a\, a2) might
or might not occur. By Sublemma 6.1.1 we know that the (2 - 3)""
singularity must be followed by a nonempty block which moves one
of the 23 bridge arcs. A picture on fibers of H' shows that the leaf
which joins the pierce points 1 and 6 must be the arc which sweeps
through the block, because it crosses L twice and contains a 23 bridge
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b2, (2-3)-+, i=k

FIGURE 6.12

arc. However, we see from Figure 6.12 that no such block can occur.
Thus case 2 cannot occur.

We now claim that in Case 3 there is a non-standard axis, the word
W satisfies the conditions of Lemma 6.4. (Remark: we could reduce
Case 3 to Case 4 in the same way as we reduced Case 1 to Cases 2 and
4, but it will be easier if we do not.) The first step in the proof is the
construction of the projection onto dΎ of that part of the sequence
which corresponds to the initial forward sequence. The procedure for
so-doing should be familiar by now. See the left picture in Figure 6.14.
We have eliminated the digons to avoid cluttering up the picture. The
portion of the figure which we are looking at now includes the pierce-
points 1, . . . , 6, the non-empty block P = (a\)p which necessarily
follows the initial (2-3)"" event and the subsequent block Q = {a2)

q,
which might be empty. The location of the pierce-points 5 and 6 is
determined by two considerations: first, the necessity for a joining
arc between μ1 4 and μ5 6 in F~ , and second the fact that the bridge
created by the &2 singularity is required to have a different label from
the bridge created by the initial singularity of type (2 - 3)"*. We
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( 2 - 3 ) 4 , b 2 ( 2 - 3 ) ^ , b 2 , with q=+i

FIGURE 6.14

have also sketched in part of the axis A' in Figure 6.14. We know
it looks as sketched because the cyclic order of the six points on A!
must be 1, 2, . . . , 6 and because the axis A' can't do anything more
complicated than to simply loop under the / th braid strand between
the pierce-points 2 i - 1 and 2i, because we began with an initial fiber.

Now notice that if q = 0 the non-standard axis will loop directly
around the link, indicating that the braid has a trivial loop and the
braid index is not minimal. Thus q Φ 0. Looking at the right picture
in Figure 6.14, and mentally translating the axis A' from the left
picture to the right, we see that if q = 1 then the non-standard axis
is isotopic to the standard axis. Thus q Φ 1 either. Therefore, after
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the initial forward sequence we know there is a subword
o f W w i t h p φ O , q φ θ , l .

We now study the possibilities for the initial backward sequence
(IBS), using this initial forward sequence (IFS). The IBS begins with
the same initial fiber, with the pierce-points arranged as in the left
picture in Figure 6.14. What can the first backward event be? The
first thing to notice is that there are leaves μn, μ$4 and μ^ in the
foliation which join the point pairs 1-2, 3-4 and 5-6. Since we know
that after the IFS there will be leaves in the foliation which join 2 to
3, 1 to 6 and 4 to 5, it follows that the IBS contains singularities
which change the connectivities of the leaves, before the two sequences
overlap.

Suppose that the IBS begins with an Ω-singularity. If it is type
(2 - 3)"", then it would necessarily be followed in the backward direc-
tion by a non-empty block P1. However, in that case the two blocks
P and P1 could be amalgamated, reducing the complexity, so that
can't happen. If it begins with (4 - 5)"" then the 5 side of the arc
μ 5 6 and the 4 side of the arc μ^ must be on opposite sides of the
same digon. The only way this can occur is if q = 1, as indicated
in the right picture in Figure 6.14. However, as observed earlier, that
is impossible. Similarly, if the IBS begins with (1 - 6)"* the 6 side
of μ5ό and the 1 side of μγi must be on opposite sides of the same
digon, and again this means q = 1. So, the IBS cannot begin with an
Ω-singularity.

Now suppose that the IBS begins with an NSF-singularity. There
are six types to consider (types b\, i = 1,2,3 and ε = ± 1 ) . If it
is type b^1 then, referring to Figure 6.6(c) we know that we need to
have a joining arc in the backward direction, in F + , between the 2
side of μχ2 and the 4 side of μ$4. Call that a "joining arc of type
24 ". However, from the partial projection of Figure 6.14 that is clearly
impossible. Since joining arcs of type 24, 46 and 61 in F + and 13,
35, and 51 in F~ are all impossible in the situation of Figure 6.14,
we conclude that the IBS can't begin with an NSF-singularity either.

Thus, the only possibility is that the first event in the IBS is a type
(1—2)"* singularity, which implies that W now has the subword
(as)-ι(a{)

p{a2)
g of W with p φ 0, q φ 0, as in Figure 6.15 (next

page). This results in the foliation of the entire 3-ball B3. After the
(1 - 2)"* singularity it becomes possible to do a (1 - 6)~* singularity
and so to sweep out block P. But then, we will have foliated all of
B2 and well as B3. So there can only be one more event, namely a
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completed cycle, with non-standard
axis A" (opposite sides of
rectangle to be identified)

(2-3)->,b2

FIGURE 6.15

(2 - 3)~*, followed by a block (a\)r, which results in the foliation
of all of B{ too. Thus the cyclic word W is {aλ)

r {a3)~x {ax)
p {a2)

q ,
as claimed. Straightening out A' in Figure 6.15, and referring
back to Figure 1.3 at the beginning of this paper, we see that W =
(aι)p(a3)-ι(aι)r(a2)

g, as claimed.
Case 4 remains, and we now show that it reduces to Case 3. To see

this, we first construct the partial projection associated to the initial
forward sequence. See the right picture in Figure 6.14, where again
we have omitted digons. The non-empty block R = (ax)

r is the one
which is associated to the (2-3)"" singularity. In principle, the block
P could be empty. However, now notice that after we sketch in part of
the axis we can see that block P must be non-empty because if it were
empty the braid would be reducible, since the axis loops once about
the braid between the points 4 and 6. With this partial projection in
hand, go back to Figure 6.15, and notice that we can push the block
P over the axis A' over the subarc 1234 of A'. This changes part of
the projection for the cycle in Figure 6.15 to the partial projection of
Figure 6.16. Since there was only one way to complete the sequence
(2-3)~*, b2 to a cycle, the two cases must be identical. This completes
the proof of Lemma 6.4. •

LEMMA 6.5. If the non-standard foliation of one of the digons con-
tains a singularity of type [ 1 - 4 ] then every singularity is type
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initial forward sequence
b2 / (2-3)"*

FIGURE 6.16

[ 1 - 4 ] . In particular, there are no NSFΛ-singularities and there are

no ^-singularities of type [ 1 - 6 ] or [ 1 - 2 ] .

Proof of Lemma 6.5. We are given a non-standard axis and a fibra-
tion H' which includes a singularity of type [ 1 - 4 ] . By symmetry,
we may suppose that the singularity is type (1 — 4)~*. Irrespective
of whether we begin with an initial fiber or not, there will be a 14
bridge in fibers of H' immediately after the singularity. Therefore
the possibilities for the next event are quite limited: up to the usual
symmetries, they are ( 1 - 4 ) ^ , ( 1 - 4 ) ^ , ( 2 - 3 ) ~ \ ( 4 - 5 ) ~ \ {bx)'x

and (62)" ι I n view of 6.2.1, 6.3.8, 6.3.1 (which are easily seen to
hold even if we drop the assumption that we started with an initial
fiber) we are reduced to (1 - 4)*~ , (b\)~l and (Z^)"1 We want to
prove that (1—4)"* followed by (b\)~ι and (b2)~ι cannot occur.

Consider (1 - 4)"", (Z^)"1 first. It will be convenient to replace
this sequence by its symmetric equivalent (2 — 5)~*, b2 . Now, let φ\
and φ2 be polar angles just after the (2 - 5)~^ and b2 singularities.
Then Hφ Π F is a union of three arcs, which are divided by the three
points of H^ Π L into 6 arcs μ\, . . . , μ6, where /// runs from the
pierce-point i to one of the three points of H^ n L . The 25 bridge
further divides μ$ into 3 subarcs. Let ξ be the one which is closest
to 5 and let ζ be the union of the other two. Then the joining arc
for the b2 meets μ5 along ξ, whereas the 25 bridge arcs meet μs
along ζ. The pictures in Figure 3.12 of §3 then show that after the
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(opposite sides of rectangle to be identified)

FIGURE 6.17

&2 singularity the names of the 25 bridge arcs will have changed to
23. Thus Hφ Π F u Ω includes bridges of name 24 and 23. There is
another sequence of singularities which also leads to bridges of name
24 and 23, i.e. Z?2? (2-3)~*. We investigated it in the proof of Lemma
6.4. It is not difficult to see that region which is foliated by the pair
Z?2 , (2 - 3)~* can also be foliated by the pair (2 - 5)"*, bι. That is,
the sequences (2 - 5)~*, b^ and 62 , (2 — 3)""* are equivalent after a
change in fibration. Since the latter does not use any singularities of
type [1 - 4], we can make this change in fibration and so eliminate
the pair (2-5)"", 62 (and its symmetric equivalent (1—4)"", {bj)~x)
from consideration.

The case (1—4)~^, {b\)~x remains. Let φ\, φi and φ?, be φ-
values after the (1 — 4)"* singularity, the subsequent block, and at the
moment of the ( ^ I ) " 1 singularity. The local picture on dΎ after the
(1 - 4)~* singularity and the block was depicted earlier in Figure 6.2.
The arc a\ is subdivided into 5 segments, which we will refer to as i, ii,
iii, iv and v, by its intersections with L and with the digon-attaching
curves, where segment #i is closest to the pierce-point 2. In order for
the (δi)" 1 singularity to be possible there must be a joining arc in F +

between segments #i and #iii. Pass to Figure 6.17, which shows the
local picture on 9T near the second singularity, omitting unnecessary
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details from Figure 6.2. We have cut T open between the first and
second strands. We see that W contains the subword b^(b2)~ιb^,
which is equivalent to (b2)~ι(b^)p+ι. We conclude that W does not
have shortest syllable length and is therefore not admissible.

Thus the only possibility is that each singularity of type [ 1 - 4 ] is
followed by another of type [1 - 4]. This completes the proof of
Lemma 6.5, and so also of the Classification Theorem. D

7. The algorithm and applications. Our task in this section is to
translate the Classification Theorem of §6 into an algorithm to decide
whether two links which are defined by closed 3-braids have the same
oriented link type in oriented 3-space. This problem is reduced, via
the Classification Theorem, to two other problems:

Problem A. Find unique representatives for conjugacy classes in B3 .

Problem B. Identify the unique representatives of the conjugacy
classes which correspond to links which are represented by more than
one conjugacy class of 3-braids.

There are several known solutions to Problem A and our algorithm
will use the solution which was given by Schreier in 1924 [Sc]. As
noted earlier, a new and different solution, due to P. J. Xu, is given in
[X]. In the latter conjugacy classes are represented by shortest words
in the elementary braids a\, a2, 03 which were used in the body of
this manuscript; the unique representatives of conjugacy classes are
shortest words in these generators, and therefore determine a surface
of maximum Euler characteristic with the link as its boundary. Our
reason for choosing Schreier's solution over Xu's at this time are that
it is a little bit easier to use than Xu's. Moreover, Xu has not yet
succeeded in finding normal forms which are expressed in terms of
shortest syllables as well as shortest words, so we do not have the
ability at this time to translate her work into an optimum algorithm
which orders braids by the complexity function which was the basis
of the work in this paper.

7.1. Schreier's solution to the conjugacy problem [Sc].

Step 0. We assume that we are given a 3-braid W = W(JL) which
is defined as a product of powers of the elementary braids σ\ and σ2

and their inverses, where a\ = <j\, a2 = σ2, #3 = σ2<7iCΓ^1 Our goal
is to find a unique representative for the conjugacy class of W in B$.
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Step 1. Introduce new generators x and y, where:

(7.1) x = {a\O2(J\)~x and y = O\O2,

so that:

(7.1)* σ{=y2x,

σ2 = xy1,

σ~ι =xy,

σ^x=yx.

Use (7.1)* to rewrite W as a cyclically reduced word WQ in powers
of x and y.

Step 2. Notice that if we use x and y as generators then B3 is a
free product with amalgamations of the cyclic groups generated by x
and y, the amalgamation being defined by x~2 = y3. Set

C = x~2 = y3 = (σϊσ2σι)
2 = {σxσ2γ.

Then C generates the center of # 3 . We may therefore replace the
cyclic word WQ by:

(7.2) W! = Ckxya>xya2χyai - . χya*

where k is an arbitrary integer and where each ax• = 1 or 2.

Step 3. Group together the terms in (7.2) in the form:

(7.3) W2 = C / :T,

where T is one of the cyclic words:

(7.4) T = (xy)pι(xy2yι(xy)p2(χy2y2... (xy)^(xy2)^ ,

r > 1, Pi , q\, . . , Qr > 1,

(xy2y, q>\,

y, or

y2, or

x, or

1.

The word CkΎ, where k e Z is Schreier's unique representative of
the conjugacy class of W. Using the elementary braid generators σ\
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and σ2 > the list of the distinct conjugacy classes is:

( 7 . 4 ) * Ckσ;p*σ*..'σϊp'σ}9 ( k , r,Pi, ? ί G Z ; r,pi9 qt > 1 ) ,

C*σf, (k,peZ)9

(keZ).

We shall refer to the first case in (7.4)* as the generic case.

7.2. 77ze algorithm. Let ^ be a link which is represented by a
closed 3-braid L. Let W = W{L) be a cyclic word in the standard
elementary braids σ\, σ2 which defines L. Let C^T be Schreier's
unique representative of the conjugacy class of W. Then the conju-
gacy class of W is the only conjugacy class in B$ which represents
o2*, with the following exceptions:

Links of braid index 1. The unknot, with three conjugacy classes of
3-braid representatives:

Links of braid index 2. (a) The 2-component unlink, with two con-
jugacy classes of 3-braid representatives:

σ\ and σf1.

(b) A type (2, p) torus link, p Φ 0, ± 1 , with two conjugacy classes
of 3-braid representatives:

σΐισζ and Cσf"2 i f p > 4 ,

(σισ2)
2

and C 1

i —

C~ισχ

if P = - 3 ,

if p = -2.

Lwfe of braid index 3 w/wcλ " admit flypes". 5? or its mirror image
has two representatives, namely:

Ckσϊισ$σΐυσ? and C^σf^^σfV^,

where k = 0 or 1, v > 2 and u and tί; are distinct positive integers,
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or

Csσ-ισ%σ-ισ%σ-ισ? and C σ f ^ f σ f 1 ^ σ f 1 ^ ,

where s = 1 or 2 and u, v , w are pairwise distinct positive integers.

Our starting point is the classification theorem (version 2).
Braid index 1. The 3 cases are Schreier's representatives of the

conjugacy classes of σ ^ , σ f 1 ^ and cr f 1 ^ 1 respectively.

i?ra/tf? zm/ex 2. The cases which are listed are Schreier's representa-

tives of the conjugacy classes of erf1 erf a n ( * σ^σi
mifex 3. After making the substitutions a,\ = β\, α2 = σ2,

^ 1 one obtains a uniform description of W and W*~ as
(?\)δ(°2)a(σ\)b{P2)c and (σι)

δ(σ2)
c(σι)b(σ2)

a, where ί = ± 1 . The
integers J , α, 6, c could each be > 0 or < 0, so our task is to
put these into Schreier's normal form. We only need to consider the
cases where W and W*~ are in distinct conjugacy classes. The first
thing to notice is that we only need to look at cases where the Schreier
representative is generic with r > 2, because in all other cases the
Schreier representative and its reverse coincide. Up to replacing the
cyclic word W with W" 1 , W*~ or (W*")"1, we may therefore assume
that the signs of δ, a, b, c are - + + + , - + H—, - H—h, + + + + ,
+ + H—, + + —h. Let a, β, γ = \a\, \b\, |c| respectively.

If the signs are - + + + , then W = (xy)(xy2)a{y2x)β(xy2)y, where
a, β, γ are all positive. Computing, we find that W has Schreier rep-
resentative C{xy){xy2)a-χ(xy){xy2γ-2{xy){xy2y~ι. In view of the
fact that we are only interested in the generic case we may assume that
the integers a-1, β-2, γ-1 are all positive, so the unique represen-
tative of W is Cσf^σfVjσ^cΓ™, where u, v and w are positive,
whereas W*~ has Schreier representative C σ f ^ ^ σ f ^ ^ σ f ^ ^ . The
two words are cyclically distinct if and only if u, υ , w are pairwise
distinct.

The other five cases are similar. We compute the Schreier represen-
tative of W to be:

(xy){xy2)u(xy)v(xy2)w if the signs are - + + -

(xy)(xy2)u{xy)v(xy2)w if the signs are - + - +

C2(xy)(xy2)u(xy)(xy2)v(xy)(xy2)w if the signs are + + + +

C(xy)(xy2)u(xy)v{xy2)w if the signs are + + + -

C{xy){xy2)u(xy)v(xy2)w if the signs are + + - +.

The assertion follows. D
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7.3. Applications, In what follows S* denotes a link of braid index
3, L is a 3-braid representative and W = W(L) has Schreier normal
form.

COROLLARY 7.1. A. The link type of L is invertible if and only if
the conjugacy class ofW in (7.4)* satisfies one of the following:

(a) W has any of the 3-braid non-generic normal forms, or
(b) W is generic and the arrays {p\, qx, p2 > , Pr, Qr) and (ρr,

qr-\, pr-\, . . . , p\, qr) differ by an even cyclic permutation, or
(c) W is one of the special ?>-braids which "admits aflype".
B. The link of type L is amphicheiral if and only if the conjugacy

class of W in (7.4)* satisfies one of the following:
(a) W = 1, or
(b) W is generic, the arrays {px, qx, p2, . . . , pr, Qr) and {qx, p2,

Qi 9 - > Pr 9 Qr 9 P\) differ by an even cyclic permutation, and k = 0.

Proof of Corollary 7.1. A. Reversal of orientation on L (but not
3-space) is achieved by reversing orientation on W, i.e. reading W
backwards. Let W*~ be the word obtained from W by this change.
In the non-generic cases W = W*~ because C is in the center of
2?3, and also conjugation by the Garside braid a\a2a\ interchanges
σ\ and ύ2. In the generic case we use the same facts to arrive at
possibility (b). As for (c), the special braids which admit flypes are
invertible for a different reason: their two distinct conjugacy classes
are represented by words W and W~.

B. Reversal of the orientation of 3-space (but not of L) corresponds
to changing the sign of each crossing in the knot diagram. Let W*
be the word obtained from W by this change. In the non-generic
case the only way we can have W = W* is if W = 1. This proves
(a). In the generic case, if W = Ckσ~P{σlισ~Plσl2 "ϋ~Prσ^ then
W* = C^σ^σ'^σ^σ'^ <τf rσ^'. Conjugating W* by the Garside
braid we see that its normal form is C^σ^σ^σ^σ^ - ^Qrσ^1.
Assertion (b) follows. α

REMARK. Since a typical word in Schreier's normal form does not
have the symmetries of Corollary 7.1 we conclude that most links of
braid index 3 are neither invertible nor amphicheiral. On the other
hand, since the standard knot tables were organized by crossing num-
ber, the examples which formed the core body of data for early workers
in knot theory had many symmetries.
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COROLLARY 7.2. <S? is a composite knot or link if and only if the
Schreier representative of the conjugacy class of W or W" 1 has one of
the following normal forms

o^uσl, where u>υ>2.

rx Gu a-iOV G2, where u>υ>0.

Proof By [Mo, 1] or [B-M, IV] a composite link which is a closed
3-braid is conjugate to (σι)a(σ2)

b, where \a\>2, \b\>2. The first
case occurs when a and b have opposite signs and the second when
they have the same sign. D

Our next corollary is an analogue of the Tait conjecture which holds
for links of braid index 3.

COROLLARY 7.3. Let 3 and 3' be links of braid index 3, and let
D and D' be diagrams which represent 3* and 3" and which have
3 Seifert circles. Then 3 = 3' only if the algebraic crossing numbers
of D and D' agree.

Proof. By a theorem of Yamada [Y] every diagram with 3 Seifert
circles may be changed to a 3-braid diagram without changing the
algebraic crossing number. Since algebraic crossing number is a con-
jugacy class invariant, and since the two conjugacy classes in the excep-
tional case (iii) of §7.2 have the same exponent sum, the assertion fol-
lows. D

REMARK. A different proof of Corollary 7.3 is given in [J] for n = 3
and 4. We hope to be able to prove in a later paper in this series that
Corollary 7.3 is true for every braid index.

COROLLARY 7.4. There is an algorithm to compute the genus of a
link of braid index 3, if one begins with a closed 3-braid representative.

Proof. Let F be a Bennequin surface, with d¥ = L a 3-braid rep-
resentative of the given link 3 . Let μ be the number of components
in L and let r be the number of bands in the disc-band decomposi-
tion of F . Then the genus g of F, which is also the genus of S?,
is determined by r and μ and the number of discs in the disc-band
decomposition, which is 3. The number r is also the letter length
of any shortest word W in the generators a\, a2, a^ of B$. Using
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results in [X], this letter length may be computed. This yields an algo-
rithm to compute the genus. We refer the reader to [X] for the algo-
rithm. D

The Classification Theorem gives an affirmative answer to an inter-
esting question of Murasugi (see the remark at the bottom of page 75
of [Mu]):

COROLLARY 7.5. Let £f be represented by the conjugacy class of
CkΎ and let 3? be represented by the conjugacy class of T. Then the
integer k and the link type of 3? are invariants (even more, they are
complete invariants) of the link type ofJ?', except in the special case
where Jΐ? is one of the links covered by case (iii) of the algorithm of
§7.2. In the latter case £? is invertible, but 3£ need not be, so one
might have two distinct link types 3£~* and 3£*~ which correspond to
the single link type £?~*.

REMARK. The assumption that £? has braid index 3 is essential
here, as may be seen by inspecting the exceptional cases (i) and (ii) in
§7.2 above.

COROLLARY 7.6. The stabilization index of a link of braid index 3
is one.

Proof. By the Classification Theorem, a link of braid index 3 is
either represented by a unique conjugacy class (in which case the sta-
bilization index is zero) or else it is represented by two conjugacy
classes which are related to one-another by flypes. Therefore it is only
necessary to show that two classes which are related by flypes become
conjugate after a single stabilization. For a proof, see page 100, equa-
tions (2-27) of [Bi, 1]. D

Our next application concerns the Jones polynomial [J] and its var-
ious generalizations, i.e. link type invariants which are constructed
from traces on finite-dimensional matrix representations of the braid
groups. A central question about such invariants is whether a finite
collection of them can be a complete type invariant. For links which
have braid index < 3. A complete answer is beyond the scope of this
paper, however we have a small contribution.

In the manuscript [Bi, 2] the first author initiated a study of the
question of when distinct links of braid index 3 have the same 2-
variable Jones polynomial. She encountered a fundamental difficulty
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in that study, as she lacked a method for distinguishing link types,
other than ad hoc techniques which applied to one example at a time.
Now that a method is available, it becomes possible to extend the
results of [Bi, 2]:

COROLLARY 7.7. For each integer N there exist infinitely many sets,
each of which contains exactly N links of braid index 3 which share
the same 2-variable Jones polynomial.

Proof Let ζ: B3 -• SL(2, Z[t, r 1 ] ) be the reduced Burau rep-
resentation of 2?3. Choose α, β e B$. Then the associated closed
braids Lα and Lβ will have distinct link types if the conjugacy classes
of a and β are distinct and are not one of the exceptional cases listed
in the Classification Theorem. By [Bi, 2] the links Lα and Lβ will
have the same 2-variable Jones polynomial if and only if

(1) a and β have the same exponent sum (as words in σ\ and
σ2), and

(2) ζ(a) and ζ(β) have the same trace.
Let p: C(2?3) -> SL(2, Z) be the mapping defined by setting t = - 1 .

Then p is surjective (see [Bi, 2]) and the kernel of p is the infinite
cyclic group generated by C(((T\(T2^I)4). Thus we may replace (2) by
the condition:

(3) pζ(a) and pζ(β) have the same trace.
Choose any integer N > 1. In example 8.2 of [H] Horowitz has
constructed just the sort of examples we seek.

8. Hints of additional pathology. It was shown in the introduction
to this paper that the exceptional case (iii) of the Classification The-
orem generalizes to produce examples of links of braid index n, for
every n, which have at least two conjugacy classes of w-braid repre-
sentatives, related by generalized flypes (see Figure 1.3). While flypes
are "natural" for n = 3 in the sense that the links in question are
invertible links and the two classes represent the same link with two
orientations, this need not be the case for n > 4 because of the extra
twists introduced into the weighted strands by generalized flypes.

We now assert that there is additional pathology, unrelated to flypes,
which appears in a rudimentary form in B$ . A composite link <%p,q

of braid index 3 is a connected sum of a type (2, p) and a type (2, q)
torus link. By [Mo, 1] such links admit a unique conjugacy class of
3-braid representatives. This means that if KPiQ is a representative
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FIGURE 8.1

of <%p9q and if A r, A5 are disjoint simple closed curves in S3 -
Kp 9 q which are axes for 3-braid structures on 3?p t q, then the links
K3 9 5 U Ar and K3 5 U A5 are equivalent, i.e. there is a homeomorphism

rίr ,s ( ^ 5 ••*•/? ,q ? Ar) —y ( o , Kp ? g , A 5 ) .

Figure 8.1 shows a representative K 3 5 of ^3,5 . Two simple closed
curves, Ao and A!, are illustrated in the complement of K 3 ? 5 . A few
moments reflection should suffice to convince the reader that AQ and
Ai are both axes for 3-braid structures. Also, AQ and Aj are not iso-
topic in S3 — K3 j 5. By iterating the "winding" process which produced
Ai from AQ one can obtain infinitely many pairwise disjoint 3-braid
axes . . . , A_2A_i, AQ , Ai, A2, . . . , which are pairwise non-isotopic
in S3 — K3} 5. On the other hand, by our earlier observations, the links
K3 9 5 U Ar and K3 9 5 U As are equivalent for each pair r, s under a
homeomorphism hViS of S3.

We first encountered these examples in the following way. Ben-
nequin surfaces were an essential tool in the work in this paper. How-
ever Bennequin's original proof that they exist was unclear to us at a
crucial point. We were thus led to study his theorem in detail, and
to fill in the gaps in his proof, and when we did so our work (see
[B-M, II]) revealed the existence of an infinite family (F5 s e N) of
"pathological" Markov surfaces which Bennequin had missed. They
are not Bennequin surfaces, yet their boundaries are (composite) links
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of braid index 3. In fact, if we choose a Bennequin surface F for the
axis Ao of Figure 8.1, the surface Fs is λo,5(F).

The generalization of the pathology just described to composite
links (and also to split links) of braid index n is the principal fo-
cus of the work in [B-M, IV].
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