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ON THE PATH SPACE OF A COMPACT LIE GROUP

JAY B. EPPERSON AND TERRY LOHRENZ

Let G be a compact connected Lie group with identity element
e, and let P.G denote the space of continuous maps y: [0, 1] - G
such that y(0) = e . When equipped with the natural group structure
and sup metric, P.G becomes an interesting example of an infinite
dimensional nonlinear topelogical group. The purpose of this paper
is to consider certain aspects of analysis on P.G. Stimulated by a
theorem of M. Malliavin and P. Malliavin, we prove the existence of
a natural Brownian motion on P.G which depends only on a choice
of bi-invariant metric for G. Our main results, however, concern
the heat semigroup associated to the Brownian motion on P.G. We
identify the action of the generator of this semigroup when applied to
certain highly regular functions, with a result similar to that obtained
earlier by L. Gross in the (linear) abstract Wiener space context.

1. Introduction. Let G be a compact connected Lie group whose
identity element we denote e. The purpose of this paper is to con-
struct a natural Brownian motion and associated heat semigroup on
the infinite dimensional nonlinear space of continuous maps y: [0, 1]
— G such that y(0) = e. We refer to this space as P,G. The Brow-
nian motion on P,G' depends only on a choice of bi-invariant metric
for G.

Note that PG inherits a group structure from G: for y,, y, € P.G
define y;y; by (¥1»2)(t) = y1(t)y2(t). The constant path at the iden-
tity is the identity element in P,G. Given a Riemannian metric g
on G,let dg(-, -) denote the associated distance function on G x G,
which induces a metric on PG given by sup,co,17dg(y1(2), y2(8)) . In
any such metric P,G becomes a Polish topological group. This struc-
ture leads to a convolution law for probability measures on the Borel
field of P,G. In the special case where the metric g is bi-invariant
on G, it happens that the associated bi-invariant Wiener measures
on P,G form a convolution semigroup. This fact, discovered by M.
Malliavin and P. Malliavin [16], is the origin of Brownian motion on
P,G. Lemma 2.2 of this paper supplies the additional required esti-
mate for continuity of sample paths. We also provide an elementary
analytic proof of the Malliavins’ theorem in Lemma 2.1.

233



234 JAY B. EPPERSON AND TERRY LOHRENZ

Many of the previous constructions of diffusion processes on infi-
nite dimensional nonlinear spaces have relied on the use of abstract
Wiener spaces. The notion of an abstract Wiener space was formu-
lated by L. Gross [7, 8], and used in his study of Brownian motion
and potential theory in Hilbert space [9]. H. H. Kuo [13, 14] sub-
sequently developed a theory of Brownian motion on infinite dimen-
sional manifolds modeled on an abstract Wiener space. Other authors
have considered diffusion processes on submanifolds of an abstract
Wiener space. For example, following Kusuoka’s construction of the
Ornstein-Uhlenbeck process on Wiener space [15], Getzler [6] consid-
ered the use of Malliavin calculus to define Dirichlet forms (and the
associated Ornstein-Uhlenbeck process) on the based loop space of a
Riemannian manifold. The Dirichlet form approach was also applied
by Airault and Van Biesen [1] to finite codimension submanifolds of
Wiener space. Another approach was taken by Epperson and Lohrenz
[5] in constructing diffusion processes (with explosions) on the based
finite-energy loop space of a compact submanifold of R” with triv-
ial normal bundle. This was accomplished by considering the loop
space to be a submanifold of the based loop space of R", for which
a theory of stochastic differential equations in abstract Wiener space
applies. Finally, we mention P. Malliavin’s construction [17] of Brow-
nian motions on the loop space of a compact Lie group, via stochastic
differential equations.

We begin this paper with a quick review of bi-invariant Brownian
motion on a compact Lie group. The earliest reference on this sub-
ject is probably Itd6 [11]. Our account is elementary and analytic, in
the sense that it avoids stochastic differential equations. This exacts
a price; namely, that we use an explicit Gaussian upper bound for
heat kernels on G when it comes to establishing continuity of sample
paths. Next we prove the Malliavins’ product law for independent
bi-invariant Brownian motions on G. Together with an estimate on
moments of these Brownian motions, the product law results in a heat
semigroup for P.G, which is the content of Theorem 2.1. Section
3 begins our study of the generator of this heat semigroup. Proposi-
tion 3.1 considers the action of this generator on exceptionally regular
functions. One of our main goals for the future is to demonstrate the
extension of previous results concerning regularity of potentials (e.g.
on classical Wiener space) to the present nonlinear setting.

2. Brownian motions on G and P.G. Let G be a compact connected
Lie group with bi-invariant metric g. The associated bi-invariant
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distance function on G x G will be denoted d(x, y), and the measure
associated with the natural volume form on G will be denoted dx.
In local coordinates dx = g'/2dx;---dx,, where g = detg;; and
n = dimG. Note that the bi-invariance of g implies that dx is
actually a Haar measure on G . The volume of a measurable set B C G
will be denoted |B|.

Consider the bi-invariant Laplacian A associated with g. Itis given
in local coordinates by g~1/29;¢'/2g"/9;, with C*(G) as a dense do-
main of definition in L?(G). According to Davies [4], the nonnegative
operator —A is essentially self-adjoint on C*°(G). We let —A also
denote its closure. The semigroup e’ on L?(G) is known to have a
strictly positive C*> kernel K;(x, y) on (0, o) x G x G. This ker-
nel is bi-invariant, since it is the unique fundamental solution of the
heat operator 9; — A. We will review the associated diffusion process,
following the conventions of references [10, 20] regarding continuous
stochastic processes.

DEFINITION. A Brownian motion on G of variance parameter s > 0
starting at the identity element e is a continuous G-valued stochastic
process y(t, w), t€[0, 1], w € Q, defined over a probability space
(P, %, Q) such that

1. (0, w) = e almost surely,

2. for every 0 < t; < t,, the G-valued random variable
y(t1, w)~'y(t2, w) is distributed according to the law Ky, (e, y)dy,

3. forevery 0 < t; < t < t3 < 14, the random variables
y(t1, @)~ y(ty, ) and y(t3, @)~ 'y(t4, w) are independent.

NoTATION. (1) We will frequently suppress the dependence of a
stochastic process on its argument w. (2) If S is a metric space
with metric J, then for x € S, r > 0, welet Bg(x,r)={y e S:
o(x,y)<r}.

ProPosSITION 2.1. Brownian motion on G exists.

Proof. This is a standard result in probability theory. One con-
structs, via Kolmogorov’s extension theorem, a family of G-valued
random variables {x(¢),t € [0, 1]} such that x(0) = e, and such
that for every 0 < #; < t; < --- < t; and sequence of Borel sets
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B.eBWG),i=1,..,k,
(1) Pr{x(t;) € By, x(t;) € By, ..., x(t) € B}

= /Bl Kyt (e, x1)dx /32 Ki(t,~1,) (X1, X2) dx;

/ Kst,—1,_) (X1, Xi) dxy.
Bk

Using the bi-invariance of the kernels K;(x, y), it is straightforward
to verify that any stochastic process distributed according to (1) satis-
fies conditions 1-3 in the definition of Brownian motion. The converse
is also true.

The only difficulty is to show that the process x has a continuous
version. To do this, we use an explicit upper bound on the kernel
K;(x, y). According to Davies (reference [3], Theorem 16), for every
0 > 0 there exists a constant ¢; such that

2
Ki(x, y) < cslBg(x, ') 72| Bg(y , ¢1/2)| 1 2em a0 /4o

forall x,ye G and 0 <t < 1. Let ry denote a positive number less
than the injectivity radius of G with respect to the bi-invariant metric
g . By calculating in normal coordinates (and using the compactness
of G) it can be shown that if ry > 0 is sufficiently small, then there
exist constants 0 < ¢;, ¢; < oo such that |Bg(x, r)] > ¢;r", and
Px(r) := 8,|Bg(x, r)| < cpr"! for all r < ry. Combining the kernel
and volume estimates, we have for /2 < ry,

/Gd(x, YK (x, y)dy < csert™? ./Gd(x’ y)4e—d(x,y)’/(4+5)t dy
rO
= ¢zt "2 (/ r4e"2/(4+5)tpx(r) dr
0
+/ d(x’ y)4e—d(x,y)2/(4+6)t dy)
G\B;(x,r,)
< ¢s¢1 /2 (C2 /°° rn+3e—-r2/(4+é)t dr + (diam G)4]G(e"3/(4+5)’)
0
00 , )
_ k1t2/ P37 dr 4 kyt—"2e=Ta/ ()
0

The integral in this last expression converges, and the second term has
rapid decay in ¢ as ¢ \, 0. Since [,d(x,y)*K,(x, y)dy < (diam G)*
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for all ¢ > 0, it follows that there exists a constant ¢ < co such that

(2) / d(x, y)*Ki(x, y)dy < ct?

G
for all 0 < ¢ < 1. It is well known that this sort of estimate leads to
a continuous version y of the process x. ]

Let P.G be the space of continuous maps y: [0, 1] — G such that
y(0) = e. We define a metric p on P.G by

p(y1,y2) = sup d(yi(t), y2(1)).
tefo, 1}

This makes P.G a complete separable metric space. It is known that
in this setting, the og-algebra ¢(%) generated by the family of Borel
cylinder sets & coincides with the topological g-algebra Z(P.G).
Moreover, every probability measure on (P,G, % (P.G)) is uniquely
determined by its values on % . In this way, the distribution law of a
Brownian motion on G of variance parameter s determines a unique
measure P(dy) on (P.G, % (P.G)), which we refer to as the Wiener
measure of variance parameter s.

Let & denote the Banach space of real valued, bounded, uniformly
continuous functions on the Polish space (P.G, p), together with the
sup norm |-||. For y,, y, € P.G, let y,y, € P.G denote the pointwise
product path given by y;y,(¢) = yi(¢)y2(¢). With this product, we
define for every s > 0 the convolution operator

psf(X)=LGf(yx)Ps(dy), fex.

The following theorem is the impetus for this paper

THEOREM 2.1. The operators ps, s > 0, form a strongly continuous
contraction semigroup on < .

Before proving this theorem, we need two lemmas. In reference
[16], Malliavin and Malliavin deduced the first lemma by manipu-
lation of stochastic differentials. We provide an independent proof,
since our definition of Brownian motion avoids stochastic differential
equations.

LeEmMA 2.1. If y;, y, are two independent Brownian motions on
G of variance parameters s,, s, , respectively, then the product process
Yy = y1V» is a Brownian motion of variance parameter s| + s, .
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Proof. The product process y is continuous, and verifies condition
1, that y(0) = e almost surely. As for condition 2, we calculate that
for 0<t <t and B € Z(G)

Pr{y(t1)”'y(t;) € B}
=/GKsltl(e’al)dal/GKS,(tz—t,)(al’a2)da2/GKszt1(e’ by)db,
[ a7 aaby € BIK -1y b, )
- /G Ky (e, ay)day /G K, (1), @) day /G Ky (e, b)dby’
. /G X(b7 asbibi by € B)K, oy (by , ba) dby
by the change of variables a;'a, — ay,
=/GKs2tl(e,bl)dbl/;Ksl(tz_tl)(e,az)daz

[ #(@abs € BIKypfe br)dbo
by the changes of variables by !ab; — ap and b 'b, — by,
= [ Kupte. a)das [ 2(abs € B)Kemi (a2, aaba) b
= /Gx(bz € B)K (s +s,)(1,-1,) (€, b2) d by
by the change of variables a,b, — b, . This proves condition 2. To

prove condition 3,let 0<t, <t <3<t and A, B € %#(G). Then
we have

(3) Pr{y(t1)~'y(t2) € 4, y(tz)7'y(t4) € B}
=/Kslz,(€, al)daI/Ksl(tz—tl)(al, az)daz/ K, (e, by)db
G G G

[ 2707 axby € AF (@, Koy by br) b,
where
F(az, by) =/Ks (t,~t,)(@25 a3)da3/ K (1,1, (a3, as) day
/ Kio,1)(b2, bs) dbs

[ (6505 by € BYKy,m1 (b3, be) b
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Making the changes of variables a; a3 — a3 and by 1p; — by,
F(ay, by) = /GKsl(t3—zZ)(€, az)daz /(;Ksl(z4—t,)(aza3, as)day
- /G Kie,1)(€, bs) dbs
- /G 105165 a5 a3 agbybs by €B) Ky 11 (babs, ba) dbs.
Making the changes of variables a, lay — a4 and by Thy — by,
F(ay, b)) = /GKsl(trtz)(e’ as)da /GKsl(t4-t3)(a3> as) day
[ Kgmsple. )b
- /G %(b5by a5 ashybs € B)K, (¢ 1 y(bs , bs) dbs.
Finally, making the change of variables a3b;'a;'asb, — ay,
F(ay, by) = /GKsl(tz—tz)(E, as)das /GKsl(trta)(a3’ as)das
- /G Kio—1(e, bs) dbs

: /Gx(b3—la3_la4b4 € B)K (1,-1,(b3, ba) dbs

=Pr{y(ts - ,)"'y(ts — t;) € B}
= Pr{y(t:)~'y(t4) € B}.

Substituting this in (3) proves condition 3. O

For the next lemma we appeal to some basic martingale theory. The
reader is advised to consult reference [20] for missing details. Fix the
variance parameter s, and let

{ No{y(w),0<u<t+e} for0<t<l,
t:

e>0

o{y(u),0<u<1} fort=1,

denote the natural right continuous filtration of the Brownian motion.
It is known that for every f € C?(G), the stochastic process

(4) FO@) - /0 SAf(y(w)) du
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is a martingale with respect to {%}. We recall the ingredients of the
proof. First, Brownian motion has the Markov property

Priv() € BIF) = [ Koty 0(1), 2)dz, as.

forall 0<?#; <, <1 and Be #(G). Next, foreach 0<¢; <, <1
and f e C"2([0, t;] x G), there holds the backward equation

t2
£ty x) = /G Ft2s 9 Koty ¥) dY — / dt

[ (@t s DKoy . ) d.

Now we calculate, for 0< ¢t <# <1 and fe C*G),

B0 ~ £ - [ sA(0)dt1 )

)

tZ
= [ 1Ko 0(0), 2)dz = (1) - [ de
G 4
[ M@Ky 00), 2)dz

which vanishes according to the backward equation.

NortATiON. If x is a real valued stochastic process defined on
the time interval [0, 1], then define the random variable x, =
SuPseo, 17 [x(¢)| . If y is a Brownian motion on G and 7 is a stopping
time, then let y.(¢) :=y(tAT).

LEMMA 2.2. Lety be a Brownian motion on G of variance pa-
rameter 0 < s < 1 starting at the identity element e. Then for
every q > 1 there exists a constant c; independent of s such that
E(d(e, y)?) < cys9?.

Proof. In reference [12] it is shown that if » > O is sufficiently small,
then there exists a bounded coordinate mapping ¢: Bg(e,r) — R”
whose components ¢! satisfy A¢’ = 0 in Bg(e,r). For each i =
1,...,n let q~5" : G — R denote a smooth extension of the harmonic’
function ¢’ to all of G. Also let y be a Brownian motion on G of
variance parameter s. Then according to the discussion of (4), the-
stochastic process

F(@) - /0 SAG () du
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is a martingale with respect to {#}. Let

{ inf{u:d(e, y(u)) >r} if y exits Bg(e, r),
1 otherwise.

Then by Doob’s stopping time theorem,

SoenD) = - | " AP () du

is also a martingale with respect to {#}.

We may assume that ¢(e) = 0. Also, by decreasing r if necessary,
we may assume that there exist constants c¢;, c¢; such that for all
x € Bgle, r),

allp(x)llge < dle, x)* < 2l ()R-

Now, using Doob’s inequality for martingales,

(5) E(d(e, y)?)
< PnIPE(o o)l + - + 167 1)

q
< et (L5) B8 @I+ + IO

/2 g
c)? (g+2 q
<[22 a+2)2 ( _4__ 9y
<(2) e (L) Bdee, v
We use this to bound moments of the unstopped process,

(6) E(d(e,y)!)=E(x(r=1d(e, y)I+x(r < ld(e, »))
< E(d(e, y:)?) + Pr(r < 1)(diam G)?
< c(E(d(e, y(x))") + Pr(z < 1)),
the last inequality following from (5),
= c(E(d(e, y(1))? + x(r < )d(e, y(1))?) + Pr(r < 1))
<c(Ede,y(1)H+ (1 +r)Pr(z < 1)).
The second term in the last line of (6) is bounded using
Pr(z < 1) <Pr(d(e, y(1)) >r/2)+Pr(z < 1,d(e, y(1)) < r/2)
<Pr(d(e, y(1)) > r/2) + Pr(z < 1, d(y(1), y(1)) 2 1/2).
Using Gaussian upper bounds on the kernels K;(x, y) and the strong
Markov property for Brownian motions on G, the last two terms are

seen to have rapid decay in the variance parameter s, for fixed r,
as s \, 0. The principal term E(d(e, y(1))?) in (6) is bounded by
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cs9/? | again using Gaussian upper bounds on the kernels K;(x, y), as
in the derivation of (2). ]

NoTATION. We let e also denote the constant path in P,G mapping
[0, 1] to the identity element e. Thus, if y € P,G, we write p(e, y)
instead of sup,c,1jd(e, y(¢)). The conclusion of Lemma 2.2 may
be written [, ; p(e, y)?Ps(dy) < cqs9/?.

Proof of Theorem 2.1. Since Py(dy) is a probability measure, ||psf]|
< |If]l forevery fe . Nowfor fe/, ¢>0,let d >0 be such
that |f(x) — f(¥)] < ¢ whenever p(x,y) < 6. Then we have, for

p(x,y)<d,
105 £(x) = Do f(9)] < / 1f(zx) — F(zy)|Py(dz)
PG
< sup |f(zx) - f(zy)| <e,
zePeG

since p(zx, zy) = p(x,y). Thus ps is a contraction mapping & to
itself. The semigroup law psp; = ps,; is an immediate consequence
of Lemma 2.1. As for strong continuity, again fix f € &, ¢ > 0,
and let d > 0 be such that |f(x) — f(¥)| < ¢ whenever p(x,y)<d.
Then we have

Ipsf(x) = f(x)| =

/ (Fx) = (%)) Pu(d)
PG
< / 1f(vx) = F()lx(ple, y) < 8)Py(dy)
PG
+ /P 2fllx(ple. ) 2 8)P:(dy)

<e+2||fl|l672 /PG ple, y)*Py(dy)

<e+c|fl673%s,

in which the last two lines use Chebyshev’s inequality and Lemma 2.2.
This shows that limg_,o ||psf — f|| < & for every ¢ > 0. O

There is a stochastic process associated with the semigroup ps, s €
[0, 00).

DEFINITION. A Brownian motion on P,G starting at x € P.G is
a p-continuous stochastic process Yi(t, w), t € [0, o), w € Q,
defined over a probability space (P, %, Q) such that
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1. Yx(0, w) = x almost surely,

2. for every 0 < t; < t, the P.,G-valued random variable
Yi(t, @)~ Yx(t2, @) is distributed according to the law P, (dy),

3. for every 0 < #; < t < t3 < l4, the random variables
Yy(t1, @) 1Yy (t;, ®) and Yx(t3, @)~ 1Yy(t4, w) are independent.
The existence of this process is an immediate consequence of Lemmas
2.1, and 2.2. Continuity of sample paths is obtained from Lemma 2.2,
e.g., by using g = 4. The finite dimensional distributions are easy to
describe. If 0<t; <thp <---<t; and B;€e B(P.G), i=1,...,k,
then the Brownian motion satisfies

Pr{Y_x([l) E Bl 9 see g Yx(tk) E Bk}
x 1

yi B, Vi By

3. The generator of Brownian motion on P.G. The purpose of this
section is to begin describing the generator of the semigroup p; as
an operator on the real Banach space %/ . Let ¥ = T,G be the Lie
algebra of G and exp: Z — G the exponential map. We regard &
as a real inner product space using g.(-, -), with || - ||z the result-
ing norm. Let ry denote the injectivity radius of &, and recall that
exp is a diffeomorphism from Bg(0, rg) onto Bg(e, ry) such that
lxlle = d(e, expx) for every x € B(0, ry). Note that if we fix
ri < ro sufficiently small, then for every r < r; there exists a con-
stant ¢, < oo such that ||exp~ly; — exp~!y;|le < ¢d(y1, y2) for
all y{,y, € Bg(e, r). The space of continuous maps z: [0, 1] —
g with z(0) = 0 will be denoted P& ; it is a real separable Ba-
nach space under the natural vector space operations and sup norm
Izl = sup,epo, 11 l12()llg - The exponential map induces a homeomor-
phism Exp from Bpog»(O, ro) onto Bpg(e, ro) given by (Expz)(f) =
exp(z(t)). Clearly ||z|| = p(e, Exp z) for every z € Bpog(O, ro) .

For each s > 0, r < r; we will define a measure Q, ; on (P¥,
ZB(Py%)) derived from the Wiener measure P; on (P.G, Z(FP.G)).
These measures will be used in Proposition 3.1, which describes the
action of the generator of p; on certain very regular functions. In
reference [9], Gross proved an abstract Wiener space version of this
proposition. In his linear context, where the Exp mapping did not
appear, no analogue of the measure @, ; was needed. Lemma 3.2
involving these measures essentially takes care of the nonlinear diffi-
culties that Gross did not face in his early paper.

Let T;,s denote the homeomorphism from Bp (0, s~!/2r) onto
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Bpgle, r) given by T, ((z) = Exps'/?z. Then for B € B(RY) let

Qr.s(B) = Pso T, (BN Bpg(0, s7'/%r)).

Note that according to Lemma 2.2, along with Chebyshev’s inequality,
Cq s4 /2
r4

so that lim;_,o Q, s(Po¥)=1.

1 -

< P(Bp(0, 1) = Qr o(PF) <1,

LEMMA 3.1. For every q > 1 there exists a constant cq; < oo such
that

/ “Z”qu,s(dZ) ch
Z

0

forevery r<r;, 0<s<1.
Proof. We have
[ Nz10s s(az) = 5702 ple, Tr.52)70r 5(d2)

A B, (0,57"r)
=742 / ple, y)iPy(dy)
BPeG(O,r)

S S—q/chsq/z
in which the inequality uses Lemma 2.2. o
Now let W denote the ordinary Wiener measure on (P¥%,

% (Py%)), which is uniquely determined by our choice g.(-, ) of in-
ner product for & and the condition

/ z()|*W (dz) = 2t, 0<t<1.
PZ

0

LEMMA 3.2. For every r < ry, the measures Q, s converge weakly
to W as s —0.

Proof. We begin by showing that forevery 0 <t; <t <--- < <1

and collection of bounded Borel sets B; € Z(&), i =1,...,k, it
holds that
M lim [ @) eBy, . 2(0) € BIQ o(d2)

s=0J/p%

=/ 2(z(t) €By, ..., 2(t) € BOW (d2).

[
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First note that
(8) /P?X(Z(tl) €By,..., z(t,) € BY)Qr s(d2)

- /P _AO(t) € exp(sBy), ... ¥(tk) € exp(s2By)
-x(p(e,y) <r)P(dy)
= / Ky (e, y1)dy / Ks(t,~1)(V1, y2) dya
exp(s”zBl) exp(s”sz)

: / Ks—1,_y k=15 Yi) dyi + O(s™)
exp(s'/sz)

for m > 1/2,as s — 0. Let Gy(x,y) = (4nt)~"2e~4(x:»)/4  Ac.
cording to well-known asymptotics for heat kernels (see references [18,
19]), for every N > 1 there exists a constant Cy < oo such that if r,
is sufficiently small, then

IKi(x, ) = Gi(x, »)| S en((d(x, ¥) + D)Gi(x, p) + N -m/241)

forevery 0 <t <1 and x, y € Bg(e, r;). We use this in bounding
the difference between the leading expression in (8) and

9) / Gy, (e, y1)dy / Gs(t,~t)(V1, ¥2) dy2
exp(s'’B,) exp(s'/*B,)

.o pr(sl/sz) Gs(tk—tk_l)(yk__l s yk) dyk
by the sum of k quantities of the form

(10) G (e, y1)dy,
exp(s”ZBl)

h pr(sl/ZB,*l) Gistt,_, 1) V=25 Yi=1) @Yi-1

' _/e o8 1Gsit,—t,_ Vi1, ¥i) = Kt~y (Vi1 ¥i)| dyi
/ Ks(z,+,—z,.)(J’i, Vit1) dVis1
exp(s'*B,,,)

a Kt —t,_) V=15 Vi) V-
/cxp(sl/sz) stty=t,_) Vh=1> Vi) AV

Thus, if we let N > n/2, then the middle integral in this last expres-
sion is O(s'/2) as s — 0. The important point is that d(y,_;, y;)
is O(s'/2) when y;_; € exps!/?B;_; and y; € exps!/2B;. The other
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integrals in (10) are bounded uniformly in s, with the result that (8)
and (9) differ by O(s'/2) as s — 0.

We focus now on expression (9), which must be transformed from
an iterated integral on G to an iterated integral on & . According
to the Baker-Campbell-Hausdorff formula (see reference [21]), if s is
sufficiently small, then there exists a constant k < oo such that for
yi€exps'/?B;, i=1,...,k,

lexp™" yiwi — (exp™ yioy —exp™' yi)llg < ks.
Consequently, for s sufficiently small and y; as above,
(11) di-1, yi)* = |lexp™ !y yill
= |lexp~! y; —exp~! yi_1|Z + O(s*/?).
Using (11), the Gaussian kernels appearing in (9) may be rewritten as

(12) Gs(t,—ti_,)(J’i—l s Vi)
= (dms(t; — t;1)) ™"

lexp~! y; —exp~ty; 1l 1
. ex —_ 14+0(s /2 .
p ( 4s(t; — ti~1) ( ( »

Let dy; denote the pullback by exp~! of the Haar measure dy; on
Bg(e, r) to Be(0, r). By calculating in normal coordinates it is easy
to see that the Radon-Nikodym derivative of dj; with respect to the
Lebesgue measure dz; on Bg(0, r) satisfies
(13) iz = 1+ 01zl

l

Combining (12, 13) we see that as s — 0, the iterated G integral (9)
differs only by O(s!/2) from the iterated & integral

=n/2 5=z, |5 /4st,
/s‘/ZB (dnsty) " <e /4t d 7,
1
./;mB (4ns(ty — 11))“"/ze‘llzz—Z,||2g»/4S(t2—tl) dz,
2
. ‘/sx/zg (4rs(ty — lk~1))_n/ze_“z’°_z“*l“23’/4s(tk_tk-1) dzy.
k

The claim (7) now follows from the changes of variables s~1/2z; — z;.

Fix ¢ > 0 andlet By, ..., By be Borel sets (possibly unbounded) in
Z . As a consequence of Lemma 3.1 we may pick R large enough that
Jx(lzlle > R)Qr s(dz) < &/3 uniformly in s € (0, 1]. Of course we
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may also pick R large enough that [ x(||z]lez > R)W(dz) < &/3.
With this value of R fixed, we have for s sufficiently small,

ng(Z(ll) € B, ﬁBg(O, R),..., z(t) € By N Bz (0, R))Q,,s(dz)

——/gx(z(tl)eBlﬂBg(O,R), ..., 2(t) € By N Bz (0, R)W(d2)| < ¢/3.
Py

Hence, by an ¢/3 argument we obtain the limit (7) for arbitrary Borel
sets By, ..., By.

The proof is finished with a compactifying estimate. Let 0 < #; <
t, <1 and consider, for g > 1,

/ NEOEEO-REE

0

=" /PGX(P(e, y) < )llexp™! p(22) — exp™" p(11)|1% Ps(dy)

< 5742 /P _x(d(e, ). (e, (1) <7)

| exp~t y(t2) — exp~! y(11) | Ps(dy)
= 5742 /P _d(e,y) < DK fe, y1)dyy

[ xtdte, ) < Mllexp y2 = exp~ g Kugymiy 01 y2) v

< c;’s‘q/Z/PGKs,l(e, Y1) dn /PGd(J’b Y2) Kyt -1y (V1> ¥2) dy2

< const(t, — t;)7/2.

The reader may consult reference [10] to be convinced that this esti-
mate finishes the proof. o

REMARK. Lemmas 3.1 and 3.2 imply that if f is a real valued con-
tinuous function on Py& with a polynomial bound |f(z)| < c||z||*,
then

(14) lig [, 12)0:.d2) = [ _S2W(dz)

To see this, fix ¢ > 0, and for every R > 0 let mgr be a nonnegative
continuous function on Py% such that |mg(z)| <1 and

. (Z)_{x for ||z]| < R,
BE7710 for|z|>R+1.
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By taking R large enough we have
[ 17@10 = me(2)Qr.sd2) < /3
P
uniformly in s € (0, 1], and also

[ V@i - ma@)waz) <ef3.

0

With this value of R fixed we have

/ f(z)mR(z)Qr,s(dz)—/ f(zymgr(z)W(dz)| <¢/3
37 PZ

for s sufficiently small. Since ¢ was arbitrary, the limit (14) results.

LeEmMMA 3.3. For B C P.G let B! = {y~! : y € B}. Each of
the Wiener measures on (P.G, % (P.G)) has the property Py(B) =
Py(B~Y) for every B € B(P,G).

Proof. 1t suffices to prove the equality for cylinder sets. Two ingre-
dients are required for this simple calculation which we leave to the
reader. First, Haar measure is invariant under group inversion in G.
Second, the heat kernels have the property K (x, y) = K;(x~!, y~1).
This follows from bi-invariance of the kernels, and the fact that the
kernels are symmetric in their G-arguments. (Symmetry in the G-
arguments can be seen in the eigenfunction expansion for the ker-
nel.) O

REMARK. Different proofs of this lemma have appeared in [2], §4,
and [16], Lemma 2.2.5.

Lemmas 3.1-3 put us in a position to discuss the generator of p;.
Let Z'(L) consist of those functions f € &/ for which the limit
s—0 S
exists in .7 . On these functions define Lf to be the above limit.
Theorem 2.1 implies that Z'(L) is dense in & and L: Y (L) —» &
is a closed operator. Before stating the next proposition, we need some
notation and a concept of differentiability for functions on P.G.

NortATION. If A and B are Banach spaces, let % (A, B) denote
the space of bounded linear maps from A4 to B. Recall that we
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regard P,Z as a Banach space; let Py&* denote its topological dual
space, and let (z, y) denote the canonical pairing between z € Py&*,
yc Pog .

Now let f be a function defined in a neighborhood U of a path
x € P.G, taking values in a Banach space B. We say that f is
differentiable at x if there exists an element w € Z (P&, B) such
that

I/ (yx) = f(x) —w(Exp~' y)|lz = o(|| Exp~" y|)

for all y with yx € U and p(e, y) sufficiently small. Clearly this
element w is unique when it exists, so we write f'(x) =

ProPOSITION 3.1. Let f € &/ be such that ' and f" exist every-
where, f" is bounded, and the map f": P.G — B (P&, Ph&*) is
uniformly P,G-continuous in the weak operator topology. Then

(15) im (pSf)(x) f x) / (f”(X)Z Z)W(dZ)

§—0

Moreover, if for some fixed r, the functions
1 "
3 [z, 90 d2)
P

converge uniformly in x € P,G as s — 0 to the function on the right
side of (15), then f € Z (L) and the limit (15) holds uniformly in x .

REMARKS. We follow the proof of Proposition 8 in Gross, reference
[9]. As in his proof, we could identify the right side of (15) as a
trace with respect to a suitable abstract Wiener space structure on
PyZ . However, this would only introduce additional notation that is
unimportant in the present context.

Proof. Fix a positive number r < r; (recall that the measures Q; s
are defined for 0 <7 <r;). We have

ag =~ @NDZJD 1 / (Fx) - £(x))By(dy)

s

/ x(ple, y) < 1)(f(rx) - f(x)Pu(dy)

S

+1 /P x2(ple, ¥) > N(fx) — F(x)P(dy).

Since f is bounded, the last term decays rapidly to zero as s — 0,
uniformly in x. (Use Lemma 2.2.) For every y € P.G define y; =
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Exp(tExp~'y). Then the function f(y;x) is a twice differentiable
function of ¢ on the interval [0, 1], with

Y x) S)t’x) = (f'(x), Exp~'y) and

d? " - -
————{;;;’x) = (f"(yx)Exp~'y, Exp™' y).

Since the second derivative is bounded, the first derivative is absolutely
continuous, so two integrations by parts yield

fyx) = f(x) + (f'(x), Exp~" y)
1
+/0 (1-0)(f"(vex)Exp~'y, Exp~' y) dt.

We insert this in line (16). According to Lemma 3.3
/ H0(E ) SN, B DR()
-/ Ay S DU, By HR)
--/ APl ) SN, BT V)P,

Hence, line (16) reduces to
(17)
1
/O (1-1) /P _x(ple,y) <P 3ix) Exp~' v, Exp~' )5 Ru(dy) dt

1

-1 / 2(ple, ¥) < I)(f"(x)Exp~'y, Exp~! )5~ Py(dy)
2/pG

1
+/0 (1 —t)/Perm(e,y) <7
(f"ex) - f"(x))Exp~' y, Exp~ y)s~ ' Py(dy) dt

=3 [, "7, 90 s(d2)

1
+ / (1-1) / (f"(Exp(s/212)x) - "(x))z, 2)0r.s(d2) dt.
0 PZ

For each fixed z, the integrand on the last line is continuous in the
parameters s, ¢t and x. Let {x;} denote a countable dense set in
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P,% . Then

sup sup sup |((f"(Exp(u!/*tz)x) - f"(x))z, z)|
t€l0, 1] u€l0,sl xeP,%

= sup sup|((f"(Exp(u'/?z)x;) — f"(x:))z, z)|
u€[0,s] i
u rational

is a measurable function of z. This allows us to write

(18 hmsupsup / (l—t/ ((jJ (Exp(s/tz fJ(x )z, zQ’s(dz)dt
P&

< lim sup / sup_sup (/" (Exp(u'2)x) - 1" (x))z. 2)(Q, ,(d2)
s—0 JPZ u€l0,s] x ’

< lim hmsup/ sup supl((f (Exp(ul/zz)x) - "x)z, 2)|Q, ,(dz).
=0 50 JP,® uel0,1) ’

Note that the last line requires the natural extension of the map Exp
from our original domain of definition Bpog(O, ro) to all of P& .

(This causes no problem; it is the map Exp~! that generally cannot
be defined everywhere on P,G.) We claim now that for each 7 > 0,

(19) fim |  sup. supl((f (Exp(u'*2)x) - f"(x))z, 2)|Q, ,(dz)

50 P,Z u€l0

- /P sup sup (/" (Exp(u'’z)x) — f"(x))z, 2)|W(dz).

wg u€l0, 7] x

The integrand in this expression will be shown to be a Py&-continuous
function of z. First we show that for each » and x,

F(u, x, z):= ((f"(Exp(u'?2)x) — f"(x))z, 2)
is continuous in z. Fix z, and use the inequality
|F(u, x, z) — F(u, x, zo)|
<|((f"(Exp(u'?2)x) - f"(x))z, (2 = 29))|
+|((f" (Bxp(u'?2)x) — f"(x))(z = z0) » 20|
+ (/" (Exp(u'/*2)x) — f"(Exp(u'/*20)x)) 20, z0)|-
Since f” is bounded, the first two terms in this inequality tend to zero
as ||z — zo|| — O, uniformly in u, x. For the last term note that
p(Exp(u'/?z)x , Exp(u'/?z0)x)

= sup d(exp(u'?z(t)), exp(u'/?zo(2))),
tel0

which tends to zero as ||z — zg|| — O, uniformly in u € [0, 7] and
x . Therefore, by the uniform weak continuity of f”, the last term in
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the inequality tends to zero as ||z — zg|| — O, uniformly in u € [0, 7]
and x. In summary, we have shown that for each zy, F(u, x, z)
tends to F(u, x, z9) as ||z — zg|| — O, uniformly in u € [0, 7] and
X . This implies in particular that

lim sup sup|F(u, x, z)|= sup sup |F(u, x, zg)|-

272 yel0,1] X uel0, 1]
Since f” is bounded, the integrand in (19) is bounded by c||z||? for
some ¢ < oo. Therefore, according to the remark after Lemma 3.2,
the limit (19) holds. Substituting this in the last line of (18), we have

lim sup sup |((f"(Exp(u'/?2)x) - f"(x))z, z)|W(dz)
=0Jp % uel0,7] x

which vanishes by the dominated convergence theorem. This means
that

fim @)X =) Ly, / (f"(x)z, 2)0r.5(d2)

s—0 S 2 s—0
=3 /P X 1"(x)z, 2)W(dz).

(See line (17).) In view of the uniform estimates on the last lines of
(16, 17), the last statement of the proposition is now clear. O

It is a consequence of Proposition 3.1 that every smooth cylinder
function belongs to Z(L).
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