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Biholomorphic convex mappings from unit ball in C” into C" are
studied in this paper. A Schwartz type lemma for the class of map-
pings and a necessary and sufficient condition under which a holo-
morphic mapping is biholomorphic and convex are established. The
results are used to describe some characteristics of the image of the
class of mappings.

1. Introduction. Since Loebe discovered as early as 1907 his “Ver-
zerrugsatz”, classical distortion theorems for families of univalent
functions defined the unit disc in the complex plane C have devel-
oped systematically in depth and scope. For several variables, H. Car-
tan showed his interest in the field and conjectured [1] that the mag-
nitude of the determinant of the complex Jacobian of a normalized
biholomorphic mapping on the unit polydisc in C? should have a fi-
nite upper and a positive lower bound. But, it was pointed out in [2]
that the conjecture is not correct. That is the distortion theorem for
general biholomorphic mappings in several variables does not hold.
This suggests one has to find some of their subclasses for which the
distortion theorem can still hold. In 1988 S. Gong, C. H. FitzGer-
ald and R. W. Bernard [3] obtained first time the upper and lower
bound of the magnitude of the determinant of the Jacobian of a
normalized, convex and biholomorphic mapping from the unit ball
B ={Z = (z!, z2) € C?||Z| < 1} into C2?. After that Taishun Liu
[4] generalized the result to the unit ball in C" and X. A. Zheng [5]
to the bounded symmetric domains.

It is worth pointing out that the estimate of the magnitude of the
determinant of the Jacobian of a holomorphic mapping is one of the
generalization of distortion theorems of one variable. The estimation
of eigenvalues of the Hermitian matrix, the product of the complex Ja-
cobian of a holomorphic mapping and its transpose conjugate, should
also be considered to be another form of generalization of distortion
theorems of one complex variable. In this contribution we will discuss
the type of distortion theorems and its application to biholomorphic
convex mappings.
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The paper is arranged as follows: In §2 we will prove a Schwartz
type lemma of biholomorphic convex mappings from the unit ball in
C" into C". The lemma describes the type of distortion theorems
given by us. In §3 we will give a necessary and sufficient condition
under which a holomorphic mapping is biholomorphic and convex.
In [6, 7] two necessary and sufficient conditions which are equivalent
were also given. However, in the section we would quote a counter-
example by Taishun Liu in [4] to illustrate that the conditions are not
sufficient. In §4, as an application of the above results, we will study
the geometric characteristics of the image of biholomorphic convex
mappings.

In this paper summation convention is used.

2. A Schwartz type lemma of biholomorphic convex mappings. B
denotes the unit ball in C”, that is

B={Z=(zl, " eC"|Z)? = le’|2<1}

When n =1 replace B by the symbol D. The Jacobian of a mapping
S from B to C" is denoted by J;. So-called normalized holomorphic
mapping means the holomorphic one with f(0) =0 and J#(0) =1,
I is the unit matrix.

In this section we demonstrate a Schwartz type lemma of biholo-
morphic convex mappings from B into C”.

THEOREM 1. Let f: B — C" be a biholomorphic convex mapping.
Then

1+|Z] 2 _B P 1-1Z|
— (o] > *S. . 1 ] >
(1 |Z|> gaﬂdz dz f*0;jdw' dw 712

2
) 8.5 dz*dz

holds, where
(1—|Z|?)0,p +Z025
Sl =T (1-12PP
is the Bergman metric of the unit ball B in C" and the inequalities
are sharp.

The proof of the theorem depends on the following two lemmas.

LeEMMA 1. Suppose that F: B — C", W = F(&) is a biholomorphic
convex mapping and ¢ = F~Y(W) is the inverse mapping of F(¢).
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Then
R .
4501/3, , w’@ 7
e 9EE dwk | i
> . iy
22|Re (5aﬂ8wk8wf8wf ozl é_oa v
holds for any a = (a',...,a") € B and V = (v!,...,v") € C",
where w' (i = 1,2,...,n) are components of W and &* (a =

1,2,...,n) ones of &.

LEMMA 2. Suppose that f: B — C", W = f(Z), is a biholomor-
phic convex mapping with f(0) =0 and Z = f~Y(W) is the inverse
mapping of f(Z). Then

8z* 9zf
2185 5w 57
0z% 0z 9z 9zh .
it Bayizi 2 inyj
> 2Re{gﬂ”8w18w12 ol +1Z)%g 8550 o7 Y
82z 9z gwk | ..
STl
~1ZP)8 5 gurgui o oz 2 VT }
holds forany Z € B,V = (vl, ..., v") eC".

Proof of Lemma 1. Since F(B) is a convex set we have
AF () + (1 - A)F (&) € F(B)

forany A € [0, 1] and &, & € B. Fix &, and define a holomorphic
mapping &, from B to B by

G=F'AFQ)+(1-HF&)), <¢eB.

From Schwartz’s lemma of the unit ball in C”, it follows that

43 351 AT

g (f)v Uﬂ = alg(él)aék 851

or

o, _
o &) 7 et

1) g0 2 g 5(E) 5k G0 @
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The inequality (1) can be rewritten as

¥3:
aEx &R _ 2 a¢e o9&, i
aﬂ(é)awlaw] ; - A g 6w15%7 vivl > 0.
3!
For A €[0, 1) we have
2 ¢ 3%,
lim 8.5 55 oo |é” v - 228,50 50 5y vV o
A—1 1-2 .

Straightforward calculation yields

74
Ca ., eeaF|
< = - 24 iyl
0<ima [’1 SaB M gwivws|,
A
B 957 9, | L ij
}T}z{lg‘*ﬂawlaw] p v
6260 azﬂ .
2, A A k _ank i77]
TR A ukowt ow . (wHe) - wi(&))v
A

o&e 9% | . 08,3
# 51%%%7 vy’ aaﬂ aaf,k ( wk(&) - k(fo))} }
&

Noting that &, — £ as A — 1, we obtain at the point &

& &
@) 28550
2ra .
+2Re {gaﬂg%gij( k(&) — wk (&) viD

aéa aéﬂ izJ aﬁ 36
+ 5057 B8 e k(é)—wk(:o»}zo

The inequality (2) holds for any ¢, &, € B. Now fix ¢ and take

& = % in (2) where ¢t € D, D is the unit disc in C. We then obtain
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a nonnegative harmonic function defined on the unit disc by

a&e é,l

aﬂaw' 6w1

20 05 Si (2"<f>—w" ()}

It follows from Hamack’s inequality that
— ]

1 + |¢]

Now taking ¢ = lfl we obtain

H(t) =

1+ |t

T O S HE) S HOT

[ 14 €]
e H(0) < H(E) < HO
or
3) e H(ED < HO) < HOED
where
H(ED = 26,50 2 i
and
oL 3f
H(0) = "ﬂ dw' 0w/
2 £p .
+m%%@%%ﬁw©w<>w%mw

¢~ aéﬂviﬁj 8.5 0&7
ow'! ow’ & owk
The inequalities (3) can be rewritten as
4 9g ol
1 — |€|°*B owi oW

(awﬁ@y—ww»}

aB wkow! 0w/
o0& aﬁﬂv~v- 8.5 07
ow! owJ O&Y gwk

S~ agx aff
2 Tr e8P owl ¥

2za
zzRe{g-_ﬁﬁl—-é— 7 (wk (&) — wk(0))

(w () —wk(O))}
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Taking ¢ = va, v € (0, 1), and letting » — 0 in the inequalities
above, we have

& 9EF
(4) 4|a|§aﬂawl a,wj

¢=0

%> 9EF dwk
> — g
2> 2Re(6aﬂa %5 5 Bélav

=0

Lemma 1 is completely proved.

Proof of Lemma 2. Let ¢,: B — B be a holomorphic automorphism
defined by
a—_¢§
Pa(€) = T:ﬁA >

where 4 =sI+ &2, s=+/1—1]a]>, ac B. Denote Z = ¢,(¢). The
inverse mapping of ¢, is as follows:

o _a-Z2
f—(ﬂ (Z)_I—ZZ’A

Let F(¢) in Lemma 1 be f(@,(&)). Straightforward calculation gives

(5) 92 9%~ 9zk 9zv | 9E* 9%z
dwkdwi|._y 9z+tzY dwk dw!  dz¥ dwkow!
_arAG+ T AL 97 9z¢ A5 9%z#
T (1-la®)? dwkow! 1-|a2owkowi’
o __ A, om
ow’ £ T 1—|afowi’
k k
___awl =@ a" - 4 Bawt
=0

Substituting (5) into the right side in (4) we have at £ =0 (Z = a)

g2k 9EF puwk| |

2Re ( o guwkow! 0w’ BE! oa oY
ozt 0zZ°
= —2Re{(a”gya +a’ g/w)a ow'! dw/

__9%z¢ 977 dwk
B0 gukowi ow? 8z '

l;U]

+ (1 -af’)
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Notice that the metric ( gaF) 1<a,p<n ON B is invariant under its holo-
morphic automorphism. That is to say

e o8

vig dz> 97k
b dwi 9w/

J = o — R —
V' =859 5yt 5w
=0 Z=a

v'7/.

(7)

Combining (6), (7) with (4), we obtain at Z =a.

dz* 0zh
(8) 4|a|ga§%'{a—'m7’v

> ‘2 Re {Eaaﬂ g7

l",U'j
o0z% 87”_0 Boiz=j
8wi8ﬂ)‘fz Zvw
8z 9zF ..
2, Ye Yea iz
el 8w om0
0%z¢ 9zZf owk , ._.
—1al?Yo — Vayiagi
+(1-ld )gaﬁawkawiam' 5272 VY }

The inequality (8) is valid for any a € B. we complete the proof of
Lemma 2.

Proof of Theorem 1. From the inequality (8) it follows that

87> 978

- L Lyl
(9 2Z|2- 128,557 577
0z* 0z" ,_;
a0 5 135
22Re{z z gﬂ?awiawf” v
82z¢ 9z owk | . .
—1Z1e = Yoyt
+(1-1Z] )g"‘ﬂawkawiawi 5272 VY }’

for any V' € C". Using the definition of ggz; we have

z?

(10) 2P gpy = a-Zpe

and it is easy to see that the second term of the right side in (9)
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9%z 9% owk , i

(11) (1-1Z"g 8B gwkow! 0w 927
=z aazy {(l—l %) aﬂgzzulgzﬁ v }
+1Z? aﬂgfuzgijviﬁj
e [#es ]
=2 [(1 -1zP) azgﬁ,—z%v"ﬁ’]

zozB §zo 9zB

— iz5)
A= |ZP2ow ow

Substituting (10), (11) into (9) immediately gives

8z 0zf . .
(12)  2jZ|(2- IZl)gagmg-w‘j”

0 0z* 97k .
> I Z12Yo - i)
2Re{z [(1 VARY 8,377 57V v]}.

Noting the Euclidean inner product (dz®, dz#) = 20,5, {dz®, dzP)
= 0, we easily see that the right side in (12)

0z* 0ZF .
(13) 2Re{Zy [(l—l [ ) aﬁwwvlvj}}

_1 _ _ 92 977 i 2
_2< [1 1Z2) aﬂawtawfw} , d|Z| >

By substituting (13) into (12), it follows that

0z* ozh 078 imi

(14)  2|Z|(2-|Z))g 8B 5w

1 0z* 0zZF ;_;
> = - oL T2 iy 2
_2< [(1 IZI)aﬁa 5 jvv},dlZ|>.

The inequality (14) can be written as

(15) %—Zpﬁ_< {lg [(1-1212 QE%%W]}, d12|>.
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Hence, integrating both sides of (15) one obtains

1Z| - agzh ..
/ 2(2—’5201" > lg [(1 _ |Z|2)ga 0z* 0z vzv]jl —lg|V|2.
0

1- Bawi dwi
So
A +1ZD3 ., 2 9z 9zF .
S el VART} 4 EAONTG o2 T i,
(16) Toizy VP 2 (1 -1208,55 0 5o
(16) implies that for any Z € B the following matrix
(1+]Z))°

dz> 9zh
—ETE[_I" (1-1zP (gaﬁa_ﬁa_—mf>
1<i, j<n

is positive semi-definite. So we get the following matrix inequality
1-1Z\? dw! owI
(17) (m) (8,5)1<a, 820 < (51']5}'&‘522‘:5
Similarly, we can prove
1-Z1\? ow'! ow’
18 (152 Eprsasen 2 (S350
Combining (17) with (18), we complete the proof of the inequalities
in Theorem 1.
Now let us give an extreme example to illustrate that the inequalities
in Theorem 1 are sharp. Set n =2 and let

W=1@ =12, 1@ A= (P i)

_Zl’l__Zl

)lsa,ﬂsn

) 1<a, f<n

It is easy to check that the mapping is normalized, convex and biholo-
morphic and its Jacobian is
|
(1—2z1)2 0
-z 1
(1-zH)2 1-12z1

Jr(Z) =

Take V' = (1, 0). Then
ow 1
1@ =7 (5z) = (-9)
and

(19) VJf(Z)Jf(Z)'V’
1 ~ 1
(1 -z =2 4+ |z12)2 7 (1-2r cos 6y +r})2’
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where z! = r;e'¥ . On the other hand, we have

1-1Z1\* e, - 7 1=12%P
(20) (m) V(gaﬂ)a,ﬁ=l,2V = m,
L+]ZI\° ., — 1=z
(21) (1_|Z|) V(gaﬂ)a,ﬁ=1,2V - (1_|Z|)4'
If z22=0, z! =r, (§; =0), we obtain from (19) and (20)
. (14]Z]\? _
(22) VJf(Z)Jf(Z)/VI = (-1—_=—Z—:) V(gaﬁ)a,ﬂﬂ»?-V,'
If z2=0, z!=—r; (6; = n), then from (19) and (21) we get

T IANT 1_|Z| 2 744
@) VDT = (15g) VEesm1 V-

The two inequalities (22) and (23) imply that the inequalities in The-
orem 1 are sharp.

3. Necessary and sufficient conditions of biholomorphic convex map-
pings. Denote B, = {Z € C"||Z| < r < 1} and the boundary of B,
by S;. We will demonstrate the following theorem.

THEOREM 2. If f: B — C" is a holomorphic mapping with f(0) =0
and |detJ¢(Z)| > 0, then the following statements are equivalent.
(i) f is a biholomorphic convex mapping.
(ii) If Z € B and b = (b!, ..., b") € C" satisfy Re(b*z*) = 0,
then

i g3 2.0
(24) b2 + Re (bﬁbva“’ W a_0°2 )20.

928 027 > dwiow

Proof. First prove (ii) from (i).
Since f(B) is a convex set, the mapping

Zy= 1A Z) + (1= D f(Z2),

Zi,7Z, € B and 0 < A <1, defines a holomorphic mapping from
B x B — B. Denote Carathéodory distance of the two points P and
Q of adomain Q in C" by Cq(P, Q). Writing F(Z,, Z;) = Z; we
see [8]

Cp(F(Z:, Z,),0) < Cpxp((Z1, Z3), (0, 0))
= max{Cp(Z;, 0), Cp(Z;, 0)}
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by the contraction property of Carathéodory distance for holomorphic
mappings. Recalling the Carathéodory distance on the unit ball in C”

Co(Z,0) = Lig LH1Z]

Jer— 7 Z€B

then one has
|Z,] < max{|Z, |Z,]}.

It implies that for any A € (0, 1) and Z,, Z, € B,, Z; € B,. Thus
f(By) is also a convex set. Since, moreover, f is biholomorphic the
image f(S;) (or 8 f(B,)) of S, under the mapping f is a real convex
hypersurface. The second fundamental form S of the hypersurface
is positive semi-definite. In other words, for any tangent vector U to
f(Sy), we have
(25) S(U, U)>0.
Note that f(S,) is an isothermal surface of the function r2 = |Z|? o
f-! and
radr? = ar* o +8r2 0 _Eaazai Zaafa_é‘f_

Bl = Swiow’ T owiow - dwiow ' owow!

is a normal vector to f(S;). Denote the normal vector by v. #[ is

a unit normal vector. Assume that U = a"b—% + Eig% with

Re(a'z*(0z%/6w")) = 0.

~ v
S\U, U):<DU|_1/T’ U> ,

where D is the connection in R?" (directional derivative). Via (v, U)

= (0 we have )
—~ V —_~
(o> V) = B> O

Hence, the above inequality (25) can be rewritten as

1 (. 8% ;i 8%r?
(26) |V—|(aa W‘FRC aa’a—wW > 0.

Now set b = alZ or a' = bB(dwi/zF). From Re(az® (82 /dw'))
= 0, it follows that Re(b#Zf) = 0. Substituting a’ = b#(dw!/dzF)
into (26) we can get (24).

Now prove (i) from the condition (ii). We divide the proof into
three steps.

Then we have
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In the first step, we show that if the mapping f is injective on
B, (0 < u < 1), then f(B,) is a convex set. In fact, since f is an
injection on B,, f(S;) is a real hypersurface in C" for any r < u.
If U=a'0/0w’)+a'(d/0w') is a real tangent vector to f(S,), the
second fundamental form is

(27) S(U, U) = L aiﬁj£+Re (aiaf—azf—»
SN Ow'Ow. owiows

_ 1, ;8z%8Z° e 0%2F
_|u| (aaawla +Re(aa EPRIEIT] .

Set b = ag% . We have Re(b#zF) = 0. Recalling the condition (ii)
we get

S(U,U)>0.
Hence, f(S,) is a real convex hypersurface for any r < u, and then
we conclude that f(B,) is a convex set.
In the second step, we prove if the mapping f is injective on B, ,
then f is also injective on B, . Since f(B,) is a convex set f(B,)
is starlike with respect to the origin. Therefore, we have

(drls,. dp?) >0

thanks to the necessary condition for starlike mappings [9], where

2 = |W|?. If the statement is not true then there are at least two
distinct points X, Y € B, such that f(X) = f(Y). We know, for
all 0<s<1, sf(X), sf(Y)€ f(By). Because f is a holomorphic
immersion one can obtain the curve X(s) with X (1) = X which falls
in B by the method of analytic continuation such that f(X(s)) =
sf(X). Thatis X(s) = f~1(sf(X)) is a univalent component of the
inverse images of the segment sf(.X). Since

2
dr (ds(s)) l(drz(X(s)), dp)lw=ssi) 2 0

for 0 <s <1, we have

r’(X(s)) < r¥(X(1)) = r*(X) = .
Thus .
X(s) € By.
Suppose that Y (s) is another univalent component of the inverse im-

ages of the segment sf(X), but Y(1) = Y. A similar discussion
shows Y(s) € B, . Let

F ={sel0, 11|X(s) = Y(s)}.
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If the set & is nonempty then the supremum s* of % exists. Be-
cause % is a closed set s* € # and s* < 1 due to X(1) # Y(1).
This implies that for any small positive & satisfying s* < s*+¢ <1
we have X(s*+¢) # Y(s*+¢). But

S(X(s™ + &) = f(Y(s* + &) = (s" + &) f(X).

This is contrary to f being locally biholomorphic at X(s*). If &% is
empty then X (0) # Y(0). In other words, at this case we have at least
two points X(0) and Y (0) such that f(X(0)) = f(Y(0)) =0. Since
f is an injection on B, , at least one of the two points X (0) and Y (0)
must be a boundary point of B,. Suppose that X(0) € 0B, . Let
B(X(0), ) be the open ball central at X(0) with radius J, which
is so small that B(X(0), 6) N %, is empty, where %, C B, is the
neighborhood of the origin in B such that f is biholomorphic on it.
Because of the open mapping theorem f(B(X(0), §)NB,) is an open
set and f(%;) an open set including the origin of C". So the origin
is also a boundary point of the open set f(B(X(0), d)NB,) and then
{f(B(X(0), 6)nB,)}n{f(%)} is not empty. This implies that for any
W e {f(B(X(0),d)nB,)}N{f(%)} it has two distinguished inverse
images on B, . It is impossible due to the fact that f is injective on
B, . So, f is also an injection on B,,.

In the third step, we demonstrate & = [0, 1] where & = {t €
[0, 1]|f is injective on B}. Since f(0) =0, J;(0) # 0, the set &/
is nonempty. We claim that ./ is a closed set. In fact, if 0 < ¢; € &
then all ¢ < ¢; fall in &/ . Therefore, to prove &7 is a closed set
it is sufficient only to prove that if ¢* > ¢ and all ¢ fall in &/ then
t* is also in & . If the result is not true, there exist at least two
distinct points X;, X, in B,- such that f(X;) = f(X;). Because of
|X1] < t*, |X3| < t*, one can find a ¢** satisfying |X;| < ** < ¢*,
| X2l < * < ¢*. The formulas above imply X;, X, € Bs-. But
t** € & . This yields f(X;) # f(X;). It is impossible. So & is
a closed set. Finally, we need to prove the set ./ is also an open
set. For the end, only to verify that if f is a one to one mapping
on B, then there is a positive ¢ small enough such that f is also
a one to one mapping on B;,.. If not, there is a sequence &, > 0
with lim,_,. €, = 0 such that one can find two sequences {X,}, {Y,}
satisfying the following conditions:

Xn, Y EBHan, Xn#Yn, [f(Xy)=f(Yn)
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forall n=1,2,.... Obviously,

lim |Y,| = lim |Y,| =t

n—oo n—o0

It is easy to see that {X,}, {Y,} are bounded sequences. So there
exist two subsequences {Xp, }, {Yn } of {X,}, {¥»} which converge
to X and Y respectively, that is

lim Xn == X, lim Yn = }’.
k—o0 k k—oo
The two subsequences satisfy
f(Xn)=f(Yn),  Xn #Yy, fork=1,2,...,
and
Iim | X, |=lm|Y,|=t.
kggol nl k1—>00| ]

Obviously, X,Y € 0B;. If X # Y that is contrary to the result
in the second step. If X = Y it implies that there are two points
denoted still by {Xy }, {Ys } in any neighborhood of X =Y such
that X, # Yu , but f(Xn) = f(Yy,). It is obviously impossible due
to the assumption of f being local biholomorphic.

Combining the above argument we obtain &/ = [0, 1]. Hence f
is biholomorphic and f is convex from the argument of the first step.

It is worth noting when »n = 1, the inequality (24) has the following

form:
2
|6 + Re <b2 (‘;‘;’) zjw ) >0, Re(z)=

Because of
Ly (42)'_ _du s
dz2 \dw) = dz dw?’

we have

dw (dz\*d*w d’w dz
2 _Re [zp2 AW\ _ 112 _Re [zp2
a8 - Re (3242 (42 )" 52 ) < or - e (275 42

= |b> + Re (7b2%) > 0.

Furthermore, from Re(bZ) = bZ — bz = 0, Zb = —bz, the inequality
(28) can be rewritten as

b2 (1 +Re Zf,”) > 0.
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It just is the necessary and sufficient condition of univalent convex
functions defined on the unit disc in the complex plane C.

In [6] K. Kikuchi stated the following theorem: Let f be a holo-
morphic mapping from the ball B into C" with f(0) = 0 and
detJs(Z) # 0, Z € B. Then f is biholomorphic and convex if
and only if

(29) Re[|ZAP?+ZJ;1(Z)4] >0,
where
a 0 0
0 a - 0 ‘
A: . : .. : ’ ajZO, J:172,.."n’
0 O an
62ﬁ / !
A= ZAE)Z’BZ(Z)AZ

82»}(;1 ! 7
ZA5525(2)AZ

with ZA4 # 0. The necessary and sufficient condition is equivalent to
the one given by Suffridge in [7].

We quote a counter-example given by Taishun Liu in [4] to show
that the condition (29) is not sufficient to conclude the section. Set

@)= 2 ).
Clearly, the mapping is biholomorphic and a simple calculation gives
(1=2)2 0 0
0 1—2z)?% - 0
SO T I
0 0 s (1 =2z,)?

and 0%f;/0Z'dZ is the matrix of which the unique non-zero element

is (—1_—12)— at j column and j row.

Putting (30) into the left side of (29), we have

" 1+z;
21,12 J
E a]lzjl (1+Zj) > 0.

Jj=1

Re[|ZAP* +ZJ;(Z)A] = Re

Hence, according to the result by Kikuchi, the mapping
z z z
@)= (2 2 -

1—z;" 1=2,>""7" 7 1 =2z,
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should be convex. That is to say for 0 <r < 1

3" ftre) € 4£(B))

k=1
where e; is the unit vector of which kth component equals to 1. So

1 n
-1 [; > f(rek)] € B.
k=1
But one has

- 1 = r r
(31) f ll:_ﬁ](z::lf(rek)];—(m”m)

When r is close to 1 the right side of (31) does not belong to B.
Therefore, the mapping f is not convex.

4. Characteristics of the image of biholomorphic convex mappings.
As an application of the theorems in §§1 and 2, we now consider
characteristics of the image of biholomorphic convex mappings from
B to C".

THEOREM 3. Suppose that f: B — C" is a normalized biholomor-
phic convex mapping. Then
u(l + p)3 (1 —p)*’
l—ﬂ ﬂ(l_t)n+112n 1

(2) wz,,_lzﬂ ) ./0 T dt < volume of f(S,)

1+u /“ (1 + t)n+ig2n-t
p(l—p) Jo (1 —1)3n+3
where »,_, is the volume of the unit sphere in R*" .

< principal curvature of f(S,) <

dt,

< nwap-1 3

Proof Fix Z € B—{0} and b € C" fulfilling Re(b#zF) = 0 Let
Z= % and b= %, teD. Then Z € B and Re(bPZP) = 0. Since
W = f(Z) is a normalized biholomorphic convex mapping it follows
from Theorem 2 that

} >0
z

|t|2|b|2+Re{l lztz“b/’by (awiawf 82z )
>0.
Z

|Z |2 |Z|3 0z dz¥ dwidws
or

, tz*bPbY (Bw'ow 8%z“ )
(32) Re{'“ T Z1 \82F 572 dwiow
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The left side of (32) is a real-valued and nonnegative harmonic func-
tion. From Harnack’s inequality we have
5}

(33) b2 (1‘_'”) < |b|2+Re{’7abﬁby (3wi‘9wj o2z )

1+ ¢ |Z] 0zF 0z dwidw/
1+ ¢
< |oP ( ) .
If we take ¢t = |Z], the formulae (33) becomes as follows:

1 —|Z] dw dwl 92z° < ppltlZl
1+1|Z| 0zF 8z? dw'owl —|Z|

for any Z € B — {0} with Re(b#zf) = 0. Now taking b = a(2%)
and noting (27) we have

1b]*

< |2 +Re {?bﬂby (

0z8 0ZF _. (1 —|Z]
: - -a’ <
(4 i (1 ¥ |Z|> SIS, U)
028 0728 i (147
a -
=T owiowi© \1-|Z]
where
0z> 0Z8 . 0 . 0
= zB =a'—+a -,
id \/ dw ow'” U=a ow T ow
From Theorem 1, it follows that
_ 2 a 9z a a B
5 > 1-|Z] 1 61'81._'_ 1 _,0z* 07 2,
1+|Z| 1-|Z]2owiow/ (11— |Z|2)2 ow' 0w’
2 a gsa a B
5y < 1+1Z] 1 aia_z_.+ 1 62 9z B
1-1Z] 1 -|Z|? ow owi (1-|Z|2) ow' dwJ

Therefore, the inequalities

1 ,8z% 0z - 9z%|?
2 > - _ —‘] l=a
(35) lal” 2 (1+1]Z])4 [(1 121)a’ dwi owi - t|az ow? ] ’
1 az oz . . |2
2 a’ i=sa
la|* < a—zy [( —1Z?)a 50 o T 14T 50 }

hold for any Z € B. By the Schwartz inequality

ai 0z% 9z« —j
ow! ow/s

2
<|zZP

Qa

0z
< a7~
0<l|a'z EY
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(34) can be read as
1-|Z| ,0z°07°_; ’
- . < <
A1z swiow® <4<

Substituting (36) into (34), we obtain
37) pisw, vy 2 LT
lv|S(U, U) < G J_r :§I)4|U|2.
On the other hand, again using Theorem 1 we get
(F5) w2 (355%) = (1515 e

This yields
1-1Z1\?, .3 8z% ozZF <1+|Z[>2 7
S e o < _ _ < «a
(1+|Z[> &<\ gwiaw ) S\ioz) &)

where (gﬁa) is the inverse matrix of (gaﬁ). Hence

102097
1 —1Z))*" awi ow/

(36)

U,

(1-1z))’° B avaf o =a02% OFF
— < pum—
1+ |Z] (9pa = 202002 2% < 2 g 5
(1+1Z))3 —f arap
<~ — @ a.
<07 (0pa — 272272

So, we obtain
(38) 1ZP(1 = 1Z)* < v < 1ZPP(L+|Z)*
Putting (38) into (37), we have

(L-ws _ . . (1+m?
—————" < principal curvature of f(S,) < ———;.
PICEANE SO0 = Ty

To yield the volume of the hypersurface f(S,) of (2n—1)-dimension,

we consider the function r> = |Z|?>o f ~!. Denote A = 49%/0w' 0w" .
Then we have

Ar? |Vr2|
39 / A aw = —/ I aw
%) rgyl-r? gy (L=r2)?

1 / ar?
e 9 4o,
1—u? Josm,) On
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where dW is the volume element of C" = #?", do that of 0 f(B,)
and n= Ii,j—, the unit normal vector. Because of

arr v , 2 dz* 8z7#
on "W T ( bw g ) ad

(39) becomes

(1 —r?)Ar? +|Vr?? 2
@) [ A dW = ;[ wldo.
f(8,) b Jgs,)
On the other hand, we have
dz% 07k dz* 9zh
2 p— —_— 212 = _a—.—. ﬂ.
Ar =dguiaw VT =4 g
Hence
(@1 (1-rHArr +|Vr22 —  9z20%F
(1 —r2)2 T CaBawi gwt’
Putting (41) into (40) we obtain
8z 9zk 2
(42) 78, *Fow' oW’ L—u? Jys,) !

From Theorem 1 we have

1+|Z|)2 8z 97k 1- |Z|)2 dz% 07k
- e >N > | — —-—
(43) (1 ~1Z|) SBawiowm =" = 883w o

Substituting (43) into (42), we obtain
_ 2
(44) n/ (1 r) dw < 2 3 lv|do
sy \L+r L—p?Jps)

2
Sn/ <l+r) aw.
ey \1 =7

Combining (39) with (44), we obtain

n(l —p) (1 —-r)2
et dw
2u(1 + p) f(B,) 1+r

2
< / do< 20 +8) (1 +r) aw
765,) 2u(l—p) Jypy \1 =71
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or

(43)
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n(l—ﬂ)/ (1—!21)’- )
do > detJ(Z)|"dZ,
/ﬂs“) 2u(T+ ) Jy \1712]) 192!

n(1+u)/ (1+|Z|)2 )
do < detJ(Z)|“dZ ,
/f(SM) ~ 2u(1-p) Jp \1-|Z| |det J4(2)]

where dZ is the volume element of C" = %#2". Finally, again using
Theorem 1 we obtain

(46)

(1+|z|)"-! , . (1=|Z)!
~ 7V > D
(1= |Z]) = |det J¢(Z)[" 2 1+ |Z])1

Putting (46) into (45) concludes Theorem 3.

(1]

(2]
(3]
(4]
(3]
(6]
[7]
(8]

(91
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