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If &/ is an (associative) algebra of linear operators on a vector
space, it is well known that 2-transitivity for &/ implies density and,
in certain situations, transitivity guarantees 2-transitivity. In this
paper we consider analogs of these results for Jordan algebras of
linear operators with the standard Jordan product.

0. Introduction. Let .#°(7") be the algebra of all linear operators
on a vector space 7~ over the field F. A subset ¥ of £ (7)) is
called transitive if x = 7~ for every nonzero x in 7°. More gen-
erally, & is called k-transitive if given linearly independent vectors
X1, X2, ..., X, and arbitrary vectors y;, 2, ..., Vx in 77 there ex-
ists a member S of % such that Sx; = y;, i=1,2,..., k. If
& is k-transitive for every k, then it is called (strictly) dense. It is
a remarkable fact due to Jacobson [2] that if . is an (associative)
subalgebra of .Z(7"), then 2-transitivity implies density for arbitrary
F. In particular, if 77 is finite-dimensional, then .#(7”) is the only
2-transitive algebra on 7. There are transitive algebras that are not
2-transitive even if F is algebraically closed. In the presence of cer-
tain conditions (e.g., topological) transitivity implies density. The
most well-known result of this kind is Burnside’s theorem [3]: if 77
is finite-dimensional and F is algebraically closed, then the only tran-
sitive algebra over 7 is (7).

In this paper we consider analogs of these results for Jordan algebras
of operators: linear spaces ./ of operators such that 42 and ABA
belong to &/ for all 4 and B in & . If the characteristic of the field
F is different from 2, this is equivalent to the requirement that &/ be
closed under the Jordan bracket {4, B} = AB + BA. Over this kind
of field a Jordan algebra &/ may be equivalently defined as a linear
space closed under taking positive integral powers. For the sake of
completeness we include proofs of a few elementary facts obtainable
from the general theory of Jordan algebras [4].

In what follows we often find it convenient to view members of
Z(7") as matrices over F; this should cause no confusion. The set
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of all nx n matrices over F will be denoted by .#,(F). A member A
of L (7°) (or #,(F)) is called a projection or an idempotent element
if A2=4.

1. Transitive Jordan algebras over arbitrary fields.

1.0. All the Jordan algebras &/ considered in this section are subal-
gebras of the algebra of all linear operators .#(7”) on a vector space
7" over a field F. In finite dimensions Jacobson’s theorem says that
any 2-transitive associative algebra of linear operators of 7 is all of
Z(7") [2]. The proof of this result for Jordan algebras of operators
needs some preparation. )

1.1. ProposITION. Let &/ be a Jordan algebra of linear operators
on a vector space 7. Then:

(a) E&E and (I — E) (I — E) are Jordan subalgebras of s for
every E in &/ .

(b) If 7 is finite dimensional and 7 is 2-transitive, then for every
subspace %~ of 7 there exists a projection E € & such that E7" =
v .

(c) If 7 is finite dimensional and &/ is 2-transitive, then I € &/ .

Proof. (a) follows directly from the definition and from the obser-
vation that (I — E)/(I —E)=A—-EA—- AE+ EAE.

(b) Assume first that 7" is a 1-dimensional subspace. By 2-transiti-
vity there exists a singular 4 € &/ such that A%Z = 7% . Choose A
to be of minimal rank having this property and write it in the form
A =J & N, where J is invertible and N is nilpotent. As all the
powers of 4 are in . and its rank is minimal, we have necessarily
that N = 0. The minimal polynomial p(f) = Y g<;cp, @it of J
has nonzero constant term a, because J is invertible. Thus, I =
—(X1<i<cm@iJ?)/ao is the identity operator on the range of 4 and
the idempotent E = —(3°,;<,, aid')/ap =10 is in & . Moreover,
rank E =rank 4 and E? = % . If the rank of E is strictly greater
than 1, then let £2” be a 1-dimensional subspace in the range of E
distinct from EZ = 7% . By 2-transitivity there is a B € & such
that BEY = % and BEZ = 0. But then EBEY? = % and
EBEZ = 0 so that the rank of EBE, which is in & by part (a),
is strictly smaller than the rank of A contradicting the minimality
assumption.

The rest follows by induction on the dimension of 77" . Let 2 be
a subspace of codimension 1 in 77" and E € & a projection such
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that EZ” =2 . Note that 2 = 7 Nker E has dimension 1 and that
V=Y .Let F € beaprojection such that F7" = % ; then
7 =% @®% ,where Z =kerEnkerF . Let P be a projection in 77
on 7 along % ;then N = E + F — P has square equal to zero and
therefore, P = 2(E+F)—(E+F)? isin & . Toget (c) take # = 7"
in (b). m]

Some of the proofs of the following results could be shortened
slightly, at the expense of keeping the paper self-contained, by using
the Pierce decomposition associated with an idempotent.

1.2. THEOREM. Let & be a Jordan algebra of linear operators on a
finite dimensional vector space 7. Then & is 2-transitive if and only
if && =2 (7).

Proof. £ (7") is clearly 2-transitive. The converse is proved by
induction on the dimension of 7”. The assertion obviously holds
if dm?Z = 2. So, let dim?Z > 2. Let 2 be a 1-dimensional
subspace of 77 and find by 1.1(b) a projection F € &/ such that
E7" = Z. Next, find a 1-dimensional subspace % C ker E and
corresponding projection F € & such that F7" = % . It is clear
that EF = 0 and with no loss of generality we may assume that
FE = 0 as well, since otherwise, we could replace F by F — FE =
(I-E)F(I-E) € & . The Jordan subalgebra & = (I - E)% (I - E),
respectively & = (I — F)& (I — F), of &/ can be viewed as a 2-
transitive algebra of operators on ker E, respectively ker F, and by
induction hypothesis & = Z(ker&’), respectively & = £ (ker F).
The subalgebra # is also called the Pierce zero-space relative to F .
Choose now any T € £ (7") and let us show that 7T € &/ . By 2-
transitivity we may assume with no loss of generality that ETF =
FTE =0. But,then, T=R+S,where R=(I—-E)TI-E)eXH
and S=ET+TE-ETEc?. 0

Theorem 1.2 can be generalized as follows for Jordan algebras of
finite rank operators. For a further strengthening of this result see
Theorem 3.4.

1.3. THEOREM. Let &/ be a Jordan algebra of finite rank operators
on a vector space 7. If & is 2-transitive, then it is dense, i.e. n-
transitive for all n > 1.

Proof. This can be done by reduction to the finite dimensional
case. Observe that the proof of 1.1.(b) remains valid if we replace
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the condition “ 7 is finite dimensional” by weaker conditions “7” is
finite dimensional and the elements of .2 have finite rank”. There-
fore, we can find for every finite dimensional subspace 77" of 7~
a projection E in &/ such that EZ” = 7. By l.1.(a) EXE is
a Jordan subalgebra of &/ and it is 2-transitive as a Jordan alge-
bra of operators on EZ7 = % . Thus, E&XE = £ (#') by 1.2. If

vectors {x;, X2, ..., Xx} C 7  are linearly independent and vectors
{V1,y2,..., Yk} CZ are arbitrary, then apply this consideration to
the span 77" of these two sets of vectors. ]

2. Some characterizations of proper transitive Jordan algebras.

2.0. In this section we shall assume that the characteristic of the
field F is different from 2. Let 4 (F) be the (transitive) Jordan
algebra of all symmetric n x n matrices over F. We give a proof that
if F is algebraically closed, then % (F) is, up to similarlity, the only
proper transitive Jordan subalgebra of .#,(F). This, of course, does
not hold if F is not algebraically closed. However, for a formally
real closed field the algebra .#,(F) has no proper transitive Jordan
subalgebras. These results do not seem to be easily derivable from
Jacobson’s general structure theorems for Jordan matrix algebras [4];
our presentation here is self-contained and elementary.

2.1. THEOREM. Let F be any formally real closed field. Then, the
only transitive Jordan algebra of symmetric n x n matrices over F is
F(F).

Proof. We shall use induction on »n. The assertion is trivial for
n = 1. So, assume & is a transitive Jordan subalgebra of #,(F)
with n > 2. Let E be an idempotent of minimal positive rank in & .
Idempotents abound in &/ because in the spectral decomposition

A=Y ME;, E}=E;, EE;j=0, i#],

for a member A4 of &7, every E; corresponding to a nonzero A; is a
polynomial in 4 (with constant term zero) and thus belongs to &/ .
The existence of spectral decompositions in ./ follows from the fact
that F is real-closed [5].

The transitivity of &/ implies that it has nonscalar members, so
that E # I. Since E is symmetric there exists an invertible matrix-
T with T-! = T" such that

-1 (I O
T ET—(0 0)°
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where k istherank of E, 0 < k < n. Replacing .% by T-.&/ T we

can assume that L0
_ {1k
E= ( . 0) .

Writing the corresponding matrix for a typical member of &
X Y
(¥ 2)

B=EAE — (I —-E)AI - E) = ()0( _OZ) e,

we observe that

and thus

1 X 0 X 0 0 0

E(BE+EB)= (0 0) and (0 0) —-B= (0 Z)
are in & . By Proposition 1.1(a) we conclude that E&/E and
(I — E)¥/(I — E) are Jordan subalgebras of &/ ; they are also eas-
ily seen to be transitive on respective spaces im E and ker E . Hence,
by the inductive hypothesis, E& F =.%(F) and I -E)¥ (I —E) =
Z,_i(F). This means that &/ contains all symmetric matrices of the
form (% 0). In particular, k = 1 by minimality. To complete the
proof observe that the transitivity of &/ forces it to contain a matrix
with an arbitrarily assigned first column. Thus, for a given (n—1) x 1
matrix N there is a member (L ¥') in &/ with some L and M.
Since by the argument above, L = L and M = M" are arbitrary in
this expression, we have that &/ = %, (F). )

The following example shows that the hypothesis of real closure in
the theorem is needed. Let F be the field Q of rational numbers and

M___{(a-gb afb>:a,be<@}.

Then, & is a proper Jordan subalgebra of .#4(Q). It is easily seen
that &/ is transitive: it is generated by I and

A=<i _11)

The minimal polynomial of A4 is irreducible over Q, and thus if
X 1is any nonzero vector, then the span of x and Ax is the whole
underlying space.

Our next theorem is a more general result in the case of algebraically
closed fields; it includes, as a corollary, the analog of the above theo-
rem. We need the following lemmas.
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2.2. LEMMA. Let &/ be a transitive Jordan algebra of nxn matrices
over an algebraically closed field F. Then &/ contains an idempotent
of rank 1.

Proof. For n =1 this is trivially true. We first prove it for n = 2.
Assume there is no idempotent of rank 1 in this case. This implies, by
considering spectral projections of matrices in .%/ , that every member
of &/ has singleton spectrum, i.e., it is of the form N + ol with N
nilpotent. Since the characteristic of F is different from 2, a member
of & is nilpotent if and only if it has trace zero.

If &/ consists of nilpotents alone, then 0 = (4 + B)? = A% +
B2+ AB + BA = AB + BA for all A4, B € & implying that if
B # 0, then its range is invariant under every 4 € & . Thus, & is
triangularizable; this contradicts the transitivity of ./ . Thus, we can
assume that &/ has an invertible member, which implies, by taking
an appropriate polynomial, that / € &/ . Hence, N is in & for
every N +al in & . Let & be the set of all nilpotent elements
in the algebra. It follows that for 4 and B in &% and a € F, the
matrix A + aB has trace zero and is thus nilpotent. In particular
A+ B is nilpotent and hence 4B+ BA = (A+ B)? — 4> - B2 = 0.
This shows that .24 is a Jordan algebra. We see, as before, that .24 is
triangularizable and so is & = 4 + FI, contradicting the transitivity
of & .

We can now assume # > 2. If &/ contains a nontrivial idempotent,
i.e., an idempotent E with 0 < rank E < n,then by (1.1)(a) E&Z E is
a Jordan subalgebra of &/ which is forced, by the transitivity of &7,
to be transitive as an algebra of operators acting on the range of E.
We conclude, by induction on », that E& F and thus ./ contain
idempotents of rank 1. To complete the proof we must only show the
existence of a nontrivial E .

Assume ./ contains no nontrivial idempotent. Then, as in the first
paragraph of the proof, every member of .7 is seen to be o1 the form
N + al with N nilpotent. There must be nonzero nilpotent matrices
in &7 . (Just observe that if N+al € A with a # 0, then, considering
the characteristic polynomial of this matrix, we show that I € &/ and
hence N € & . Surely & cannot consist of scalar matrices.) Let
N be a nilpotent member of ./ with minimal positive rank. Since
N? has smaller rank than N, we must have N2 = 0. We next show
that N has rank 1. Considering members of ./ as operators on 7~
and noting that the kernel of N contains its range, let 7] be the



DENSITY THEOREMS FOR JORDAN ALGEBRAS 341

range of N, 75 a complement of 77 in the kernel of N, and 75 a
complement of 7] ® 75 in 77. With respect to the decomposition
7 =710 7 & 7; (where 7; may of course be zero) and with an
appropriate choice of basis, N will have the form

00 I
00 0],
00 0

where k is the rank of N. If the corresponding block matrix of a
typical 4 in & is (Ai,-)?, j=1> then NAN € &/ and its matrix equals

0 0 A4j
00 O |.
00 O

The matrix NAN —aN is a nilpotent member of &/ and all its blocks
except A3; — al; are zero. The minimality of the rank k forces
the block A43; of every 4 to be scalar. But this would contradict
the transitivity of & if k > 1. Thus, k = 1. (These facts about
algebras consisting of scalar translations of nilpotent operators can
also be deduced from more sophisticated results on Jordan algebras
[6].)

Finally, we shall exhibit a single member of &/ with an eigenvalue
1, showing that not every member of & is the sum of a nilpotent
and a scalar. To this end, pick x € 77 with Nx # 0. By transitivity,
there is an 4 € & such that 4(Nx) = x. Then, N2 = 0 implies
(NA+ AN)(Nx) = NANx = Nx. Since N has rank 1, the matrix
NA+ AN has rank at most 2. Since » > 2, this matrix is a singular
member of &7 . O

2.3. LEMMA. If &/ satisfies the hypotheses of Lemma 2.2, then &/
contains idempotents E;, i=1,2, ..., n, of rank one with E;E; =0

for i #j.

Proof. We shall use induction on n. Let n > 2 and assume the
assertion true for n — 1. Let E; = F be an idempotent of rank one
in & as in Lemma 1.1. We can assume with no loss of generality
that E = diag(1, 0, ..., 0). The Jordan algebra (I — E)&/ (I — E) is
contained in &/ by Proposition 1.1(a). Since it also acts transitively
on the range of / — E, which has dimension n— 1, we conclude from
the inductive hypothesis that (I — E)&/ (I — E) contains idempotents
E,, ..., E, with the desired property. The proof is completed by
observing that E\E; = E;E; =0 for j>2. o
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2.4, THEOREM. Let F be an algebraically closed field, and let s/ be
a transitive Jordan algebra of n xn matrices over F. Then either &/ =
M, (F) or there exists an invertible matrix T such that T/ T =
S (F).

Proof. We shall show first that &/ contains #,(F) up to a sim-
ilarity. By Lemma 2.3 we can assume that ./ contains diagonal
idempotents E; of rank one: E; = diag(1,0,...,0),...,E, =
diag(0, ..., 0, 1). Consider the special case of n = 2. In this case
the transitivity of ./ implies that its dimension is either 3 or 4. If
the dimension is 4, then & = .#(F); if it is 3, then &/ contains a
nonzero matrix of the form (%/) (after adding a suitable linear com-
bination of E; and E,). Now, both s and ¢ have to be nonzero by
transitivity. Thus, we have shown that, when n = 2, the algebra &/
must contain a matrix of the above form with s =1 and ¢ #0.

Returning now to the general case, let {A;;} be the set of matrix
units, i.e., the only nonzero entry of M;; occurs at the (i, j) po-
sition and equals 1. Observe that for j > 1 the Jordan subalgebra
(E1 + Ej)% (E| + E;) acts transitively on the 2-dimensional range of
E;+E;. Asin the paragraph above, it must contain, together with E;
and E;, at least one matrix of the form A; = M;; +{;M;, . Letting
T = diag(l, V%2, ..., VIn), we see that the Jordan algebra T.&/ T~!
contains the symmetric matrices

|

Bj = ﬁTAjT‘I = M;; + M;;
(and, of course, E, ..., E,).

If 1, i,and j are distinct, then B;; = B;;Bj; + BjjBy € T¥ T~!.
Observe that B;; = M;;+M;; . We have shown that 7.%/ T~! contains
a basis for symmetric matrices. Hence, 7.%/ T-! > % (F).

To complete the proof of the theorem it suffices to show that if &/
contains .#,(F) properly, then & = .#,(F). Thus, assume %/ con-
tains a nonsymmetric matrix C = (¢;;). Some principal 2 x 2 sub-
matrix must be nonsymmetric and by passing from & to P-l&/ P,
where P is a permutation matrix, we can assume ¢;p # ¢3; . Observe
that the matrix

M = (E; + E;)C(E| + Ey) — e Ey — cpnEy — ¢21 By

belongs to . and is a nonzero scalar multiple of M;,. We shall
show that M;; e &, i,j=1,...,n. Every M;; isin & and we
have just seen that M;, and hence M,;, = By; — M, are in & .
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For j > 2, M]j = MlZBZj +B2jM12, and Mjl = Bj] _Mlj which
implies that M;; and M;, are in ./ . Similarly, for j > i > 1,
Mj,’ =M11‘BJ'1 -I-BJ'IM],', and Mlj =B,‘j _Mji so that Mj,‘ and Alij
are in &7 . 0

2.5. COROLLARY. Let F be an algebraically closed field. If &7 is
a transitive Jordan algebra of symmetric n x n matrices over F, then
& = (F).

The example given after Theorem 2.1 can be modified to show that
the algebraic closure hypothesis is essential in the preceding result.
Consider Q(i) instead of Q and let

M:{(“Zh a?b>:a,be(@(i)}.

Then, &/ is a proper Jordan subalgebra of %5(Q(i)); it is also tran-
sitive.

The following example shows that the assumption charF # 2 is es-
sential in the results above: the 3-dimensional Jordan algebra spanned
over F, by {I, M;,, My} is transitive and contains no idempotent
of rank 1.

3. Results on ideals.

3.0. We continue to assume that the characteristic of the field F
is different from 2. In the associative algebra case some transitivity
properties are inherited by ideals. This is of course trivial if dim Z”
is finite, since then .#(7") is simple. In the Jordan case, restriction
to ideals seems to be accompanied with some loss of transitivity. The
following result is well known for general associative algebras [2].

3.1. PropPoOSITION. Let # # 0 be an ideal in an associative algebra
& of operators on a vector space 7. If &/ is n-transitive, then so is

7

Here are our results on this question for Jordan algebras of linear
operators and their Jordan ideals.

3.2. THEOREM. Every Jordan ideal # # 0 of an (n + 1)-transitive
Jordan algebra &/ of operators on a vector space 7~ is n-transitive,
n>1.

Proof. If 77 is (n + 1)-dimensional then &7 = .%(7") and, by [1,
Theorem 1], we have # = & . So, assume with no loss of generality
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that 77 contains n + 2 linearly independent vectors. Fix a linearly
independent set of vectors {x;, ..., x,} C7 andlet 2 and % be
the span of {x;,..., x,} and of {x;,..., x,—1}, respectively. We
will show first that

(a) 3J € 7 suchthat J¥ =0, Jx, ¢ 2.
Assume the contrary; then

(b) Je€ # and J¥Z =0 implies Jx, € Z .
Then, for any 4 € & such that 4% =0 it holds that K =JA+ AJ
is in # and that K% = 0. Therefore by (b), Kx, belongs to 2 .-
Let a be such that Kx, = (J + a)4x,. Since & is n-transitive, A
may be chosen so that it satisfies the required conditions and that 4x,
is an arbitrary vector in 7. This shows that

(¢) JZ¥ =0 implies (J +a)Z7” C 2 for some a.

Thus,
J=—-a+ Z X; ® fi
1<i<n
for some linear functionals f;, i =1, ..., n. But then, for an arbi-

trary 4 € & with AZ =0 define K as above and use the expression
for J to get

K=-204+Ax,® fu+ Y X ®fid.
1<i<n
Thus K belongs to £ and K% = 0. Hence, by (c), it must be of
the same form as J, i.e.,
K=-8+ Z X ® gi.
1<i<n
Now, we choose vectors u, v € 7” such that {x;,..., x,, u, v} are
linearly independent, and find an 4 € & such that 4% = 0, and
that Ax, =u, Au=v. Then
Ku=-20v + fp(u)u + Z fi(v)x; = —-Pu+ Z gi(u)x;,
1<i<n 1<i<n

which forces a = 0. A similar argument with K playing the role of
J shows that f = 0. Also, using the freedom in the choice of u,
we conclude that f, is trivial. Thus, from the fact that (b) holds for
every J € # we obtain

(d) Je £ and JZ =0 implies JZ C ¥ .

The conclusion (d) contradicts the assumption that _# # 0 in case
n = 1. In other words, we have shown that given x # 0, there is
a J € Z such that x and Jx are linearly independent. Observe
that this proves the theorem for n = 1: if x # 0 and y are given
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and J € # is such that x and Jx are linearly independent, then by
2-transitivity choose an 4 € &/ with Ax = x and AJx =y — Jx.
Then AJ +JA€_f and (4J +JA)x=y.

Assume now for n > 1 inductively that _# is (n—1)-transitive and
findan E € # suchthat Ex;=x;, i=1,...,n—1. As E2 € _£ and
equals E on % , we have by (d) that (E — E2)7" C % . Assume now
that there exists a vector ¥ € 7 such that ¥ and Eu do not belong to
% . It follows from (E—E?)7 C % that E?u equals the sum of Eu
and a vector from % (so E?u # %) . By n-transitivity of & find an
A€ & suchthat Ax;=x;, i=1,...,n—1,and AEu =0. This
implies for K = FA+ AE € ¥ that Kx; =2x;, i=1,...,n—-1
and KEu € % . Hence, K — 2F annihilates 2 and its image is not
contained in %, because (K —2E)Eu equals the sum of —2E?y and
a vector from %, contradicting (d). The freedom in the choice of u
shows that forevery E € # suchthat Ex;=x;, i=1,...,n-1,we
have necessarily that E7” C % and E is a projection on % . Choose
now a nonzero vector u# € ker E and find by (n + 1)-transitivity of
& an A €. suchthat Ax; =u, Ax;=0,i=2,...,n—1,and
Au=Xx;. Then, K = EA+AE-2EAE € ¢ ,and Kx; =u, Kx; =0,
i=2,...,n—1,and Ku=x,. It follows for L = K2 -EK?Ec ¢
that L% =0 and Lu = u contradicting (d). Consequently, we have
shown that (b) leads to a contradiction and we have (a). So, fix a
J e suchthat JZ =0 and Jx, ¢ 2. Now, pick by (n + 1)-
transitivity of &/ an 4 € & such that A2 =0, and AJx, =u an
arbitrary vector from 7. Thus, for K = AJ +JA € # we have that
K% =0, and Kx, = JAx, + AJx, = u. The n-transitivity of /¥ in
the theorem now follows easily by cyclicly permuting the vectors Xx;,
i=1,..., n and taking sums of corresponding operators K . O

The following result can also be obtained from work of Osborn and
Racine [7].

3.3. CoroLLARY. Every Jordan ideal of a dense Jordan algebra is
dense.

3.4. THEOREM. Let &/ be a 2-transitive Jordan algebra of operators
on a vector space 7. If &/ contains at least one operator of finite
rank, then the Jordan ideal # of all finite rank operators of & is
strictly dense, and so is & .

Proof. Assume with no loss of generality that 77 is not finite di-
mensional. By 3.2 _# is transitive. Thus, we may find an E € ¢
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such that Ex = x and such that it is of minimal rank with this prop-
erty. Similarly as in the proof of 1.1.(b), we may find that E is a
projection of rank one and that for every finite dimensional subspace
7 of 77 we may find a projection E € £ such that EZ = 7".
Now, for any {x, y} linearly independent and {u, v} arbitrary vec-
tors of 77, let 7" denote the linear span of these four vectors and
let E € _# be the corresponding projection. Use 2-transitivity of &/
to find 4 € & such that Ax =u and Ay = v, use 1.1.(a) to see that
B = EAE € # , and observe that again Bx = u and By = v. Thus,
/ is 2-transitive and it is strictly dense by 1.3. 5]

The reader will no doubt have noticed that we left the following
questions unanswered.

Question 1. Is there an n-transitive Jordan algebra &/ with a Jordan
ideal £ # 0 which is not n-transitive?

Question 2. Is there an n-transitive Jordan algebra which is not
(n + 1)-transitive for any n > 2?
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