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EDWARD KIssIN

The paper considers some sufficient conditions for a closed
*-derivation of a C™-algebra, implemented by a symmetric operator,
to have a unique representational index.

1. Introduction. Let ¥ be a C*-subalgebra of the algebra B(H)
of all bounded operators on a Hilbert space H, and let a dense
*-subalgebra D(d) of & be the domain of a closed *-derivation ¢
from & into B(H). A closed operator S on H implements ¢ if
D(S) is dense in H and if

AD(S) € D(S) and
3(S)|p(s) = i(SA — AS)|ps) forall A € D(3).

If S is symmetric (dissipative), it is called a symmetric (dissipative)
implementation of 6. If a closed operator T extends S and also
implements J, then T is called a d-extension of S. If S has no
J-extension, it is called a maximal implementation of & .

If 6 is implemented by a closed operator, it always has an infi-
nite set .#(J) of implementations. However, not much can be said
about the structure of .#(6). We do not even know whether it has
maximal implementations. The subsets #(d) and Z(J) of 7 (J)
(F(0) C Z(d)), which consist respectively of symmetric and of dis-
sipative implementations of J, are more interesting. In [4] it was
shown that every symmetric implementation of J extends to a maxi-
mal symmetric implementation of é. Therefore if 5 (J) # &, then
F(9) as well as the set £ () of all maximal symmetric implemen-
tations of J are infinite sets.

If S € #5(d) and it is not selfadjoint, then the question arises
as to whether S has dissipative §-extensions and, if so, whether there
exist maximal dissipative implementations of J. This question was
partly answered in [5] where it was established that, under some con-
ditions on 6 and S (for example, if max(n_(S), n+(S)) < 0o0), the
maximal dissipative implementations of J do exist.
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Let #Z(J) be the set of all J-equivalence classes of J-symmetric
representations of the algebra D(d) on Krein spaces. In [3] and [4]
it was shown that the deficiency space N(S) = N_(S) + N:(S) of
every operator S € #(J) is a Krein space and that there exists a
J-symmetric representation 7} of D(§) on N(S). Thus there is a
mapping of #(d) into #(d), and different symmetric implementa-
tions may have corresponding representations which are J-equivalent.

The structure of the representations ng can be extremely compli-
cated, partly due to the fact that they may have neutral invariant sub-
spaces. In [4] it was proved that ng has no neutral invariant sub-
spaces if and only if § is a maximal symmetric implementation of
5. If S € #5(5), we shall call the image of n$ in F(5) a repre-
sentational index of § (relative to S), and denote it by i. In this
context the following problems naturally arise:

—finding simple characteristics of the representations ng;

—the description of the images of () and .#£5(d) in H#(J);

—finding conditions on & such that the image of .#Z.%(d) in #(9)
consists of only one element.

The simplest characterization ng is the pair (n4+(S), n_(S)) of
deficiency indices of the operator S. Different properties of these
indices were considered in [6-8]. In particular, if &/ is unital, if
S € #7(5) and max(ny(S), n_(S)) < oo, then there are disjoint
sets of irreducible *-representations {r;};_, and {p;}{_; of & such
that

n, Zdlmn, and n_(S) = Zdlmp,
i=1

Arveson [1] and Powers [12] studied the case when 0 is the gener-
ator of a semigroup «a; of endomorphisms of B(H) which has semi-
groups of intertwining isometries. If d is a generator of a semigroup
U(t) of such isometries, then the operator S = id implements J,
it is a symmetric operator, N_(S) = {0}, and N(S) = N+(S) is a
Hilbert space. In this case S € .#£5(d), ny(S) = oo, and ”s is a
*-representation. Powers [12] defined the index of «; (relative to
U(t)) to be the multiplicity of ng. Arveson [1] gave another defini-
tion of the index of a; and Powers and Price [13] proved that the
Arveson’s index is precisely the number of times the identity repre-
sentation of D(8) on H occurs in the representation 7J.

Jorgensen and Price [3] studied the general case when N(S) is not
necessarily a Hilbert space. They introduced the V-index as the di-
mension of the Krein space of operators V: H — N(S), satisfying
VA=n3(A)V, VeD@).
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In [7] a sextuple ind(d, S) was associated with every pair (d, S).
All of its elements are either integers or infinity. If N_(S) = {0},
one of the elements of ind(d, S) is the Powers’ index. The sextuple
is stable under perturbations of J of the form ag(4) = d(A4) +
i(BA — AB) : ind(c, S + B) = ind(d, S), where B = B* € B(H).
Under some conditions on ¢, ind(d, S) =ind(é, T) forall S, T €
MF (D).

This paper studies the conditions on J such that the image of
MF(8) in Z(d) consists of only one element, i.e., all representa-
tions ng, S € #.5(5) are J-equivalent. Obviously, only then can
one speak about the representational index of d . In §3 we consider the
following problem: given a symmetric implementation S of J, under
what conditions on ng are all the representational indices i%., which
correspond to different maximal symmetric J-extensions 7 of S,
equal? Theorem 3.2 gives a partial solution to this problem and shows
that if the representation ng is finitely I1_- or Il,-decomposable, then
all representations n‘}, SCT and T € #£5(J), are J-equivalent,
so that all the corresponding representational indices i‘} are equal.

As a corollary of this result, we obtain that if & has a minimal
implementation S, and if the representation ng is finitely I1_-or I1, -
decomposable, then, for all maximal symmetric implementations T
of 6 (and not only for those which J-extend §), the representations
n‘} are J-equivalent, so that J has a unique representational index.

Although the conditions imposed on J are strong, the examples of
§3 demonstrate that these conditions are justified. Without assuming
the existence of a minimal symmetric implementation it is difficult to
“compare” different representations n‘% and #nd., T, T, € #£5(5),
and to establish whether they are J-equivalent. "This is especially so
if D(T)n D(T;) = {0}, as in Example 2 (see [13]). In the cases
studied in [1], [12] and [13] (see Example 2), minimal symmetric im-
plementations of the generators J of semigroups of endomorphisms
of B(H) do not exist. Therefore the representational indices i‘} ,
T = id, where d are the generators of semigroups U(t) of inter-
twining isometries, seem to depend on U(¢) [13]. On the other hand,
in many interesting cases the derivations do have minimal symmetric
implementations. This is so, for example, if %/ contains the ideal of
all compact operators [6] (see Theorem 3.4 and Example 3).

The condition that 7 (S is a minimal symmetric implementa-
tion of J) is finitely IT-decomposable is crucial for our attempt to
show that all representational indices of J are equal. For every
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maximal symmetric implementation 7 of J, there is a maximal
neutral invariant subspace L(7) in N(S) such that the represen-
tation 7ng is J-equivalent to the quotient representation (IT)L(7)
on L(T)Y/L(T). Theorem 2.6 considers finitely I1-decomposable
representations m© and proves that, for all maximal neutral invari-
ant subspaces L, the quotient representations nf on LMI/L are
J-equivalent. Therefore it follows that all representational indices
of 0 are equal. Example 4 shows that if ng is II-decomposable but
not finitely II-decomposable, the derivation § may have an infinite
number of distinct representational indices.

2. J-symmetric representations of *-algebras on Krein spaces.

2.1. Preliminaries. This section considers J-symmetric represen-
tations of *-algebras on Krein spaces. For the benefit of the reader
and for the sake of being reasonably selfcontained, we provide some
amount of detail about the theory of Krein spaces and J-symmetric
representations.

Let H be a Hilbert space with a scalar product (x, y) and a norm
lx|l = (x, x)!/2. Let H= H_® H, be a decomposition of H in the
orthogonal sum of subspaces H_ and H, . The involution J = [ 9]
defines an indefinite form [x, y] = (Jx,y) on H. The space H
with this indefinite form [ , ] is called a Krein space. Let k; =
dimH;, d =+,and kK =min(k_, k;). If k < oo, then H iscalleda
I1;-space.

Let H be a Krein space. A subspace L in H is called

(a) nonnegative if [x,x]>0,

(b) positive if [x, x] >0, x #0,

(c) uniformly positive if there is r > 0 such that [x, x] > r(x, x),

(d) neutral (null) if [x, x]=0,
for all x € L. The concept of nonpositive, negative and uniformly
negative subspaces are introduced analogously.

A nonnegative subspace is called maximal nonnegative if it is not
properly contained in any other nonnegative subspace. In the same
way this concept of maximality can be introduced for all other types
of subspaces.

Law of inertia [9). If Lis a maximal nonnegative (nonpositive) sub-
space in H, then dimL =dim H, (dimH_).
The subspace
LM ={yeH:[x,y]=0forall x e L}

is called the J-orthogonal complement of L.
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The geometry of Krein spaces is more complicated than the geom-
etry of Hilbert spaces and the decomposition

(1) H = L[+]LH]

does not always exist (the symbol [+] means that the sum is direct
and the summands are J-orthogonal).

THEOREM 2.1 [9]. (i) Let L be a nonnegative (nonpositive) sub-
space of H. The decomposition (1) holds if and only if L is uniformly
positive (negative).

(i) If L is an indefinite space, then (1) holds if and only if L
decomposes into a direct sum of two uniformly definite subspaces.

(iii) ([9], page 118) Let Q be the orthoprojection on L. The de-
composition (1) holds if and only if the symmetric operator G = QJQ
has a bounded inverse.

(iv) (lohvidov and Ginzburg, see [9, page 118].) Let k, = co. All
positive subspaces of H are uniformly positive if and only if k. < co.

Every subspace L is decomposable into a simultaneously orthogo-
nal and J-orthogonal direct sum

2) L=L_+4Ly+L,, Ly=LnLH

in which the summands are respectively negative, neutral and positive
subspaces, or reduce to zero (see [9], p. 118).

A representation 7 of a *-algebra &/ on a Krein space H is called
J-symmetric if

n(A*) =Jn(A)*J, ie., [n(Ad)x, y] =[x, n(4)*y], X,yEH.

If a subspace L is invariant for z, then LI is also invariant for «.
By m; we shall denote the restriction of = to L.
Let N and P be respectively uniformly negative and uniformly
positive subspaces of H invariant for n. Then
(x,y)n=-[x,y], x,y€N and
(X,y)p=[x,y], x,y€EP
are definite scalar products on N and P. Set
Ixli% = (x, X)n, x€N, and |x|3>=(x,x)p, xeP.

Since N and P are uniformly definite subspaces, the norms || ||y and
| l» are equivalent to the original norm || || on H. Therefore N and
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P are Hilbert spaces with respect to the scalar products ( , )5 and
(, )p. Then ny and 7p are *-representations of &/ on N and P
with respect to these scalar products.

Let G be a bounded selfadjoint operator on a Hilbert space H .
Similar to the involution J, the operator G defines an indefinite met-
ricon H

[x,yle = (Gx,y).
A representation n of a *-algebra &/ on H is called G-symmetric if

[n(A)x » y]G = [x’ n(A*)y]G ’ i'e‘? GH(A*) = ﬂ(A)*G, X,y € H.

LEMMA 2.2. Let n be a G-symmetric representation of &/ on H.

(1) ([11), page 77). If G has a bounded inverse, then there are a
new scalar product ( , ), and an involution J; on H such that the
norm || |1 = (, {/ % s equivalent to the original norm on H, that
[x, ¥l = (Jgx, y)1 and that & is a Jg-symmetric representation of
.

(ii) [8]. Let Q be the orthoprojection on a subspace L invariant
for n and let G; = QGQ. The representation ny of & on L is

Gy-symmetric and [x, ylg, =[x, ylc-

2.2. Neutral invariant subspaces of J-symmetric representations. In
general the structure of neutral invariant subspaces of J-symmetric
representations © of *-algebras on Krein spaces H can be very com-
plicated. In some cases, however, it is possible to obtain some useful
information about their structure.

Let © bea J-symmetric representation on H ,let N be a uniformly
negative (positive) invariant subspace and let N1 be a IT;-space. It
is proved in [8, Lemma 3.2] that if L is a neutral invariant subspace
in H , then there exist a nonnegative (nonpositive) invariant subspace
P in NM1 and a bounded operator T from P onto an invariant
subspace K of N such that

L={Tx+x:x€P} and ngT =Tnp.
LEMMA 2.3. Let N have no finite-dimensional invariant subspaces.

If L is a maximal neutral invariant subspace in H, then KerT =
Ln NY is a maximal neutral invariant subspace in N1,

Proof. Let N be uniformly negative. Since L is a neutral space,

[x,x]+[Tx, Tx]=0, xeP.



REPRESENTATIONAL INDICES OF DERIVATIONS OF C*-ALGEBRAS 103
Hence
(3) ITx||} = —[Tx, Tx] =[x, x].

By (2), P = Py + P, , where P, and P, are neutral and positive
subspaces. Since N is a II;-space, it follows from Theorem 2.1
(iv) that Py is uniformly positive. By (3), Py =KerT and ||Tx||y =
lx|lp, for all x € P,, so that T is an isometry from P, onto K.
Therefore

L={Tx+x:x€P}[+]P, and Py=LnNNU,

Since ngT = Tnp, P, is a neutral invariant subspace in NIt} and we

only have to prove that P, is a maximal invariant subspace in N1,
Assume that there exists a neutral invariant subspace M in NIt

larger than Py. Since P; is uniformly positive, by Theorem 2.1(i),

N =P [+]R and PhCRNM,

where R is the J-orthogonal complement of P, in NI,

Let P be the J-orthogonal complement of P in N!1l. Then
P € R and PM] isinvariant for 7, since P and NI are invariant
for n. The subspace RNAM is J-orthogonal to P, andto P,. Hence
RN M C Pl sothat RNM = PN M. Thus RN Mis a neutral
invariant subspace. If Py # RN M, then

Li={Tx+x:x€P}+](RNM)

is a neutral invariant subspace in H larger than L. This contradiction
shows that py=RNM.

By Law of inertia, dimM < k. Since P, NM = {0}, M =
{z+y:y € Mg, z € Mp}, where My and Mp are finite-dimensional
subspaces in R and P, respectively and where y = 0 implies z =0.
Since M is larger than P, and since Pp = RN M, Mp # {0} and
z =0 implies y € P,.

We shall show that the subspace Py[+]Mp is invariant for z. Since
M is a neutral subspace and since Mp C P, every y in My is
J-orthogonal to P. Therefore Mz C P!, Since P! is invariant
for = and since P11 C R, n(A)y € R forevery y € Mg and 4 € &/ .
Then, forall z+ye M,

n(d)(z+y)=n(A)z+n(d)y=z1+y1 €M,

so that n(4)z—z; = y;—n(A)y. Since n(4)z € P, since y;—n(A)y €
R and since PN R = Py, we have that n(4)z — z; € Py. Hence
n(A)z € Py[+]}Mp and the subspace Py[+]Mp is invariant for 7.
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Since T is an isometry from P, onto K,
T(Py[+]Mp) = TMp = {Tx : x € Mp}

is a finite-dimensional subspace in K. Since ngT = Tnp, TMp is
a finite-dimensional invariant subspace in N which contradicts the
assumption that N does not have such subspaces. Hence P, is a
maximal neutral invariant subspace in N!1!. The proof is complete.

The following lemma compares two maximal neutral invariant sub-
spaces.

LEMMA 2.4. Let L and K be maximal neutral invariant subspaces
in H. Then LNK =LNKHt =LUWNK and dimL = dimK .

Proof. Set M = LNK . The subspace LN K] is neutral, invariant
and J-orthogonal to K. If LNKMl ¢ K, then K+ (LNKMI) isa
neutral invariant subspace larger than K. This contradiction shows
that LNK!) C K. Therefore M = LNK!1), Similarly M = LIHNK.

If M = {0}, then LN KM = LI n K = {0}. Hence, for every
x € L thereis y € K such that [x, y] # 0 and vice versa. Therefore
dimL =dimK.

If M # {0}, then

dim L = dim M + dim(L/M) = dim M + dim(K/M) = dimK ,

since L/M and K/M are maximal neutral invariant subspaces in
MW /M and since (L/M) N (K/M) = {0}. The lemma is proved.

2.3. Quotient J-symmetric representations. Let © be a J-sym-
metric representation of a *-algebra & on a Krein space H. For
every neutral invariant subspace L, L C LI+l and we can consider the
quotient representation 7L of & on the quotient space L = LIL1/L.
Making use of Phillips’ approach ([11], Lemmas 4.2 and 4.3), it is
easy to show that nl is J-symmetric. Let L and M be different
maximal neutral invariant subspaces in H. We shall investigate the
question of when the representations 7X and #™ are equivalent. In
order to answer this question we shall consider the following definition
of equivalence of two representations.

DEFINITION. We say that a G-symmetric representation n of &/
on H is J-equivalent to a G;-symmetric representation p of &/ on
K (m ~ p) if there is a bounded operator T from H onto K which
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has a bounded inverse and such that 77 = pT and that
[Tx, Tylg, =[x, ¥le forallx,yin H, ie., T*G;T =G.

If # and p are *-representations of &, then G = 1, G| =
1x and J-equivalence becomes the usual equivalence of *-representa-
tions.

Let L be an invariant neutral subspace and let x and y in L[
be representatives of classes X and y in L. Then the form

(4) [x, 71" =[x, ]

on L does not depend on the choice of representatives.
It follows from Lemma 4.2 [11] that L[] can be decomposed into
three mutually orthogonal and J-orthogonal subspaces

(5) IM=pr, +L+L_

where L, = H . NLWY and L_ = H_nLMY, Thus the quotient space
L = LW/L is isomorphic and isometric with Ly = L, + L_. We
shall denote by B the orthogonal projection of L[+ onto L,. By
(5), Br(A)B = Bn(A). Therefore

ng(A)y = Br(A)y, Aes/, yeLy,

is a representation of &/ on L, which is J-equivalent to nf. We
shall often identify nl and ng. The subspace L. is invariant for
the involution J and the form [ , ] does not degenerate on L., i.e.,
[x,y]=0 forall y in L, implies x =0.

LeMMA 2.5. (i) The representation nl of &/ on L is J-symmetric.
If L is a maximal neutral invariant subspace, then n* has no neutral
invariant subspaces.

(ii) If &2 is an invariant subspace in LY} such that

IM=14+% and LNYZ ={0},

then the representations nL and n o are J-equivalent (nt ~ 7).
4 <z

Proof. Decomposing any y and z in L] according to (5):
y=ys+yo+y-, z=2zy+z0+ 2,
we see that By =y, +y_, fz =z, + z_ and that
(6) v, z21=18y, Bzl =+, 24) — (¥-, 2-).
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It follows from (6) that, forall 4 in & and y,z€ Ly,

[ng(A)y, z] = [Br(A)y, Bzl =[n(A)y, z] = [y, n(4")z]
= [ﬂy’ ﬂﬂ:(A*)Z] = [y7 nﬂ(A*)Z] .

Therefore 7z is J-symmetric. Since al ~ ng, 7l is J-symmetric.
It follows from (4)—(6) that if L is maximal neutral invariant, then
nl has no neutral invariant subspaces. Part (i) is proved.

Let .% be an invariant subspace in L[] and let Q be the or-
thoprojection onto .. Set G = QJQ. By Lemma 2.2 (ii), the
representation 7 of & on .2 is G-symmetric.

Now assume that LIl = L +.% and that LN.Z = {0}. Let T be
the restriction of the projection f to .%. Since L =L +.%, T is
a bounded operator from .# onto L. . Since LN.Z = {0}, we have
that Ker7 = {0}. Therefore 7 has a bounded inverse. For every
yez,

ng(A)Ty = ng(A)By = Br(A)By = Br(A)y
= Brg(A)y =Trny(A)y,

since T (A)y € % . From (6) and from Lemma 2.2 (ii) it follows
that,

[Ty, Tz]=[By, Bzl=1ly, z1=1y, zls,
forall y, z € % . Therefore nl ~ ng ~ ng . The lemma is proved.

It follows from the construction of the representation nZ that it de-
pends heavily on the choice of a neutral invariant subspace L. Even if
L and M are maximal neutral invariant subspaces in H , the repre-
sentations 7l and 7™ are not, generally speaking, J-equivalent. In
Theorem 2.6 we shall show that if 7 satisfies a certain condition, then
for all maximal neutral invariant subspaces L and M, the quotient
representations 7l and n™ are J-equivalent.

Let M be a subspace of a Krein space H and let H = M[+]M4},
If Q is the orthoprojection on M, it follows from Theorem 2.1 (iii)
that the operator G = QJQ has a bounded inverse. By Lemma 2.2
(1), there are a scalar product ( , ); and an involution J; on M such
that M decomposes into an orthogonal sum M_ & M, of subspaces -
M_ and M, with respect to ( , ); and such that Jg = [ 9] with
respect to this decomposition. Hence M becomes a Krein space with
respect to the form [x, ylg = (Jgx, ¥)1 -

We shall now consider a special class of J-symmetric representa-
tions, which will play an important role in this paper.
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DEFINITION. Let 7 be a J-symmetric representation of a *-algebra
on a Krein space H. We say that n is II_-decomposable if H =
K[+]K!1 where K is a uniformly negative invariant subspace and
where K is a ITi-space, k = k. (one of the summands can be
zero). We say that z is finitely I1_-decomposable if, in addition, the
*.representation ng on K decomposes in a finite orthogonal sum of
irreducible representations. Similarly we can define Il -decomposable
and finitely Il,-decomposable representations.

Let L be a neutral invariant subspace and let Z be an invariant
subspace of L. Then

ZcLcLHczH

and the quotient space L; = L/Z is contained in Z = ZL1/Z . It
follows from (4) that L = LI1/Z  where LI is the J-orthogonal
complement of L; inZ. Therefore the subspaces L[IL] /L; and
LI/ are isomorphic and isometric and

(7) nh ~ (a7 7).

We shall now prove the main theorem of this section.

THEOREM 2.6. Let © be a finitely Il-decomposable J-symmetric
representation of a *-algebra &/ on a Krein space H. If L is a
maximal neutral invariant subspace in H , then the representation nt
is finitely I1-decomposable. If K is another maximal neutral invari-
ant subspace in H, then the quotient representations n’ and n¥ on
LYY/ L and on K'Y/K respectively are J-equivalent.

Proof. Set Z = LN K. The quotient spaces L; = L/Z and
Ky = K/Z are contained in the quotient space Z = Z[11/Z | they
are maximal neutral invariant subspaces for the representation n%
and Ly nK; = {0}. It follows from (7) that if we prove that the
representations (n%)L: and (nZ)X: are J-equivalent, we shall also
obtain that the representations nl and nX are J-equivalent. Thus
without loss of generality we may assume that Z = LN K = {0}.

We shall consider 3 cases.

Case 1. Assume that H is a I1;-space.

Then L is a I1,-space, n<k, so that nL is finitely II-decompos-
able. By Lemma 2.4 and by Law of inertia, dimL = dim K < k. Set
N =L+ K. Then N is invariant for # and dim N < 2k. Since
LN K = {0}, it follows from Lemma 2.4 that NN L] = L. Since
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N = [ A K by Lemma 2.4,
NANH =Nn(ILHnKkHY = LnkM = LnK = {0}.

Hence, by (2), N = N_ + N,, where N_ and N, are respectively
negative and positive finite-dimensional subspaces. Since every defi-
nite finite-dimensional subspace is also uniformly definite, it follows
from Theorem 2.1 (ii), that H = N[+]N!L]. Since K n LIt = {0},
we have that LI = L[+]NM. By Lemma 2.5 (ii), nf ~ myw.
Similarly, 7K ~ 7y, so that #l ~ 7K.

Case 2. Let H be finitely I1_-decomposable and let H = M[+]M[]
where M is an infinite dimensional uniformly negative invariant sub-
space such that MU is a II;-space, k = k_, and such that m;,
decomposes in a finite orthogonal sum of irreducible representations.
Assume that M has no neutral invariant subspaces.

In Lemma 3.2 [8] it is proved that in this case there exist a uni-
formly definite invariant subspace L, in M1, a uniformly negative
invariant subspace L_ in M and an isometry 7 from L, onto L_
(ITx|l_ = lix|[z,) such that

nT|p, =Tmn|r, and L={Tx+x:x€L;}.

By Theorem 3.5 [8], MM = #[+]9[+]P where ./ and P are
maximal negative and maximal positive invariant subspaces in A1
and where $ is an invariant Il,-space, m < k, which has neither
neutral nor definite invariant subspaces. It is also proved there that
every positive invariant subspace of M!!! is contained in P. Hence
L, CP.

The subspace N = M[+]#" is uniformly negative, invariant and

H = N[+]9[+]1P.

By Law of inertia, dim./" < k. Since 73, decomposes in a finite
orthogonal sum of irreducible representations, ny also decomposes
in a finite orthogonal sum of irreducible representations. Set

Ny=NnL"! and P, =PnLUL
Since N and P are uniformly definite subspaces, it follows that
N=N;[+]L_, P=P[+]Ly and LW = N;[+]L[+]P.[+]$.
The subspaces N; and Pp are invariant for 7. Set

(8) L = Ni[+]1P[+]9, so that LI = Z[+]L.
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The subspace .# is invariant for . Therefore, by Lemma 2.5 (ii),

nl ~ny. Since Np C N, TN, decomposes in a finite orthogonal

sum of irreducible representations. Since Pr[+]$ is a I1,,-space, 7o

(and hence nL) is a finitely I1_-decomposable representation.
Similarly,

Z = Ng[+]Pg[+]9 and KM = 7[+]K,

where Ny = NNKM! and Py = PNnKM, and 7€ ~ 5.

In Theorem 2.6 [7] it is proved that in this case the *-representations
ny, and Ty, are equivalent and that the *-representations 7p and
mp, are equivalent. Therefore there exist an isometry U from N
onto Nx (in | ||y) and an isometry V' from P onto Px (in | |p)
such that

Urn|y, =nU|y, and Valp = 7IV|PL.
Set S = U[+]V[+]1l5. Then S is a bounded operator from .# onto
% which has a bounded inverse.
Given x and y in . and decomposing them according to (8)

X =XN+Xp+Xg, y=YnNn+Yp+Vs,
we obtain that
[Sx, Syl=[Uxy+Vxp+x5, Uyy + Vyp + ys]
=[Uxn, Uynl+[Vxp, Vyp]l +x5, ¥s5]
= [xn, ynl+[xp, yrl+[xs, y5] =[x, y].
We also have that
nS|e = nU|y [+]nV|p [+]n]s = Un|y [+]V7|p [+]7|s = S7| & .

Therefore the representations 7, and n4 are J-equivalent, so that
the representations #l and #nX are J-equivalent.

Case 3 (general case). Let H = M[+]M!1, as in Case 2. Assume
that MY has neutral invariant subspaces.

By the assumption of the theorem, the representation 7, decom-
poses in a finite orthogonal sum of irreducible representations. If all
of them are finite-dimensional, then H is a Il;-space and this was
considered in Case 1. Let M, be the subspace in M which con-
tains all finite-dimensional irreducible subrepresentations. Then My
is finite-dimensional and (M[-IM)H = M [+IM™] is a TI,-space,
k- < n_. Considering M[-]M/ instead of M, we may assume with-
out loss of generality that 7,, is a finite sum of infinite dimensional
irreducible representations.
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By Lemma 2.3, Ly, = L n M is a maximal neutral invariant
subspace in M1, Let LU be the J-orthogonal complement of
Ly in H and let £ = L&j] N MU, Then £ is the J-orthogonal
complement of L;; in M4,

Ly cg and gl = M{4+1LLd.

We also have that LE‘}] /Ly is isomorphic and isometric to
MI[+](£/Lys) and that £/Ly, is a Il,-space, n < k, which contains
no neutral invariant subspaces. Therefore the representation nlv on
Laj] /Ly is finitely I1_-decomposable. The subspace L = L/Lys isa
maximal neutral invariant subspace in Lﬂj] /Ly and Ln (£/Ly) =
{0} . It follows from Case 2 that the representation (nfw)L is finitely
I1_-decomposable. Since, by (7), nt ~ (nlu)L, nl is also finitely
I1_-decomposable. This concludes the proof that in all cases =l is
finitely Il_-decomposable.

Now let K be another maximal neutral invariant subspace in H
such that LN K = {0}. Then K = K N M4 is a maximal neutral
invariant subspace in M1 and Ly, N Ky, = {0}. Set

N=Ly+Ky

and let N1 be the J-orthogonal complement of N in M1, Since
MU is a TI;-space, we obtain, as in Case 1, that NIt is a II,-space
n < k, that it is invariant for 7 and that

MW = N[+]NY) and £ = Ly [+]NM.

Set H; = M[+]N1], Then H; is an invariant I1_-decomposable
subspace of H and

9) LU = M[+1€ = M[+]1Lp[+IN™M] = Ly [+1H, .

Therefore it follows from Lemma 2.5 (ii) that the quotient represen-
tation nim is J-equivalent to the representation Ty, - The subspace
L=L /Ljys is a maximal neutral invariant subspace for the represen-
tation mLwx. Since nlw ~ Ty there is a maximal neutral invariant

subspace L; in H; such that (7zLM)Z ~ (nHI)Lx. Therefore, by (7),

al ~ (ehn)l ~ (g ).

Similarly, there is a maximal neutral invariant subspace K; in H;

such that 7¥ ~ (zy )% .
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Since N[ is J-orthogonal to Lj; and since Ly, is a maximal
neutral invariant subspace in M), N has no neutral invariant
subspaces. Hence the subspace H; and the representation ny satisfy
Case 2. Thus (ny )4 ~ (ny )%, so that the representations n* and
nX are J-equivalent which concludes the proof of the theorem.

The following example shows that if # is not finitely II-decompos-
able, then Theorem 2.6 does not necessarily hold.

ExXAMPLE 1. Let p be a *-representation of a *-algebra & on a
Hilbert space §, let

H.=H.=) D%, alHi=5.
i=1

Set H=H_ & H,. If x=x-+x; and y = y_ + y;, where
X-,y-€H_ and x,, x, € H,_, set

[X, y] = _(-x—-a y_)+(X+, J’+)
Then H becomes a Krein space and the representation

on H is J-symmetric. Let x_ = (x;,..., X;j,...) € H_, x; € 9;,
andlet 7,,, n=0, 1, ..., be isometries from H_ into H, such that
Tnx—=(y1,~-,J’i,---)€H+, yl="'=yn=0andyn+i=xi'

The subspaces L, = {x_ + T,x_ : x- € H_} are maximal, neutral
invariant subspaces and

n
LM = [,[+]1% where &, = Z@S’Ji C H,.
i=1
By Lemma 2.5 (ii), nt» ~ mo . Since all the representations 7o are
different, we obtain that the quotient representations nl depend on
the choice of the maximal neutral invariant subspaces L.

3. Representational indices of derivations of C*-algebras. In this
section we apply the results of §2 to the investigation of derivations
of C*-algebras.

Let p be a *-representation of a C*-algebra &/ on a Hilbert space
H . A derivation 6 of A into B(H) relative to p is a linear mapping
from a dense *-subalgebra D(d) of & into B(H) such that

(i) 6(4B) = d(4)p(B) + p(4)6(B), 4, B € D(9);
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(ii) 6(A*) =d(A)*, A€ D(9);
(iii) Kerp C D(J).
The derivation is closed if 4, € D(6), A, — A and 6(4,) — B
implies 4 € D(6) and d6(4) = B. If ¢ is closed, then D(J) is a
*-normed algebra with respect to the norm

li4lls = (141l + (|6 (A -
A symmetric operator S on H implements ¢ if its domain D(S)
is dense in H and if for all 4 € D(J)
p(A)D(S) € D(S) and 4(A4)Ipes) = i(Sp(4) — p(A)S)|p(s) -

If T is a symmetric extension of S and if it also implements ¢, we
say that T is a symmetric d-extension of S. If S has no symmetric
J-extensions, it is called a maximal symmetric implementation of & .

We shall now consider briefly the link between derivations imple-
mented by symmetric operators and J-symmetric representations on
Krein spaces.

Let S be a symmetric operator and let S*be its adjoint. Then
N;(S) = {x € D(S*): S*x = idx}, d = +, are the deficiency spaces
of S and n,(S) = dim N,(S) are the deficiency indices of S. The
scalar product

(x, )% =(x,»)+(8*x,8*),  x,yeD(S"),
converts D(S*) into a Hilbert space and
D(S*) = D(S)(+)N-(S)(+)N,.(S)
is the orthogonal sum of the subspaces D(S), N_(S) and N,(S). Set
N(S) = N-(SH{#)N:(S).
Let Q and Q; be the projections onto N(S) and onto N, (S) in
D(S*). Then J = 2Q, — Q is an involution on N(S). The space
N(S) becomes a Krein space with respect to the indefinite form
[x, = (Jx,»)%, x,yeN(S),
and it decomposes into a simultaneously J-orthogonal and orthogonal
sum N(S) = N_(S) + N.(S). We have that, for x #0,
[x, x]5=2(x,x)>0, X € No(S), and
[x, x]¥=-2(x, x) <0, x € N_(S),

so that N,(S) and N_(S) are respectively uniformly positive and
uniformly negative subspaces.
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Now let S implement a derivation J relative to p. Then it is easy
to show that, for every 4 in D(J),

p(A)D(S*) € D(S*) and &(A)|ps+) = i(S*p(4) — p(A)S™)Ip(s*) -
Set ||x||3 = (x, x)5 for x € D(S*). In [3] and [5] it was shown that

lp(A)x1F < (I + IS (I IxlI < LANZIxIIZ -

Therefore p(D(d)) acts as an algebra of bounded operators on D(S*).
Since D(S) is invariant for p(D(J)), we define a representation ng

of D(J) on N(S) by the formula:

(10) n§(4) = Qp(4)Q, A€ D), ie,
nd(A)x = Qp(d)x,  x € N(S).

THEOREM 3.1 [4]. (i) (¢f. [3]). The representation ng of the algebra
D(6) on N(S) is J-symmetric and bounded with respect to the norm
I lls -

(i1) There is a one-to-one correspondence between closed symmetric
J-extensions T of S and neutral subspaces L in N(S) invariant for
nd: T = S*|p(r), where D(T) = D(S){+)L.

(iii) There is a maximal symmetric implementation T of 6 which
extends S . The representation n‘} has no neutral invariant subspaces.

If T is a symmetric extension of S and if L(T) is the neutral
subspace in N(S) which corresponds to it, then, using Lemma 13 [2],
we obtain that

(11) D(T*) = D(S)(+)L(T)™ and T* = S*|p+

where L(T)M1) is the J-orthogonal complement of L(T) in N(S).

Let S be a maximal symmetric implementation of a derivation J.
By Theorem 3.1 (iii), the representation ng of D(d) on N(S) has
no neutral invariant subspaces. We shall call the class of all repre-
sentations of D(J) J-equivalent to n$ a representational index of &
relative to S and denote it by i3 .

3.2. Uniqueness of representational indices. By Theorem 3.1, every
derivation 6 implemented by a symmetric operator has a maximal
symmetric implementation S. In fact, J always has an infinite set
M (0) of maximal symmetric implementations, since, for example,
for every selfadjoint operator B in the commutant p(A4)’, the opera-
tor S+ B is also a maximal symmetric implementation of J . In this
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context the following question arises: under what conditions on J are
all the representations ng , Se#5(5), J-equivalent, so that ¢ has
only one representational index?

Let S and T be maximal symmetric implementations of J. For
the case when T = S + B, B € p(A4), it was shown in [7] that the
representations 73 and n are J-equivalent, so that i§ = .. It
was also proved there that if S and T are isomorphic, i.e., there is

a unitary operator ¥ such that V'S = TV, and if V € p(&)’, then

0 0
lg =17

We shall now prove the main theorem of this section.

THEOREM 3.2. Let S be a symmetric implementation of a derivation
0 and let the representation ng be finitely I1_- or Il -decomposable.
Then for all maximal symmetric 6-extensions T and T, of S, the
representations n4. and n‘}l are J-equivalent, so that i%. = i‘%l.

Proof. Let T be a maximal symmetric Jd-extension of S. By The-
orem 3.1, there is a maximal neutral subspace L(7) in N(S) in-
variant for n$ such that D(T) = D(S){+)L(T). By (11), D(T*) =
D(S){(+)L(T)!3 where L(T) is the J-orthogonal complement of
L(T) in N(S). Since T* = S*|p(r+), we have that (x, y)T = (x, »)5,
x,y € D(T*). Therefore L(T) and N(T) are J-orthogonal and or-
thogonal with respect to { , ). Since D(T*) = D(T){+)N(T),

L(T)H = L(T) + N(T).

Let Qg and Qr be the orthoprojections onto N(S) and N(T) in
D(S*) respectively. Then Qr C Qg and, by (10),

n3(4) = Qsp(4)Qs and

n5(4) = Qrp(A)Qr = Orng(4)Qr, A€ D(S).
It follows from the discussion before Lemma 2.5 that the represen-
tation 7 is J-equivalent to the quotient representation (n$)XT) of
D(d) on L(T)H/L(T). Since nJ is finitely II-decomposable, it fol-
lows from Theorem 2.6 that all quotient representations (ng)L of
D(5) on L[”/L where L are maximal neutral subspaces in N(S)
1nvar1ant for ”s , are J-equivalent. Therefore all the representa-
tions 7tT, where 7 are maximal symmetric J-extensions of S, are
J-equivalent. The theorem is proved.

REMARK. The condition that the representation ng is finitely

I1-decomposable is a strong one. If, however, ng is not II-decompos-
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able, there is hardly anything we can say about J-equivalence of the
representations 73, S C T and T € #%(5). Even if rnd is
I1-decomposable, but not finitely II-decomposable, S may have an in-
finite number of maximal J-extensions 7 such that the corresponding
representations n‘} are all not J-equivalent, so that J has an infinite
number of different representational indices i%., S C T (see Example
4). On the other hand, in many interesting cases this condition is ful-
filled. If, for example, £k = min(n.(S), n—(S)) < co, then N(S) is a
I1;-space and ng is II-decomposable. In the case, studied by Powers
[12] and Arveson [1] (see Example 2), when ¢ is the generator of a
semigroup of endomorphisms of B(H) which has a semigroup of in-
tertwining isometries, k = 0 and N(S) = N,(S) is a Hilbert space, so
that ng is Il-decomposable. Below we consider derivations dg from
C*-subalgebras %5 of B(H) into B(H) generated by symmetric oper-
ators S on H. We also consider the restrictions J of this derivation
to some C*-subalgebras of &% . If min(n,(S), n_(S)) < oo, then
the representations ng are finitely Il-decomposable and Theorem 3.2
holds.

Let T and 7; be maximal symmetric implementations of ¢. If
there exists a symmetric implementation S of 6 such that S C T
and S C 77 then Theorem 3.2 gives sufficient conditions for the rep-
resentations 79 and n§ to be J-equivalent. If, however, such an
implementation S does not exist, it becomes extremely difficult to
establish whether 9. and n$ are J-equivalent. Therefore in order
to be able to decide whether J has a unique representational index or
not, we have to impose another condition on 6 which will allow us
to “compare” different maximal symmetric implementations of ¢ .

DEFINITION. Let & be a derivation of &/ relative to a representa-
tion p. We say that a symmetric implementation S of d is minimal
if, for every symmetric implementation 7" of J, there is a selfadjoint
operator B in the commutant p(%/) such that SCT + B.

THEOREM 3.3. Let S be a minimal symmetric implementation of
a derivation 6 of a C*-algebra </ relative to a representation p. If
the representation ng is finitely I1-decomposable, then, for all maxi-
mal symmetric implementations T of &, the representations n% are
J-equivalent, so that & has a unique representational index.

Proof. Let R and T be maximal symmetric implementations of
0. Then there are B, C € p(&/) such that S C R+ B and S C
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T+ C. The operators R+ B and T + C are also maximal symmetric
implementations of é. By Theorem 3.2, nfz g 18 J-symmetric to
nd., - By Theorem 3.6 [7], n% and =%, are J-equivalent and 7.
and 7J, . are J-equivalent. Hence 7§ and nJ. are J-equivalent.

REMARK. The existence of a minimal symmetric implementation
is another strong condition imposed on J . However, without this as-
sumption it is difficult to test the representations ng , S e HMF9),
on J-equivalence. In Example 2 below a minimal symmetric imple-
mentation does not exist and, therefore, it is not clear whether the
representations 7 and ngl , S, S| € #5(5), which correspond to
different intertwining semigroups of isometries, are J-equivalent [13].
In many cases the derivations do have minimal symmetric implemen-
tations. In [6], for example, it was shown that if p(&/) contains the
ideal C(H) of all compact operators on H, then J has a minimal
symmetric implementation. Example 4 considers a derivation J from
& into B(H) such that &/ does not contain C(H) and that J has
a minimal symmetric implementation.

ExAMPLE 2. Powers [12] and Arveson [1] studied a special case
when ¢ is the generator of a semigroup «; of endomorphisms of
B(H) and when there exists a semigroup U = {U(¢): ¢t > 0} of isome-
tries which intertwine «;: U(t)4A = 0;(A)U(t), A € B(H). Then ¢ is
a *-derivation from a C*-subalgebra &%, of all 4 € B(H) such that

las(4) — Al = 0 as¢— OF

into B(H). If d is the generator of U, then the operator S = id
implements J, it is symmetric, N_(S) = {0} and N(S) = N,(S) is
a Hilbert space. Therefore S is a maximal symmetric implementa-
tion of J and the *-representation ng is I1_-decomposable. Powers
and Price [13] showed that if {V'(z): ¢ > 0} is another semigroup
of isometries which intertwine «; and if d; is its generator, then
D(d)n D(d,) = {0}. In this case, obviously, § has no minimal sym-
metric implementations and, therefore, there is no reason to think
that the representational indices i§ and i , where S; = id;, are
equal. From the above remark it also followls that .7, does not con-
tain C(H).

We shall now consider derivations § which have minimal symmet-

ric implementations .S such that the representations ng are finitely

II-decomposable, so that Theorem 3.3 holds.
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Let S be a densely defined symmetric operator on a Hilbert space
H. Set

Hs ={A € B(H) : AD(S) C D(S), A*D(S) C D(S)
and (S4 — AS)|p(s) extends to a bounded operator} .

Then s is a *-algebra. For every x,y € H, we denote by x ® y
the rank-1 operator z — (z, x)y. Then (x ® y)* = y ® x and if
x,y€eD(S),then x @y € Hs. By & we denote the norm closure
of %s. Then s isa C*-algebra and it contains C(H). The operator
S defines a closed *-derivation from % into B(H)

ds(A)|pesy = i(SA4 — AS)|p(s)

and D(ds) = HBs. Since C(H) C &, ds has a minimal implementa-
tion. In fact, S is a minimal implementation of dg. In order to prove
this we assume that 7 also implements dg. Then for all x, y € D(s),
(x®y)D(T) € D(T),
so that D(S) C D(T'). We also have that for all z € D(S),
S-TY(x®y)z=(x®y)(S—-T)z.

Therefore T'|ps) = (S + Al)|ps)y, 4 € C, so that S is a minimal
implementation of Jg .

Let &/ be a unital C*-subalgebra of % which contains C(H) and
such that Fs N is dense in & . Then Jg generates a derivation
0 = ds|ly on & and D(9) = Hs N . Since all rank-1 operators
xX®y, x,y € D(S), belong to D(d), the operator S is still a minimal
implementation of ¢ .

If n_(S) =0 or ny(S) =0, then S has no symmetric extensions
at all and, therefore, S is a maximal symmetric implementation of
Js and of any derivation J generated by Jdg considered above. An-
other example of a symmetric operator .S, which is also a maximal
symmetric implementation of dg, was given in [7]:

S = izd; on L,(0,a), a<oo, and n_(S)=n,(S)=1.

In general, however, we do not know whether § is a maximal im-
plementation of dg or not. Even if S is a maximal symmetric imple-
mentation of Jg , it is not necessarily a maximal symmetric implemen-
tation of a derivation J = dg|, generated by dg on a C*-subalgebra
& of &5 considered above. If min(n,(S), n_(S)) < oo, then N(S)
is a Il -space, so that the representation ng of D(d) is finitely II-
decomposable. Therefore from Theorem 3.3 we obtain the following
theorem.
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THEOREM 3.4. Let min(ny(S), n_(S)) < . Let & be a unital
C*-subalgebra of s such that C(H) C &/ and %s N A is dense in
& . Let 6 = 05|y and D(0) = Bs N . Then for all maximal
symmetric implementations T of &, the representations n‘} of D(d)
are J-equivalent, so that there exists a unique representational index
of 9.

The following example illustrates Theorems 3.3 and 3.4.

ExAMPLE 3. Let min(n.(S), n—(S)) < oo, let & = C(H) + Cly
and let 0 = ds|yy. Then D(d) = HBs N C(H) + Cly. Assume that
n_(S) < ny(S) and let T be a maximal symmetric implementation
of J. For the case when n,(S) < oo, it was proved in [4], and, for
the case when n,(S) = oo, it was proved in [10] that

n_(T)=0, ny(T)=n(S)—n-(S) and Kernl=BsnC(H).

From this it follows immediately that all representations nd., T €
MF(0), of D(d) are *-equivalent (since all the deficiency spaces
N(T) = N4(T) are Hilbert spaces, J-equivalence coincides with
*-equivalence). Thus J has a unique representational index which
fits well with Theorems 3.3 and 3.4.

The following example shows that if the representation ng (S is
a minimal symmetric implementation of ¢) is II-decomposable but
not finitely Il-decomposable, then § may have an infinite number of
distinct representational indices.

ExXAMPLE 4. Let S; and S, be symmetric operators on H;, and H,
respectively. Set H = Hi®H, and S =5, ®S,. Then §* = S70S5,

D(S) = D(S1) @ D(S2) and D(S™) = D(S}) @ D(S3).
For x=x1+x; and y =y +y2, X;, i €D(S}), i=1,2, let
(x, )5 = (x, ¥) + (™%, §*V) = {x1, y1)% + (x2, y2) .
Therefore
N(S) = N(S1)(+)N(S2) and Ni(S) = Ni(S1){(+)N=(S2).

Let J;, i = 1,2, be the involutions on N(S;), as in §3.1, and let
J =Ji®J,. Then J is an involution on N(S) and N(S;) and
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N(S,) are J-orthogonal with respect to the form

[x, y1¥ = (Jx, ).
Let & = (C(H;)®C(H,))+Cly . The operator S defines a deriva-
tion é = dg|y on & where
D(8) = Bs N/ =[(Bs, N C(Hy)) @ (Bs, 1 C(Hy)]+Cly
and
0(4)|ps) = i(SA4 — AS)Ips) » A€ D(d).
Since all operators (x; ® y;) & (x2 ® ¥2), Xi,yi € D(S;), belong to
D(J), the operator S is a minimal symmetric implementation of J.
Assume now that
ni(S1) =n_(S2) =oo0 and n_(S;)=n.($) =0,
so that
N.(S) = N.(S1) = N(S1) and N_(S)=N_(S2) = N(S2).
Let 4; € ﬁsi N C(H;). Then

”S(Al © Az) = ns( 1)(‘*‘)7‘75(1‘12)

Therefore nS[ @, nC(H,) are *-representations of %5 NC(H;) on Hilbert

spaces N(S;) respecuvely Hence they extend to *-representations 7;
of C(H;) on N(S;). Let x;, y; € D(S;). For every z; € D(S})

(xi ®yi)zi = (zi, X;)yi € D(S)).
Therefore

nG((x1 ®y1) ® (X2 ®¥2)) =0
Hence =;(x;®y;) =0, for all x;, y; € D(S;), and, therefore, n; = 0.
Thus

ﬂg((Al @Az)-l—tIH) = tIN(S)a teC,

for all 4; € %5 NC(H;). We shall now proceed as in Example 1. Let
{ei}2, be a basis in N4 (S) and let {f;}?2, be abasisin N_(S). For
0<n<oo,set

L,={ei+ fixn:1<i<oo}.
Then L, are maximal neutral subspaces invariant for ng and

LM = L,[+]%,, where & ={f,: 1<k <n}.

By Theorem 3.1, for every L,, there is a maximal symmetric imple-
mentation 7, of 4. It follows from the discussion in Theorem 3.2
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that the representations 7z5T are J-equivalent to the quotient represen-
tations ()L of D(d) on L§H/L,. Since dim(Li"/L,) = dim %, =
n,all n‘} are not J-equivalent. Therefore J has an infinite number
of distinct representational indices.
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