
Pacific
Journal of
Mathematics

ON THE EXISTENCE OF CONVEX CLASSICAL SOLUTIONS
TO MULTILAYER FLUID PROBLEMS IN ARBITRARY SPACE

DIMENSIONS

ANDREW FRENCH ACKER

Volume 162 No. 2 February 1994



PACIFIC JOURNAL OF MATHEMATICS

Vol. 162, No. 2, 1994

ON THE EXISTENCE OF CONVEX CLASSICAL
SOLUTIONS TO MULTILAYER FLUID PROBLEMS

IN ARBITRARY SPACE DIMENSIONS

ANDREW ACKER

We study certain multilayer free-boundary problems, in which the
layer interfaces constitute a nested family of convex closed surfaces,
each characterized by a Bernoulli joining condition between the po-
tentials in the neighboring layers. In this context, we develop convex
variational methods based on a family of convexity-preserving free-
boundary perturbation operators, and we apply these methods in the
study of the existence of convex solutions.

1. Introduction. The main purpose of this paper is to apply convex
variational techniques to study the question of the existence of convex
classical solutions to certain multiple-free-boundary problems arising
in fluid dynamics, called multilayer fluid problems.

1.1. Problem. In R m , m > 2, let an annular domain Ω of the
form Ω=Z)+\Cl(i)~) be given, where D*1 are fixed, bounded, simply-
connected, nested C1-domains. Given n e N and continuous func-
tions λj(x): C1(Z>+) —> R, i = 1, 2, . . . , n, we seek a nested family
of C1-domains D\, Z>2, .. . , Dn (with boundaries Γ; = dDi) such
that C1(Z)|) c A+i for i = 0 , . . . , n, (where we set Do = D~ and
D r t + 1 = D+) and such that

(1.1) |VC7i|2 = |VC/f+i|2 + Aί(jc) onΓ;

for / = 1, . . . , n, where U(x) solves the boundary value problem
(1.2)
AU = 0 inΩ\(Γ!U u Γ w ) , £/(Γ/) = i for i = 0, 1,...,« + 1,

and where, for each i, £/; denotes the restriction of U to the closure
of the annular domain Ω/ := Z>/\Cl(Z>;_i) with boundary <9Ω/ =
Γ / U Γ M .

1.2. Problem. This denotes the modified version of Problem 1.1 in
which Γo becomes a free boundary characterized by the requirement
that

(1.3) \VUx\ = a0(x) onΓ 0 .

201



202 ANDREW ACKER

Here, ao(x): C1(Z>+) —> R is a given, continuous, weakly-positive
function.

For Problem 1.1, we will show (see Theorem 7.2) that if the given
domains D± are convex, D~ is a C2-domain, the given functions
λi(x): Cl(D+) —• R are all strictly positive, and the related func-
tions bi(x) := [λi(x)]~χl2 are all concave in Z>+, then there exists a
classical solution D = (D\, Z>2 > > Dn) such that the domains D/,
/ = 1, . . . , n, are all convex. We obtain essentially the same result for
Problem 1.2 (under the additional assumption that the function OQ(X)
is concave in the convex set {ao(x) > 0}), except that an additional
assumption is needed to prevent degeneracy (see Theorem 6.3). It is
reasonable to assume that the functions λf(x) are all strictly positive,
since the author has given an example of Problem 1.1 (see [10]) in
which n = 1, m = 2, the given domains D± are both convex, λ\(x)
is a negative constant, and no convex solution exists. The present
convexity result generalizes a portion of the author's work in [11],
where a similar conclusion was reached under considerably stronger
assumptions. In particular, the present convexity results hold in ar-
bitrary space dimensions, whereas the previous convexity results for
Problem 1.1 (in [11, §6]) were restricted to 2 or 3 space dimensions
(ra < 3). It was previously assumed essentially that 0 e D~ and
that the functions t2λi(tv) (for / = 1, . . . , n and v e Rm) were all
weakly increasing in t > 0. This latter assumption guaranteed that the
solution of Problem 1.1 would be unique and continuously dependent
on the data (properties which played an important role in the proof).
In contrast to this, the present existence results hold in the absence of
any knowledge concerning uniqueness.

We also mention the work of Laurence and Stedulinsky [21], who
proved in two space dimensions that Problem 1.1 and a modified ver-
sion of Problem 1.2 both have convex solutions under convex condi-
tions, provided that the functions ao(x) and Λ, (JC) , / = 1, . . . , n,
are all positive constants. Laurence and Stredulinsky have also shown
(this time in arbitrary dimensions; see [22]) that solutions of certain
nonlinear PDEs can be approximated by convex solutions of Problems
1.1 in the limit as n —• oo, so that our convexity results for Problems
1.1 have direct consequences regarding the existence of solutions with
convex level surfaces for these nonlinear PDEs.

The author's results on convexity, both here and in [11], are based
on a certain one-parameter family of free-boundary perturbation op-
erators Tε, 0 < e < 1, which preserve the geometric convexity of the
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free-boundary surfaces under suitable conditions (see §§2.8, 2.9). In
fact our assumption that the functions ao(x) and bi(x) := [A/(JT)] - 1/2 ,
/ = 1, . . . , « , all be concave arises as a natural requirement for
the convexity-preserving property of these operators. However, our
present treatment is otherwise entirely different from [11], where the
convexity results were obtained essentially as consequences of the
maximum-norm convergence of a successive approximation scheme
based on the (convexity-preserving) operators Tε, and thus required
the additional assumption stated above, which was crucial to the con-
vergence of the successive approximations.

In our present approach, which is patterned after the author's first
papers on the existence of convex free boundaries (see [3], [5]) and
work of Caffarelli and Spruck [16, §§4,5] the "operator method" is
studied in the context of convex functional minimization (i.e. convex
variational inequalities). This approach permits us to obtain existence
results in the absence of any knowledge regarding uniqueness of so-
lutions. We will now briefly outline this method in the context of
Problem 1.2: One begins with the standard integral functional asso-
ciated with Problem 1.2 via the method of variational inequalities,
and one minimizes this functional among those functions having only
convex level surfaces. Now, it turns out that convex minimizers can
exist under quite general circumstances, including many cases where
no convex solution exists for the corresponding free boundary problem
(see [10, Remark 2]). Therefore, the crucial step in our method is the
proof, under suitable assumptions, that U will satisfy the Euler equa-
tions for the original (non-convex) variatonal problem, namely (1.1),
(1.2), and (1.3). A convex minimizer U will be harmonic except on
the free boundaries (i.e. the surfaces corresponding to integer values of
U), as follows from results in the literature on the convexity of level
surfaces of the capacity potential (see [15], [16, §2], [17], [18], [19]).
Therefore, it remains to prove the joining conditions (1.1) and (1.3).
The main tool for verifying the joining conditions is the examination
of convex variations in the free boundaries of the convex minimizer,
which cannot decrease the functional. The author's method for this,
called the "operator method" (introduced in [3]), consists of defining
one specific global convex variation in each free boundary, chosen in
such a way that the functional will be diminished (to first order in the
variation parameter) unless the joining condition on the free bound-
ary is satisfied at least in some weak sense. We will show (in §3) that
the convex variation needed to establish the joining conditions (1.1) is
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accomplished by precisely the one-parameter operator family Tε al-
ready used in [11], while (1.3) follows by applying the operator family
defined in [3].

An alternative perspective on convex-free-boundary problems has
been studied by Laurence and Stredulinsky in the work previously
cited (see [21]). After establishing the existence of a suitable con-
vex minimizer (in arbitrary space dimensions), they study the joining
conditions (1.1) by the "method of flat places". This method (which
had already been studied in several other contexts by the author in
[6]) is based on the observation that local convex variations establish
the joining conditions on the free boundaries of a convex minimizer,
except at the "flat places" in these surfaces, which require a separate
analysis based on maximum principles and non-local convex varia-
tions. The main drawback in this method is the fact that the verifica-
tion of the joining conditions on the flat places becomes increasingly
difficult as the number of dimensions increases. In fact the method
has never been applied in more than two space dimensions. By con-
trast, the operator method, although it was originally introduced in a
2-dimensional context, is actually insensitive to dimension in all essen-
tial aspects, perhaps because it circumvents difficult questions related
to details of surface geometry. However, the method of flat places,
when applicable, appears to lead to slightly more general assumptions
for the existence of convex solutions to Problems 1.1 and 1.2. For
example, the method of flat places would lead to the requirement that
l/αo(x) be convex in {ao(x) > 0}, which is slightly more general than
our assumption that the function a${x) be concave (see [6]).

We remark that neither a proof nor a counterexample has been
found for the existence of convex solutions under convex conditions
for Problem 1.2 in the case where the functions a${x) and Λ, (JC) , i =
1, . . . , n, are all constants, but at least one of the λ[ is negative. (A
closely related problem, in which all the λ\ are negative, was proposed
by Laurence and Stredulinsky in [20], but not resolved.) However, we
obtain a counterexample in §7.6 applicable to the case where m = 2,
n = 1, λ\{x) = -a2 < 0, and a${x) is concave in the convex set
{αoM > 0}. The operator method does not show that the convex
minimizer solves Problem 1.2 in this particular case because Tε does
not preserve convexity when applied to Γ\ := dD\.

A simple, but powerful observation in the study of the multilayer
fluid problem (and multiple free boundary problems in general) is
the following: If a nested family of free boundaries (Γi, Γ2, . . . , Tn)
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solves Problem 1.1 in the case of (n + 1) layers, then each surface
Γ| is the solution of a two-layer-version of Problem 1.1 relative to
its own immediate neighbors, Γ, _i and Γ / + i . This principle allows
many questions pertaining to multilayer problems to be resolved in
the 2-layer case. It is the plan of this paper to make maximum use of
this principle by first carefully studying the convex version of Problem
1.1 in the 2-layer case (in §§2, 3, 4, 5), and then solving the convex
version of Problem 1.2 by multiple application of these results (see
§6). Finally, in §7, we will solve the convex version of Problem 1.1
essentially by regarding it as a limiting case of Problem 1.2.

2. A variational approach to the 2-layer problem in the convex case.

2.1. Problem. In R m , m > 2, let be given an annular domain
Ω in the form Ω = Z>+\C1(Z>~), where D± are given bounded,
convex, nested C1-domains with boundaries Γ* = dD±

 y and let
a(x): C1(Ω) —• R denote a strictly-positive, continuous function such
that the related function b(x) := (l/a(x)) is concave on Ω. (This
means that a{x){d2a(x)/dv2) > 2{da{x)/dv)2 at any point x e Ω
and in any direction v, provided that a{x) is sufficiently differen-
tiate.) We seek a convex domain D (or its boundary Γ = ΘD) such
that Cl(D-) cDc Cl(D) c D+ and such that

(2.1) |VC/-|2 = |Vt/+|2 + tf2(x) o n Γ ,

where Ω ± denotes the annular domain whose boundary is 9 Ω ± =
Γ U Γ*, and where the functions U±(x) solve the boundary value
problems

(2.2) ΔC/± = O i n Ω ± , C7±(Γ) = 0, ί7

2.2. Problem. In the context of Problem 2.1, let Xc denote the
family of all closed, convex (m - l)-surfaces Γ of the form Γ =
dD, where D denotes a convex domain such that C1(D~) c D c
C1(Z>) c D+. For any surface Γ € Xc, we define the functions
[/^(Γ; x): C1(Ω±(Γ)) -^ R to be the solutions of the boundary value
problem (2.2), where Ω ± := Ω=b(Γ) denotes the annular domain
bounded by ΓuΓ* . We seek to minimize the functional /(Γ): Xc —• R
defined by

(2.3) /(Γ) := tf+(Γ) + K-(Γ)
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Here AΓ±(Γ) denotes the capacity of Ω ± (Γ), i.e.

K±(Γ) =

Also, we define ||AΓ|| = JMa2(x)dx for any measurable subset M of
C1(Ω).

2.3. REMARKS, (a) In the notation of Problem 2.2, a solution of

Problem 2.1 is a convex surface f e Xc such that

\VU-(x)\2 = \VU+(x)\2 + a2(x) o n f ,

where we define t /^x) := i7±(f; x).

(b) Observe that the definition of a solution Γ of Problem 2.2 re-

quires that f Π Γ~ = 0 .

_ 2.4. DEFINITION. Assume Γ is a C1-surface. Then the function
C/±(x): Cl(Ω=fc) —• R is differentiable at a point XQ E Γ if there exists
a value λ*1 = λ±(xo) E R such that

£*(*) = ±λ±v(xQ). (x - x0) + o(\x - xo\)

as x —>Xo i n C^Ω^), where Ϊ'(XO) denotes the exterior normal vector

to Γ at xo ̂  Γ. In this case, we define VC/±(xo) := ±λ±u(x0).

2.5. THEOREM, (a) Assume in Problem 2.2 ίΛαί m = 2, or that
m = 3 (Z«rf Γ~ w α C2-surface. Then there exists at least one solution
Γ e Xc. (b) ̂ w m e (for arbitrary m e N) ί/zαί Γ w α solution of
Problem 2.2. ΓΛ^n: (i) Γ is a uniformly Cι-surface, and there exist
positive^ constants 0 < Q < C2 swc/z ί/zαί Q < I V ^ I < C2 near
Γ m Ω ± (Γ). (ii) The derivatives Vί7±(xo) both exist at each point
XQ G Γ, in a sense given in Definition 2.4, and they satisfy C\ <
| V ^ ( x o ) | < C 2 . (iii) We have that VU^x) -> VU^Xo) as x-> x0

in Ω^ Π {dbî (xo) (x - Xo) > a\x - xo|} for any fixed 0 < a < 1.

Proof. Concerning part (a), see [21, §1]. Part (b) was proved in [16,
§4.2.7].

2.6. THEOREM. Let Γ be a solution of Problem 2.2 (which certainly
exists if m < 3 and Γ~ is a C2-surface). Then Γ is a (convex,
classical) solution of Problem 2.1.

Proof. The proof of Theorem 2.6 is the main object of §§3, 4, 5
(and, in particular, Theorems 4.1 and 5.1). The proof will be based
on the operator method, which we first briefly outline.
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2.7. LEMMA. Let U(x): C1(Ω) —• R denote the capacity potential
in a bounded annular domain Ω c Rm whose boundary components
Γ* and Γ are convex surfaces (i.e. AU = 0 in Ω, U(Γ) = 0, C/(Γ*) =
1). Then: (a) α// level surfaces of U are convex, (b) |VC/| z's weakly
increasing on curves of steepest ascent of U in the direction toward
the interior boundary component, (c) |VC/| is subharmonic, and (d)
ln( IV UI) is superharmonic.

Proof sketch. Regarding the proof of (a), see [15], [16, §2], [17],
[18], and [19]. Part (b) follows immediately from Part (a). Part (c) is
obvious, and part (d) is proved in [8, §3].

2.8. Operator method. We continue in the context of Problems 2.1
and 2.2. For Π , Γ2 e Xc, we say Γ{ < Γ2 (resp. Γ{ < Γ2) if A c D2

(resp. Cl(D\) c D2), where D\, D2 denote the corresponding interior
complements. We define the operators Φf(Γ):Xc-^Xc, 0 < ε < 1,
such that

φ±(Γ) = {x e Ω±(Γ): i7±(Γ; x) = e}.

For any ε > 0 and given (m - l)-surfaces Γ i , Γ2 G Xc satisfying
Γi < Γ 2 , we define the (m - 1)-dimensional surface

Ψε(Γi, Γ2) = {xeω: (ε2/d2(x, Γx))-(ε2/d2(x, Γ2)) = a2(x)} e Xc,

where ω denotes the annular domain between Γi and Γ 2 , and where
d(x,Γ) = min{|x - y\: y e Γ}. Finally, we define the family of
operators Te(Γ): Xc -> Xc, 0 < ε < 1, such that

= Ψ ε (Φ"(Γ),Φ ε

+ (Γ)).

2.9. THEOREM. In the context of Problem 2.1 and 2.2, we have
Φ±: Xc -> Xc for 0 < ε < 1. Also Ψ ε (Γ! , Γ2) e Xc for any ε > 0 and
surfaces T\, Γ2 e Xc satisfying Γx < Γ 2 . Therefore, T£: Xc -> Xc for
any 0 < ε < 1.

Proof The operators Φ^ preserve convexity due to Lemma 2.7(a).
Then the proof that Ψ ε (Γi, Γ2) is convex whenever the surfaces Γi <
Γ2 are convex follows from maximum principles, properties of the
distance function, and the assumed concavity of the function b(x) in
Ω. The details are given in [9, §4] and [11, §5].
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3. Infinitesimal convex variations induced by the operators Te(Γ):

c —y ̂ c

3.1. NOTATION. Given a solution Γ of Problem 2.2, we define
the functions A(x), B(x), a(x), β{x):Γ -+R+ such that A(x) =
|VC/-|, B(x) = |VC/+|, α( c) = l/A(x), and β(x) = 1/5(JC). Clearly,
these functions are all bounded and measurable relative to the surface-
area measure on Γ.

3.2. THEOREM. Let Γ denote a {fixed) solution of Problem 2.2. For

small ε > 0, define the function hε(x): f —• R swc/z //zαί

(3.1) x ε : = x + A β ( x ) φ ) G Γ ε := Γβ(f)

for each x e Γ, wAere I/(Λ:) W ίΛe exterior unit normal to T at x ^T
and \hB{x)\ is minimum subject to (3.1). Then for each x ef, we
have

(3.2) lim(hε(x)/ε) =
ε 0 +

(x) denotes the unique solution (in the interval (-a(x), β(x)))
of the equation

(3.3) (α(x) + A(x))-2 - (β(x) - h(x))-2 = a\x).

Proof. Let the continuous, strictly-positive functions he

t(x):Γ-^R
be defined such that

(3.4) xf :=χ± hf{x)u{x) e ff := Φf(f),

where hf(x) > 0 is minimum subject to (3.4). For fixed x € Γ, it
follows from Theorem 2.5(b) that

(3.5) d(xe, ff) = \xf - x ε | ( l + C(β)) = I ± hfix) - hε{x)\(\ + ζ(ε))

as ε -• 0 + , where ζ(e) denotes any function such that ζ(ε) -» 0 as
ε -^ 0 + . Since x£ G Γβ(f) = Ψ ε ( f-, Γ+), we conclude using (3.5)
that

(3.6) [ε/(h~(x) + hε(x))]2 - [ε/(ht(x) - hε(x))]2 = a2(x) + ζ(ε)

as ε —• 0 + . For fixed x G Γ, the theorem of the mean implies that

^ ^ ^ ) (x? - x) + o{\xf - x\)

as ε -> 0 + , from which it follows that

(3.7)
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as ε —> 0 + . By substituting (3.7) into (3.6), we conclude (again for

fixed xef) that

(α(*) + (hε(x)/ε) + ζ(ε))-2 - (β(x) - (hε(x)/ε) + ζ(ε))~2

= a2{x) + ζ(ε)

as ε —• 0+, from which (3.3) follows in the limit.

3.3. LEMMA^ Given a (fixed) solution Γ of Problem 2.2, let the

function h(x): f —> R Z?e defined as in Theorem 3.2. ΓÂ AZ ίA^re ex/sto

α positive function r(x): f —• R swcA that

0 < r(*) < 4 . max{^3(x), (α2(x) + B2(x)γl2},

Λ W = (A2(x) - 5 2 (x) - α2(x))/r(x),

both for all x e f .

Proof. F i x x e f a n d let

g(t) = (a + t)-2-(β-t)-2 for -a<t<β9

with α = α(x) and jί = β{x). Then g (O) = A2-B2, and g(Λ) = a2,
with yl = A(x), B = B(x), a = a(x), h = h{x), and r = r(x). By
the theorem of the mean, we have

where 5 lies between 0 and h, and where

It remains to determine an upper bound for φ(s). Clearly the function
φ(t): (—α, β) —> R takes its global minimum at its center point ίo =
(/?—α)/2, and is decreasing (increasing) to the left (right) of the center
point. Therefore, iϊ ΰ <t$ <s <h < β, then

Φ(s) < φ(h) = 2([(α + A)"2 - α " 2 ] 3 / 2 + (α + A)"3) < 4 ^ 3 ,

where we used the fact that g(h) = a2 . On the other hand, if 0 < s <
t0, then φ(s) < φ(0) = 2(A3 + B3) < 4A3. If -a < A < s < t0 < 0,
then

0(5) < φ{h) = 2((β - A)"3 + [a2 + {β- h)-2]3'2) < 4(α2 + Bψ2.

Finally, if t0 < s < 0, then 0(^) < ^(0) = 2(^ 3 + B3) < 4B3 .

3.4. LEMMA. Let f e Xc denote a uniformly Cι-surface, and let
Γ e, 0 < ε < ε0, denote a family of (convex) surfaces in Xc such that
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Γ£ c Nλε(f) (= the (λε)~neighborhood of f) for each ε, where λ is
some positive constant. For each x G Γ and 0 < ε < ε0, let v(x) =
the exterior unit normal vector to f at x e f, let y(x, e) be the point
closest to x in Γε Π L(x) (here L(x) = {x + av(x): a€ R}), and let
u(x, ε) denote a unit vector such that u(x, ε) (z - y(x, ε)) < 0 for
all zeΓε. Then φ{ε) :=sup{|z/(x, β)-i/(jc)|: x eΓ}-+0 as ε-+0.

Proof. Choose a point x* G D(f) , and define fε = rεf := {x* +
rε(x - x*): x G f } , where the value rε > 0 is maximum subject to
the requirement that f ε < Tε. Clearly rε = 1 + O(ε), and v(x, ε)
(z - y(x, ε)) < 0 for all x G Γ, 0 < ε < εo, and z efε. Assume the
assertion of the lemma is not true. Then there exist a value po > 0,
a positive null-sequence (eΛ), a vector sequence (xn) c Γ, and a
sequence of unit vectors (i>n) such that \vn — vn\ > po and vn (z —
J>«) < 0 for all « and for all z eTn := Tε , where yn = y(xn , εn) and
un = u(xn). In fact we can assume that ϋn maximizes \v-vn\ subject
to the requirement that \v\ = 1 and v (z —yn) < 0 for all z e Γ n . It
follows that z>w (z^-yπ) = 0, for some point zn eΓn, where vn is the
exterior normal to the surface f „ at zn . By passing to a subsequence
if necessary, we can assume that xn, yn —• x G Γ, «̂ —> ^(x), zn —>
z G Γ, and vn —> v(z), all as n —• oc, where |i/(z) - z^(x)| > po and
i/(z) (z-x) = 0. However, the second property (that z/(z) (z-x) = 0)
implies that v(x) = v(z), contradicting the first property.

4. Variational formulas.

4.1. THEOREM. Let f G Xc te α solution of Problem 2.2 (vv/Y/z
m>2). Then:

(a)

(4.1) ί : ± (Γ ε ( f ) )-^ ± <±ε ί\VU±\2h(x)ds + εζ(ε),
Jr

(4.2) ||Ω"(Γε(f))|| - ||Ω-|| = ε ίa2(x)h(x)ds + εζ(ε)
JT

for ε —• 0+, w/ẑ re ^ ( x ) = C/±(f x), βίc, α/7ύ? the function h(x)\
Γ —> R was defined in Theorem 3.2.

(b) We have

(4.3) / ( Γ β ( f ) ) < / ( f ) - ε f([A2(x)-B2(x)-a2(x)]2/r(x))ds + εζ(ε)
Jr
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as ε -• 0+, where A(x) = \VU~\, B(x) = |V£/+|, α/wί the functional
/(Γ): Xc -+ R was defined by (2.3).

(c) Γ solves Problem 2.1 m the weak sense that A2(x) = 1?2(JC) +
α2(x) almost everywhere on Γ relative to (m - \)-dimensional Eu-
clidean area.

4.2. Proof of parts (b) and (c). By adding the three estimates given
in (4.1) and (4.2), one obtains the inequality

(4.4) I(Tε(f)) < /(f) - ε ί(B2(x) + a2(x) - A2(x))h(x) ds + εζ(ε).
Jr

Then the estimate (4.3) follows from (4.4) by applying Lemma 3.3.

Since Γ minimizes the functional /(Γ): Xc —• R, and since Tε: Xc —•

Xc, we conclude that I(Te(f)) > / ( f ) . It then follows from (4.3) that

A2(x) = B2(x) + a2(x) almost everywhere on Γ.

4.3. Heuristic argument for Theorem 4.1, parts (b) and (c). In the
case of sufficient regularity of Γ, the variation δl in the functional
/(Γ) caused by application of the operator Tε to Γ is given approxi-
mately (i.e. to first order) by

δl « I[B2{x) + a2(x) - A2(x)]δv(x) ds
Jr

(by the Poincare variational formula for capacity), where δv(x) de-
notes the exterior normal variation in Γ at x which is induced by
Tε. However, Theorem 3.2 and Lemma 3.3 imply that

δu{x) = hε(x) » h(x). ε = ([A2(x) - B2(x) - a2(x)]/r(x)). ε,

so that the^assertion follows by substitution. Then A2{x) = B2(x) +
a2(x) on Γ by the proof of Theorem 4.2 given above (see [9, §5] and
[11, Remark 5.6]).

4.4. LEMMA. Let Γ solve Problem 2.2. Then: (a) Each point XQ G

f is the endpoint of at least one maximal curve of steepest ascent y*
of the function £/± {here y± c C1(Ω±)). (b) We have that VU^x) ->
VC/^JCO) α«β? idVC/^1^)!—|Vt/±(jcb)|) ΐ 0 α.y x -• x0 monotonically
on γ*, where V^ζxo) is defined in Definition 2.4. (c) For each
XQ G Γ, the curve γ* of steepest ascent is uniquely determined, (d) The
curve of steepest ascent depends continuously on the endpoint XQ eΓ.
(e) Let U denote one of the functions U^x): C1(Ω±) -+ R, let Γ

ε
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denote the level surface of U at altitude 0 < ε < 1, and let ds denote
Euclidean differential surface area on Γ or Γ ε . Consider the function
y — π£(x): Γε —» Γ such that x lies on the curve of steepest ascent of
U beginning at y. Then y = πe(x) is continuous on Γ ε , and we have

ί φ(π£(x))\VU(x)\ds = ίφ(x)\VU(x)\ds
Jτε Jr

for any function φ which is in Lι(T, R) relative to the surface area.

Proof. See the appendix.

4.5. Notation for the Proof of Theorem 4.1 (a). We will devote the
remainder of this section to the proof of Theorem 4.1 (a). Actually,
we will prove the estimate (4.1) only in the " + " case, since the proof
in the " - " case is nearly identical. The much more elementary proof
of (4.2) will be omitted. Throughout the remainder of this section, Γ
denotes a specific convex minimizer of the functional /(Γ): Xc —• R.
For small 0 < ε< 1, we define fε = Te(f), Γε = {U+(Γ£ x) = e2},
and Γε = ΦJg(Γ) = {C/+(Γ; x) = λε}, where the constant λ > 0 is
chosen such that {t/+(f x) — λε/2} > Γ£ for all sufficiently small
ε > 0. Since we plan to explicitly prove (4.1) only in the " + " case,
we simplify the notation by omitting the superscript " + ". Thus, Γ+
becomes Γ*, and we use Ω ε , U£, Kj., Ω ε , Z7ε, K£, Ω ε , Ue, K£,
to denote the annular domains Ω + (Γ ε ), Ω + (Γ ε ), Ω + (Γ ε ), their re-
spective capacity potentials,_and their respective capacities. For small
ε > 0, and for each x e Γ, x£ denotes the point in Γε which is
joined to x by a curve of steepest ascent of U, and x ε denotes
the point in Γε which is joined to x£ by a curve of steepest ascent
of U£. The three variables x, x£, x£ are related to each other
in a bijective, continuous way (see Lemma 4.4). C£(x) denotes the
curve of steepest ascent of U joining x to x£, and C£(x) denotes
the curve of steepest ascent of U£ joining x£ to x£. On f, we
let f{x) = g(x) = |VC/(*)|, f£(x) = |VC/(^)|, ge(x)_= |VF ε (x ε ) | ,
Qε(x) = (|Vl/Jx)|/|Vί/(*e)|) = f(x)[fe(x), hε(x) = (\C£(x)\/ε), and
h(x) = (λ/\VU{x)\) - h(x), where \Ce(x)\ refers to the arc-length of
Cε(x), and where h(x) is defined in Theorem 3.2. Observe that the
functions / , g, h, h, Q£: Γ —• R are bounded and measurable (in
terms of the (m - 1)-dimensional area measure on Γ), whereas the
functions f£, g£, hε: Γ —> R are continuous.
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4.6. LEMMA. Let f solve Problem 2.2. Then

(4.5) (K - K£)/ε > £f(x)gε(x)hε(x) ds-λk- ζ(ε)

as ε —• 0 + .

Proof. We have

k-k£ = (κ-κε) + (κε - κe) + (κε - k£).

Now (1 - λε)U£ = U - λε in Ω ε , from which it follows that (1 -
λε)\VU£\ = \VU\ and (l-λε)Ke=K. Therefore K£-K = λkε+O(ε2)
as £ -> 0 + . A similar argument shows that K£ - Kε = O(ε2) as
ε —• 0 + . By applying Green's second identity to the functions Uε

and (Ue — Uε) in the domain Ω ε , one easily sees that
(4.6)

Kε-Kε= ί ξ-(Uε-Uε)ds= I Uε^-Uεds
JY* OV JΓ, OV

= γzγe J |Vt/|Fε(x) ds>j \VU\Vε(x) ds - εζ(ε).

But for xε G Γε (corresponding to x G Γ), we have

Ue(xe) = [_ \VUe(y)\\dy\ > |VF ε(x ε)| |C ε(x)|,
J

due to the monotonicity of |V£/ε| on the curve Ce(x) (see Lemma
2.7(b)). Also, the differential areas on the surfaces Γε and f are re-
lated by dsε = Qε(x) ds (see Lemma 4.4(e)). Therefore, (4.6) implies
that

K£-Kε> ! |V^(x)||VFε(xε)||Cε(x)| ds - εζ(ε)
JY

as ε —• 0 + , from which (4.5) follows.

4.7. LEMMA. Given εo> 0, let Yc(εo) denote the set of all convex
C2-surfaces Γ and that N£Q(D(Γ)) C D* := int(Γ*) and B£Q(X0) C

D(Γ) for some XQ G D*. Then the integral JΓ | Vί7(x) | 2 ds is uniformly
bounded over all Γ G Yc(εo)

Proof. Given a surface Γ G ¥^(^0) ( a n d a corresponding point
x0 with B£Q(X0) C Z)(Γ)), let Γδ = {x e Ω(Γ): J ( x , Γ) = ^} for
sufficiently small δ > 0. Also let the value r{δ) > 1 be mini-
mum subject to the requirement that r(δ)T > Γ^, where we define
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αΓ = {x0 + a(x - xo): x G Γ}. By the Poincare variational formula
for capacity, we have /Γ \VU(x)\2 ds = limit^_^0+[(^ - κ)/δ]. Also

Kό:=K(Γ09Γ)<K(r(δ)Γ9Γ)

= (r(δ))2-mK(Γ, (l/r(δ))Γ) = K(Γ, Γ) + O(δ)9

where (for this proof only) the notation K(γ, γ*) denotes the capacity
of an annular domain with boundary components γ and y*. The fact
that K(Γ, (l/r(δ))Γ*) = K(Γ, Γ*) + O(δ) follows from the Lipschitz
continuity of U near Γ*, which is uniform relative to variations in
Γ G Yc(^o) (See [2, §7] for an analogous argument.)

4.8. LEMMA. The integral Jψg2(x)ds = Jψ\VT7ε(xε)\2ds is uni-

formly bounded as ε —• 0+.

Proof. For small e > 0, the differential surface areas of the surfaces
Γε and Γε are related by the equation

|VF ε (x ε ) | dse = α(β, xε)\VUε(xε)\ dsε,

where a(ε,x€) = [ί/cos(θ(ε9 xε))] and θ(ε,xε) denotes the angle
between the vectors Vl7ε(jcε) and VΪJ{xε). Since Γ ε , Γ ε -»- f as
ε —• 0+ (in the polar coordinate maximum norm relative to a point
in the interior complement of f ) , we conclude from Lemma 3.4 that
θ(ε, xε) —> 0 and α(ε, xε) -+ 1, both uniformly over x G Γ, as
ε —> 0 + . Therefore,

(4.7)

where Mε = sup{α(ε, y): y G Γ ε } . Both Mε and the integral

jf
are bounded as ε -> 0 + , as follows from Lemmas 3.4 and 4.7. There-
fore, the first integral in (4.7) is uniformly bounded as ε —> 0 + , and
the assertion follows from the fact that the differential areas on the
surfaces Γε and Γ are related by dsε = Qε(x)ds (see Lemma 4.4(e)),
where (l/Qε(x)) is uniformly bounded from above as ε -• 0+ and
x varies in Γ.
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4.9. LEMMA. Let f e L\T, R+), am/ let E denote a family of
positive I?-functions φ(x): Γ —• E + swcA ίΛaί | | / - φ\\ is arbitrarily
small for a suitable choice of φ G E (where || || denotes the L2-
norm on Γ). Let ge(x), 0 < ε < εo, denote a family of functions
in L2(Γ, R) 5wc/z ίAaί ||g ε | | w uniformly bounded as ε —> 0+ <zm/
liminf ε ^ 0 + jf </>& rfs > 0 /or eacA </> G £ . Γfow liminf ε _ 0 + jf fgε ds

0

Jψfgeds = ίγφgεds + J~(/ - φ)g£ds > Jψφgeds -
Wf-Φ\\\\ge\\.

4.10. LEMMA. For ε —• 0 + , w

(4.8) j~Aχ)h{χ)[g(χ) - &(*)] Λ < C(β).

Proof. Let *S denote a simply connected (m - 1)-dimensional sub-
surface of Γ whose boundary relative to Γ is a smooth, closed curve.
Given small ε > 0, let Se denote the (m - 1)-dimensional surface of
points x G Ω such that U(x) = Aε and such that x is joined to S
by a curve of steepest ascent of U. For small <$ > ε, let ωβ>,j de-
note the set of all points x G Ω such that λε < U(x) < λδ and such
that x is joined to Sε by a curve of steepest ascent of Vε. Also let
Ss9e = (dωδi£)f]Γs and σ ^ = (dωδyε)n{λε < U < λδ}. We have
Uε(x) < ζ(d(x, Γe)) in Ω ε , uniformly for small ε > 0, as follows
from a domain comparison argument using the convexity of Γ ε . Thus
\Uε — U\< C(fi) on 9 ( Ω n Ω ε ) , and it follows by the maximum princi-
ple that \Uε — U\< ζ(ε) uniformly in Ω n Ω ε as ε —> 0 + . Therefore,
the standard estimate for derivatives of harmonic functions shows that
|V(£/ε — U)\ < ζo(ε)/δ on S^ j β, uniformly over small ε, δ > 0 with
δ > 2ε. Here, £o(ε) denotes a specific function such that ζo{ε) —• 0
as ε —• 0+ (we assume w.l.o.g. that (ζo(ε)/ε) —• oo as ε -> 0+). We
choose J = [Co(e)]1/2 > ε, so that Js \V(Uε - U)\ ds < [ζo(ε)]1'2 as

δ, ε

ε —• 0 + . Since Vί7 is bounded and the vector VC/ε is always tangent
to the surface σδε/\X follows by applying the divergence theorem to
V(Z7 ε- U) in ωδ,ε that

(4.9) J (|VFε | - \VU\)ds > j ^(Uε -U)ds> -C(β)

as ε -+ 0 + . Since the differential surface areas on the surfaces Γε

and Γ are related by dsε = Qε{x)ds (see Lemma 4.4(e)), it follows
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from (4.9) that js(g - gεQ£) ds < ζ(ε) as ε -+ 0 + . Therefore

f(g-gε)ds = I gε(Qe-l)ds+ ί(g-gsQε)ds
Js Js Js

α x 1/2 / Λ x 1/2

gi(x) ds) ^js(Qε - I)2 ds) + ζ(ε) = ζ(ε),
where we have used the Schwartz inequality, Lemma 4.8, and the fact
that the functions Qε(x): Γ —> R are uniformly bounded independent
of small ε > 0 and converge pointwise to unity as ε —• 0+ (due to
Theorem 2.5(b)). The assertion now follows by applying Lemma 4.9,
since f{x)h{x): Γ —> R+ is a bounded, measurable function which
can bejφproximated in the ZΛnorm by piecewise constant functions
φ(x): Γ —> R + , chosen such that each domain of constant φ is a
subsurface S with the properties assumed above.

4.11. LEMMA. We have that Jψ(h€ - Έ)2ds -• 0 αy ε -> 0+, //i

β(x) -> Λ(x) pointwise on f as ε -> 0 + .

Proof. The functions Λ(x), hε(x): Γ —> R are measurable and uni-
formly bounded independent of small ε > 0. Therfore, it suffices
to prove the pointwise convergence. For fixed x e Γ, it is easily
seen using Lemma 3.4 that \v(y) - v{x)\ < ζ(ε) uniformly over all
y e Cε(x) and \vε(y) - v{x)\ < ζ(ε) uniformly over all y e Cε(x),
where u(y) = VU(y)/\VU(y)\ and Vε{y) = VFβ(y)/|VFβ(y)|. It
follows that (xε - x). v(x) = l(λ/\VU(x)\) + ζ(ε)]ε (using Theorem
2.5(b)), (xε - x) u(x) = (h(x) + ζ(e))e (using Theorem 3.2), and
(xs - Xe) Hx) = |Cβ(x)|(l + C(β)) = (hε(x) + C(β))β, aU as ε -+ 0 + .
The assertion follows from the definition: h(x) = (A/|VC/(JC)|) - h{x)
by comparing these equations.

4.12. Proof of (4 Λ) in the " + " case. By Lemma 4.6, we have

(£ - Kε)/ε > Lf(x)gε(x)hε(x) ds-λK- ζ(ε)
Jf

as ε —• 0 + . Also, we have

β - ίA) ^ = Lfh{gε -g)ds+ ίfgε(hε - h) ds
Jf JT

r - ft , \1/2 / r - - ^ \ 1 / 2

>Jΐfh(ge-g)ds-[jf(fgε)
2ds) [jjhε - hf ds)
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where we have used Lemmas 4.8, 4.10, and 4.11. Therefore,

(K - Kε)/ε > ίf(x)g(x)h(x) ds-λK- ζ(ε)
Jf

= j [ IVU(x)\2(h(x) - (λ/\VU(x)\)) ds - ζ(ε)

= -JjVU(x)\2h(x)ds-ζ(ε),

completing the proof of (4.1).

4.13. REMARK. The estimate (4.3) does not apply only to mini-
mizers. It applies to any surface T e Xc having the properties as-
serted in Theorem 2.5(b). It is hoped that it could be extended in
a meaningfull way to all Γ G Xc (see [3, Theorem 3]). This could
provide the basis for a successive approximation scheme for solutions
of Problem 2.1 (as well as the generalizations in §§6, 7) which is valid
in the absence of uniqueness (see [3, §5]).

5. Regularity of the free boundary.

5.1. THEOREM. Let f e Xc be a solution of Problem 2.2 such that
A2(x) = B2(x) + a2(x) almost everywhere on Γ (in terms of (m -
lydimensional surface measure), where A(x) = |VC/~| and B(x) =
|V£/+|. Then in fact we have A2(x) = B2(x)^ + a2(x) at every point
x eΓ. Moreover, the functions A(x), B(x): f —• E + are continuous.

5.2. LEMMA. Let Γ solve Problem 2.2. Then the function
A(x): Γ —• R+ is upper semicontinuous (A(x0) > l imsup x _ x A(x))

and the function B(x): f —> R+ is lower semicontinuous (B(XQ) <

Proof. We prove the second assertion. Let γ denote the unique
curveof steepest ascent of the function C/+ beginning at the point
Xo G Γ. Then jV U+\ is continuous and decreasing with increasing U+

on γ, and |VC/+(x)| —• B(x0) as x —• Xo in γ. Given ε > 0, choose
xε G γ such that |Vt/+(x ε)| > B(x0) - (ε/2). Then choose δ > 0
such that |V£/+| >J5(x0) - β in the ball Bδ(xε). Let S denote the
set of all points in Γ which are joined to Bδ(xε) by curves of steepest
ascent of U+. Then B(x) > B(XQ) - ε for all x G S. Moreover, S
contains a neighborhood of XQ relative to f, as follows from Lemma
4.4(d). A similar argument applies to the first assertion. We remark
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that the preceding argument has been previously used in [4, §5, part
2], [8, §5.7], and [21, Proposition 2.3].

5.3^ DEFINITION. Given a solution Γ of Problem 2.2 and a point
XQ G Γ, we define the blow-up functions

U±(x) := 2*C/±(xo + 2-»(x - x0)), n e N,

in the blow-up domains Ω j := {xo + 2Π(Λ: — Xo): x £ Ω1^}, with
common boundary Γn := {x0 + 2n(x - Λ:O): X € f } (see [16, §4]).
Observe that the differentiability of the functions C/±(x) at the point
XQ G f (see Definition 2.4) is equivalent to the property that

(5.1) U±(x) = ±λ±v(x0) (x - xo) + 2no{2~n\x - xo\)

relative to the set C1(Ω±).

5.4. LEMMA. Assume at a point xo Ξ Γ ίΛαί iVt/^l = λ^2 for
values λ± > 0. 7%^Λ for any given value η > 0, w

(5.2) ±2" ί (\VU±\2-(λ±)2)ds = ± ί

for all sufficiently large n eN, where γn := {x G Γ: |x - Xol < 2~n},
C« = { X G Γ W : |JC — jcol < 1}, and where U^ and Γn were defined in
§5.3.

Proof. We will prove the assertion in the " + " case in detail and
then remark briefly on the proof of the " - " case. The proof is ex-
pressed in the blow-up notation of Definition 5.3. Since the entire
proof concerns a fixed solution surface Γ of Problem 2.2, and is re-
stricted to " + " case, we simplify thejiotation by deleting the tilde and
the plus sign, so that ΪJ+(x), Ω+, Γn , and λ+ become Un(x), Ωn ,
Γn, and λ. We also choose Cartesian coordinates such that xo = 0,
i/(0) = ( 0 , . . . , 0 , 1), and x = (y, z) = (yx, . . . , ym_x, z). Let
Q(y) denote a convex, radially symmetric, C2-function of y such
that (2(0) = -2/1, VyQ(0) = 0, and Q(y) = 0 for \y\ = 1. Our
proof is based on Green's second identity, in the form

(5.3) / {ψnΔφn ~ ΦnΔψn) d
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where we define φn := |V£/Π|2 - λ2, ψn'= (Un + Q), and

Ω ^ M : = { x G Ω n : ( / Λ x 5 , z < ε , Un + Q<0}

for all small δ > 0, ε > 0, and large n e N. For (δ/ε) suffi-
ciently small, a partition of 5 Ω ^ ε w into disjoint surfaces is given by
d Ω ^ ε > w = Γ ^ π u L ε , n u Σ J > ε j Π , where Γ ^ = {[/„ = <J, Un + Q<0},
L ε , n = {z = ε, Un+Q<0},andΣδfε,n = {Un>δ, z < ε , Un+Q =
0}. Now Δ</>rt > 0 and ψn < 0 in Ω j g ^ , whence ψnAφn < 0 in
Ωδ,ε,n Also, sup{|</>w(x)Δ^w|: x e Ω j > e n } < ¥ , uniformly for all
small δ, ε > 0 and large n e N, because Aψn = AQ and because
0n •= (|V[/n|2 -λ2) is uniformly bounded by Theorem 2.5(b) and the
identity: VUn{x) = VU(xo + 2-n(x-xo)) (where U= U+). Finally,
we have |Ωa> β > r t | < O(ε) + ζ(2~n) (independent of δ > 0) because
f is a uniformly C1-surface, where | | denotes Euclidean volume.
Thus

(5.4) / {ΨnAφn - φnAψn) dx < O(ε) + ζ{2~n)

as δ, ε -+ 0+ and n -> oc. Also we have

(5.5)

where for each ε > 0, ζε(t) denotes a function such that ζe(t) -> 0
as t —• 0 + . This is because max{|^n | , \Vψn\: x e LejH} is uniformly
bounded for fixed ε > 0 as n —• oo, while max{|0w(x)|, \dφn(x)/du\:
x G L8fn} —• 0 as H —> oo for fixed ε > 0, as is easily deduced from
(5.1) and maximum principles and a standard derivative estimate. We
also have

r / d d \ J _ f 9

kSen\ "dv n ndv n ) hδ g n

 ndv

as δ, ε —• 0 + , independent of n e N, because ψn = 0 on Σ^ ε w , and
because both ^ π and V^rt remain uniformly bounded in a uniform
neighborhood of Tn as n -* oo, while the surface area of Σ ^ ε w

is bounded by O(ε) (independent of δ > 0 and large n e N) as
ε -• 0 + . By substituting (5.4), (5.5), and (5.6) into (5.3), one obtains

(φnVψn - ψnVφn) -Vnds< O(β) + ζε(2'n) ,
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(with vn = VUn/\VUn\ on Γ 6 j Π ) . This is equivalent (using the defi-
nitions of φn and ψn) to

(5.7) ^

(\VUn\
2 - λ2)(\VUn\ + (dQ(y)/dvn)) ds

\S + Q\\VUn\\(d\VUn\/dun)\ ds + O(ε) + ζε(2~n).

Now \δ + Q\ < M and C{ < \VUn\ < C2 on Tδ,n , both uniformly as
n —> oo and 5, ε —• 0 + . Also, it follows from Lemma 3.4 that

(5.8) max{K(x) - i/(0)| : X G Γ M } < C ( 2 " W ) + ζ(δ)

as n -> oo and 5 -> 0 + . Therefore max{|VQ(y)-i/M(x)| : X G Γ J ) W } <

C(2~Λ)+ζ(J) as « -> oo and £ —• 0 + 5 since Vβ(y) has no component
in the u(0) direction. Therefore, (5.7) implies

(5.9) Jτ
δn Jτδn

<C ( {\d2Unldv2\l\VUn\)ds
Jτδn

For sufficiently large n G N and sufficiently small δ > 0, Γ^ ? w is the
graph of a smooth function z = Γ^ y „ (y): Crj ? w —> R. In terms of this
representation, we have

where both sides represent (m - 1) times the mean curvature of
the surface T^n at x = (y, z) = (y, Γ J > Λ ( J ; ) ) e Γ ^ Λ . By substi-
tuting (5.10) into the second integral of (5.9), estimating dsjdy =
(1 + (VΓj^^)! 2 ) 1 / 2 by a constant, and applying the divergence theo-
rem, one obtains

(5.11) / (\VUn\
2-λ2)ds<C ί \VΓδjn(y)\ds

where the integrand of the second integral is uniformly bounded by
ζ(2~n) + ζ(δ), due to (5.8), and where ds in the second integral
refers to (m - 2)-dimensional surface area. In the limit as δ —> 0 + ,
we obtain

I
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where Cn = Γn n {x = (y, z): \y\ < 1} . This implies the assertion in
the " + " case (despite the slightly different definition of Cn).

Finally, for the corresponding proof in^the " - " case, one again
simplifies the notation so that U~{x), Ω~, Tn, and λ~ become
Un(x), Ωn , Γn , and λ. The proof again starts with Green's second
identity (5.3), where this time φn = ln{\VUn\/λ) (notice that Aφn < 0
by Lemma 2.7(d)), ψn = Un + Q (here Q = Q(y) has the same
properties as before) and Ω^ ε „ = {x e Ωw : Un(x) > δ, z > - ε ,
Un(x) + Qί^) > 0} . Continuing as in the " + " case, one can show (in
the " - " case) that

f ln(\VUn\/λ)ds> -M ί (\d2Un/du2\/\VUn\)ds
rδ n Jτδ n

-ζ(δ)-O(e)-ζ£(2-η,

where Tδ^n = {x e Ω«: Un{x) = δ, Un(x) + Q{y) > 0}. Then the
assertion follows by the steps given above.

5.5. Proof of Theorem 5.1. Let f solve Problem 2.2. Then A2{x) =
B2(x)-{-a2(x) almost everywhere on f, by Theorem 4.1(c). Since the
function A(x): f —• R+ is upper semicontinuous and the function
B(x): Γ —• R+ is lower semicontinuous (Lemma 5.2), it immediately
follows that A2(x) > B2(x) + a2(x) at every point X G Γ . Moreover,
for each point XQ E f and η > 0, it follows from Theorem 4.1(c),
Lemma 5.4, and the continuity of the function a(x) that

2{x0) - B2{xύ)\yn\ <2n ί (A2(x) - B2(x)) ds + 2η

= 2n f a2{x)ds + 2

γn

for all sufficiently large n e N, where γn := {x e Γ: \x - xo\ < 2~n}
and \yn\ refers to Euclidean (m - l)-area of γn. Thus A2(XQ) -
B2{x$) < a2(xo), and we conclude that A2(x) = B2(x)+a2(x) at every
point x e Γ^ At this point, Lemma 5.2 implies that the functions
A(x), B{x): Γ —• R+ are both continuous.

6. A modified multi-layer problem in the convex case.

6.1. Problem. In R m , m > 2, let be given a bounded, convex,
C1-domain Z>* and a convex domain P c f l * . For a fixed integer
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n > 0, let cii(x): C1(Z>*) - > R , / = 0 , l , 2 , . . . , n , denote n+1 func-
tions with the following properties: The function a$(x) is Lipschitz-
continuous in d(D*), vanishes in D*\P, and is strictly positive and
concave in P (thus, the set {(JC , z) e P x R: 0 < z < αo(x)} is con-
vex in R m + 1 ) . The remaining functions ai(x), i = 1, ... , n, are
strictly-positive and continuous in Cl(D*), and are such that the re-
lated functions bi(x) := (l/αz (x)), / = 1, ... , n, are all concave in
D* (thus, the sets {(x , Z ) E D * X R : 0 < Z < */(*)}> * = 1, ... , /ι,
are convex in R m + 1 ) . We seek a nested family of convex C 1 -domains
DQ, A , ... , Dn (with boundaries Γ, = dD{) such that Cl(D0) c P
and C1(Z)|) c A+i f° r i = 0, ... , n (where we set Dn+ι = D*), and
also such that

(6.1) \VUx\ = aQ{x) onΓ 0 ,

(6.2) IVC//I2 = | V C 7 / + 1 | 2 + α?(A:) o n Γ , - , ί = l , . . . , / i ,

where U(x) solves the boundary value problem
(6.3)
AU = 0 inZ)*\(Γ0U uΓ π ) , U(Γi) = i for i = 0, 1 Λ + 1,

and where, for each / = 1, 2, ... , n + 1, t// denotes the restriction
of C/ to the closure of the annular domain Ω; := Z)|\Cl(Z), _i) with
boundary <9Ω; = Γ, U Γz_!.

6.2. Problem. In the context of Problem 6.1, we seek to minimize
the functional I(v): Xc —> R defined by

(6.4) /(t;) := J (\W\2 + α0

2(x)H(v(x)) + ̂  α?WJ5T(i - t;(x))) dx,

where 7f(ί) denotes the Heaviside function (H(t) = 0 for t < 0,
H(t) = I for / > 0) and Xc denotes the set of all functions υ G
L^Clί/)*)) such that Vv e L2(D*), t; = n + 1 on 92)*, and, up to
a set of Lebesgue measure 0, the set {v(x) < t} is convex for each
ίGM.

6.3. THEOREM. Assume in Problem 6.2 ίΛαί ίAere exϋte α
βo > 0 and a function υ0 e Xc ŵcΛ ίΛα̂  |{VQ(JC) < 0}| > εo (where
I I denotes Euclidean volume) and such that I(υ) > I(VQ) for any
υ eXc such that \{v(x) < 0}| < e0. Then: (a) Problem 6.2 has at
least one continuous solution U eXc such that \{U(x) < 0}| > εo
(b) Given a continuous solution U e Xc of Problem 6.2 such that
\{U(x) < 0}| > ε0, let Do = interior{C7 < 0} and A = {U(x) < i}
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for i = 1, . . . , n + 1. Then 2) := (A) , A > 5 Dn) is a classical

solution of Problem 6.1.

Proof. We remark that a proof of part (a) has been given by Lau-
rence and Stredulinsky [21] (for the case where the functions at(x)
are all constant). Turning to the proof of part (b), we let U be a
continuous solution of Problem 6.2 such that \{U(x) < 0}| > 0, and
let 3) = (DQ, D\, ... , Dn) be defined as in Theorem 6.3. Then the
surface Γo := dD0 c D\ is a minimizer of the functional J(Γ) :=
K(Γ) + ||Ω(Γ)||o in the family of all convex, closed (m - l)-surfaces
Γ c ΰ i , where D\ is fixed and convex, where K(Γ) denotes the ca-
pacity of the annular domain Ω(Γ) bounded by Γ U Γ{, and where
||Λf||o = $Mal(x)dx for any measureable set M c C\(D*). There-
fore Γ Q C P C D * , since otherwise it is easily seen that J(Γoδ) <
J(ΓQ) for sufficiently small δ > 0, where we define Do δ = {x e
PnDQ: dist(x, dP) > δ} and Γ o ^ = dDOyδ. It now follows from
the results in [3], [16, §5], or [8, §§4, 5] that the condition (6.1) is
satisfied classically on ΓQ . For / = 1, 2, . . . , n, the surface Γz is a
solution of Problem 2.2 in the case where Γ~ = Γ/_i, Γ + = Γ/+i, and
a(x) = a.i(x). Since Γ/ΠΓ" = 0 , we conclude from Theorem 2.6 (see
also Theorems 4.1 and 5.1) that Γz is a classical solution of Problem
2.1 in the new notation. Therefore Γ/ satisfies the joining condition
(6.2) in the classical sense for each / = 1, . . . , n, completing the
proof of Theorem 6.3(b).

7. The multi-layer problem in the convex case.

7.1. Problem. In R m , m > 2, let an annular domain Ω of the
form Ω = D+\Cl(D~) be given, where D± are fixed, bounded, con-
vex, nested domains. We assume that dD~ is a C2 surface and dD+
is a C 1 surface. Let be given n e N and the strictly positive, con-
tinuous functions at(x): C1(Z>+) —> R, / = 1, 2, . . . , ft, such that
the related functions bi(x) := (l/ai(x)) are all concave in D + . We
seek a nested family of convex C1-domains Dγ, D2, . . . , Dn (with
boundaries Γ; = dDt) such that C1(A) C A+i for / = 1, . . . ,« ,
(where we set Do = D~ and Z>n+1 = D+) and such that

(7.1) \VUi\2 = \VUM\2 + aj(x) onΓ,

for / = 1, ... , n, where U(x) solves the boundary value problem
(7.2)
AU = 0 inΩ\(ΓiU uΓ n ) , C/(Γf) = i for i = 0, 1, ... , n + 1,
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and where, for each /, ί/, denotes the restriction of U to the closure
of the annular domain Ωz := Z),-\Cl(-D,-i) with boundary <9ΩZ =
Γ / U Γ M .

7.2. THEOREM. Problem 7.1 has at least one solution D = {D\,
Dl9...,Dn).

7.3. LEMMA. Given XQ e Rm and a = (αo, α i , . . . , an, αn+i)
mίΛ 0 < αo < OL\ < ••• < αw < α«+i, /eί E/(JΓO, <*; *) denote the
solution of the boundary value problem (7.2) m the case where Di =
{\x - XQ\ < oίi) for i = 0, 1, ... , n,n + 1. If m = 2 and at =
Cexp(/2) /6>r / = 0, . . . , n + 1, where C > 0, ί/zetf E/(xo, α; x)
satisfies the joining conditions (7.1) m ί/ẑ  c α ^ where the functions
aj(x) are replaced by the constants λj := 8//C2(4/2 - l)exρ(2/2),
/ = 1, . . . , n. Alternately, assume that m > 3 αnfl?

α 2 " w = C[exp(/7 + 2) - exp(ι)] /or / = 0 ? . . . , n + 1,

where C > 0. ΓAerc C/(JCO > α ^) satisfies (7.1) //i ίΛ^ c α ^ vv/ẑ r̂  ί/ẑ
functions af(x), i = 1, . . . , n, are replaced by the constants {where
έ? = exp(l)):

λ] := (m - 2)2[(e

. [exp(n + 2) -

Proof sketch For m = 2, we have

[/;(*) = (i - 1) + Πnίr/α^O/lnίαz/α^!)]

in Ω/, where r = |x - x o | F° Γ m ^ 3,

Ufa) = (i - 1) + [(r2-™ - α 2rΓ)/(^"m - a*!?)]

in Ω, . Using these formulas, the constants λ] can be calculated
explicitly.

7.4. LEMMA, (a) In the context of Problem 7.1, there exist con-
stants δ, e > 0 WJYA the following property: Let DQ denote any convex
domain in Rm such that Do c NS(D~) and D~ c Nδ(D0), and let
D = (D\, Z>2, . . . , Dn) denote any classical solution of Problem 7.1 in
the case where Do is replaced by Do. Then D\ D Ne(D0).

(b) For any classical solution D = (D\, D2, . . . , Dn) of Problem
7.1, we have 0 < δx < δ2 < < δn+x, where δt = dist(Γ/_i, Γ, ).

Proof {part (a)). We apply Lemma 7.3 to construct barriers for so-
lutions of Problem 7.1. By assumption, if p > 0 is sufficiently small
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(i.e. 0 < p < po) 9 then each point x eΓ~ is on the boundary of a ball
Bp(Xp), with center xp and radius p, such that Bp(xp) c D~ . For
fixed ra > 2 and for fixed, sufficiently small η > 0, one can choose the
constant C = C(p) in Lemma 7.3 such that 0 < αo = &o(p) < (1-*/)/>
and OL\ = OL\(P) > (1 + */)/>. One can then choose p > 0 so small that
αw+i(/>) < dist(Γ", Γ+) and λ] = Xf(p) > aj(x) throughout C1(Z>+)
for each / = 1, . . . , n. Now, let δ = ε = /?τ//2 in the assertion.
Then for each x e Γ~, it follows from [11, §2], that the function
U(xp, oc(p) x) is an upper barrier for the solution U(x) of (7.2)
corresponding to i) = (D{, 2)2, . . . , Dn), so that B^η)p(xp) c 3 i .
The assertion follows from this.

Proof {Part (b)). Choose / e {1, . . . ,«} and collinear points x e
Γ/_i, y G Γ;, z G Γ/+i such that \y - z\ = ^/+i. One easily
shows using the maximum principle, the convexity of the domains
JDZ_! , Di, Di+x, and the joining condition (7.1) that

δM > (l/|Vϋi+ 1(y)|) > (l/IVt/^JI) > \x-y\>δi.

7.5. Proof of Theorem 7.2. For each A; e N, let the function
aOik(x): Rm -> R be defined by

( 7 3) «o,it W = max{0, k - k2 . dist(x, /)")} .

Observe that for each fceN, the function ao^(x) is concave inside
the (1//^-neighborhood of D~ (designated by i\) and vanishes in
Rm\Pk. For each sufficiently large k e N, let Uk(x): Cl(2)+) -> R
and 2)fc := {D$k, Dχk, ... , Dnk) denote corresponding solutions
of Problems 6.2 and 6.1, respectively, in the case where D* = D+,
P = Pk, and the function OQ(X) : C1(Z>+) —> R is replaced by Λo,fc(jc)
These solutions exist for all sufficiently large fceN (i.e. for k > k$)
by Theorem 6.3. Moreover, Ik(Uk) > k2\D~\D0k\ for each k > /CQ ,
where | | denotes Euclidean volume and the functional Ik: Xc —• R
is defined by (6.4) (with ao(x) replaced by aOjk(x)). Now there
is a function φ e Xc (in Problem 6.2) such that Ik(φ) is uniformly
bounded as k —• oo. Thus Ik(Uk) remains bounded as /: —> oo (since
h(Uk) < Ik(Φ)), implying that |2)"\2)o,^l —• 0 as A: —• oo. One eas-
ily concludes (using the convexity of Z>o,& and the smoothness of
Γ") that for any ε > 0, D$k contains the ε-interior of D~ for all
sufficiently large k e N. We also have D$k c Pk for k > kg by
Theorem 6.3 (and the definition of a solution of Problem 6.1). There-
fore Γo ?£ —> Γ~~ as A: —> oo (in the polar coordinate maximum norm
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relative to a point XQ e D~), where Γo k = dDQk . By Lemma 7.4,
there exists a constant δo > 0 so small that dist(Γ; >fc, Γ ί + 1 ^ ) > <JQ>

uniformly for / = 0, 1, . . . , n and for all sufficiently large k (where
Γfl+i , k — Γ + ) . Moreover, the convexity of the surfaces Γ; k (for / =
1, . . . , n and k > k0) implies the equicontinuity of their polar coordi-
nate representations relative to a point Xo G D~ (see [3, §2] for a sim-
ilar argument). By applying the theorem of Ascoli-Arzela, and passing
to a subsequence (still indexed by k) if necessary, we conclude that
there exists a nested family of convex domains Z>i, D2, . . . , Dn (with
boundaries Γ/ = dD{) such that C1(A) C A+i for / = 0, 1, . . . , n ,
(where we set Do = D~ and Z^+i = D+) and such that Γ,-^ —• Γ,
as k —• oc (in the maximum norm in polar coordinates) for each
/ = 0, . . . , n . Now for each / = 1, . . . , n , and for k > k0, Γ/ ^ is a
solution of Problem 2.2 in the case where Γ~ = Γ,^ ^ , Γ + = Γ / + 1 k ,
and a(x) = cii(x). However, it is well known that the capacity of
an annular domain between nested convex surfaces depends continu-
ously on these surfaces as they undergo convex perturbations (while
remaining uniformly separated). By using this, and the convergence
of the surfaces Γz ^ to Γ, as k —• oc, one easily concludes that for
each / = 1, . . . , n , Γz is a solution of Problem 2.2 in the case where
Γ~ = Γ/_!, Γ+ = Γ/+i, and a(x) = a/(x). Therefore, Γf solves Prob-
lem 2.1 in the same case, due to Theorem 2.6 (see also Theorems 4.1
and 5.1). Therefore, D := (D\, D2, . . . , Dn) is a solution of Problem
7.1.

7.6. REMARK. Some of the ideas in the preceding proof suffice to
extend the author's counterexample in [10] to Problem 1.2. Assume
for m = 2, n = 1, λ\{x) = -a2 < 0, and for a particular choice of
convex nested domains D± , that Problem 1.1 does not have a convex
classical solution D\ (we know this situation occurs due to [10]). For
large k e N, the functional Ik(Φ)' Xc —̂  R has a convex minimizer
Ufc E Xc, where

/
D*

the function ao^(x) is defined by (7.3), and Xc is as defined in
Problem 6.2, with n = 1 and D* = D+. We assume that Dk =
(Dk0,Dk{) solves Problem 1.2 with m — 2, n = 1, CIQ(X) =
00,*:(•*)> ^ l W = - α 2 , and the same domain D* = Z) + . (Here
Z)fc,o = int{i7fc < 0} and D ^ = {t/^ < 1}.) After passing to a
sub-sequence (still indexed by k), one concludes by arguments given



MULTILAYER FLUID PROBLEMS 227

in §7.5 that Dkι -• Dx as k -• oc (in the sense that 9D fc>i -> dDx

in a suitable polar coordinate maximum norm), where D\ is a convex
solution of Problem 1.1 in the case described above. This contradic-
tion shows that even under convex conditions, the minimizer of the
functional IidΦ)- Xc —• M is not always a (convex) classical solution
of the corresponding formulation of Problem 1.2.

7.7. REMARKS, (a) Hopefully, Theorems 6.3 and 7.2 will general-
ize to cases where the Laplacian is replaced by more general elliptic op-
erators in divergence form (such as the /7-Laplacian) for which results
analogous to Lemma 2.7(a) are true, (b) If, in Problem 7.1, the regions
D± and the functions af(x), / = 1, 2 , . . . , « , are all symmetric rela-
tive to each member of a given family of (m — 1)-dimensional planes,
then there exists a solution D = (D\, D2, . . . , Dn) such that all the
(convex) domains £>; have the same symmetry properties. (Observe
that the operators Tε preserve these symmetries.)

7.8. REMARKS, (a) Consider the modified version of Problem 2.1
in which a{x) = α (a constant), and the given domains D± are no
longer convex, but are assumed to be directionally convex relative
to a given direction z/0 It is natural to conjecture that there exists a
solution D of (2.1) such that D is also directionally convex relative to
UQ . In fact this conjecture is false, as can be seen by slightly modifying
the author's counterexample given in [7, Example 2 and Figure 2]. (b)
Consider the Bernoulli free-boundary problem, which is Problem 2.1
in the limiting case where D+ = Rm and £/+ = 0 (we set D* = D " ,
Ω = Ω " , U=U~, K = K~). Assume that a(x) = 1 and that D* is
directionally convex relative to uo. Let Γ denote a minimizer of the
functional /(Γ) = K(Γ) + ||Ω(Γ)|| subject to the requirement that the
interior complement of Γ be directionally convex relative to u0. We
conjecture that |Vt7| = 1 on Γ. Observe that the operator method
(which was applied to the convex Bernoulli free-boundary problem in
[3]? [4], [8]) is not helpful in this problem because the operators do
not preserve direction convexity (due to [7, Example 2]). In [6], the
author used the method of flat places to prove our conjecture in the
case where m = 2 and the minimizer is sufficiently regular (in [6,
Figure 2], the regions labeled Ω + and Ω'_ should be interchanged).
We hope this proof will generalize to arbitrary space dimensions.

Appendix: The Proof of Lemma 4.4 We restrict Jhe proof of the
" + " case and use U, Ω and Γ to denote Ό+, Ω+ and Γ. Part
(b) follows easily from Theorem 2.5(b), Lemma 2.7(b) and Lemma
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3.4. Concerning Part (a), let (xn) denote a sequence of points in
Ω such that xn —• xo £ Γ as n —• oo. For each n, let γn denote
the maximal arc of steepest ascent of U through xn, parametrized
by a function pn(t): [0, 1] -> Mm such that U(pn{ή) = ί. Then
Ai(ίπ) = ** and p'n{t) = K(pΛ(ί)) for 0 < ί < 1, where tn = C/(*Λ)
and K(JC) = VU(x)/\VU(x)\2. Since ^ ( ί ) | < (1/Ci) for 0 < t < 1
(by Theorem 2.5(b)), we conclude by passing to a subsequence, again
indexed by n e N, (and using the Theorem of Ascoli-Arzela) that
Pn{t) —• /?(£) uniformly in [0, 1], where the function p{t): [0, 1] ->
Rm is Lipschitz-continuous. Clearly U{p(t)) = lim^oo U(pn(ή) = t
for 0 < ί < 1. It follows from pn{t) - pn{s) = // V(pn(τ))dτ that
p(ή-p(s) = Jj V(p(τ)) dτ for all 0 < s, ί < 1, so that /?'(*) = K(p(ί))
for 0 < ί < 1. Also |/?(0) - xo\ < \p(0) - p{tn)\ + \p{tn) - XQ\ ̂  0
as « —y oo. Therefore, ^( ί ) : [0, 1] —> Rm parametrizes a curve y of
steepest ascent of U beginning at XQ . Turning the proof of Part (c),
let q{t): [0, 1] —• Rm denote the parametrization of a second curve of
steepest ascent of U beginning at Xo (we assume that U(q(t)) = t).
Observe that V(p(ή) -• V(x0) as ί -*• 0 + , due to Part (b). It follows
that p'(t) = V(XQ) + ζ{t) and p(t) = x0 + V(xo)t + tζ(t), both as
t -* 0 + . Since ^(ί) = JC0 + K(jco)ί + tζ{t) as ί -^ 0+ by the same
argument, we conclude that δ{t) := \p{t) - q{t)\ = tζ(t) as ί -^ 0 + .
For 0 < / < 1, we let yt denote the shortest curve in {U(x) = /}
joining p(t) to q{t), observing that \γt\ < δ(t)(\ + ζ(ή) as t -• 0 + ,
where | ^ | refers to arc length. For any point x Eγt and unit vector
τ ± VU{x), we have dV(x)/dτ = (V - 2d/di/)(dU(x)/dτ), where
i/ = VC/(jc)/|Vi7(jc)|. Since A(dU/dτ) = 0 in Ω (for fixed τ) and
\ΘU/dτ\ < ζ(t) in the ball Bμί(x) (for suitable 0 < μ < 1) by Lemma
3.4, we conclude that \dV(x)/dτ\ < ζ{ή/t for any xeγt. Therefore,
δ'ijt) < \P'{t)-q'{t)\ = \V(p(t))-V{q(t))\ < (ζ(ή/t)δ(t) for 0 < t < 1,
which integrates to give \n(δ(t)/δ(a)) < ζ(t)\n(t/a) for 0 < a < ί <
1. By combining results, we conclude that

δ(t) < {ί/

for 0 < a < t < 1. Choose t0 > 0 sufficiently small, so that ζ(t) < 1
for 0 < t < to in the above inequality. By letting a —• 0+ for
each fixed 0 < t < to, we conclude that δ(t) = 0 for 0 < t < to
(thus δ(t) = 0 for 0 < t < 1, since p(t) and ήf(ί) satisfy the same
ordinary differential equation: p'{t) = V(p(t)) for 0 < t < 1). Con-
cerning Part (d), if the assertion is false, then there exists a value
βo > 0 and a sequence of points (xn) in Γ such that xn -* XQ a s
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n -> oc, but \pn(tn) - p{tn)\ > ε0 for all n eN, where 0 < tn < 1
and where pn(t): [0, 1] —• Rm is the parametrization of the curve of
steepest ascent of U beginning at xn (such that U(jpn(t)) = ί) By
passing to a subsequence (again indexed by ή) and repeating the pro-
cedure in the proof of Part (a), one easily concludes that pn{t)-* q(t)
uniformly in [0, 1], where the function q(t): [0, 1] -+ Rm (satisfy-
ing U{q(t)) = t) parametrizes an arc of steepest ascent of U be-
ginning at Xo which is distinct from γ := {p(t): 0 < t < 1}. Con-
cerning Part (e), the function y = πε(x) is the inverse of a one-
to-one, continuous function (by Parts (c) and (d)), and is therefore
continuous. To prove the integral identity, it suffices to show that
J(e) := Js \VU(x)\dsε = / := fs\VU(x)\ds for 0 < e < 1, where

S c Γ is the graph of a smooth mapping z = Γ(y) of a closed C 1-
domain F c Rm~x into R, and where Sε c Γε is chosen such that
πε(Sε) = S. An application of the divergence theorem shows that J(e)
is a constant for 0 < e < 1. Let J(ε) = h |VC/(x)| ds for sufficiently

small e > 0. Here, Sε is the graph of the function z = Tε(y): F —> R,
which is a smooth local representation of Γε in the previously used
coordinates. Then J(ε) = J(e) + ζ(ε) as ε -> 0 + , as follows from
Lemma 3.4 and the boundedness of |VC/|. However, the Lebesgue
dominated convergence theorem implies that

J(ε) =

= / (1 + \VyT{y)\2γl2\VU{y, Γ(y))| ^ ,

because the integrands are uniformly bounded (independent of small
ε > 0) and because the left integrand converges pointwise to the right
integrand as ε -* 0 + , by Theorem 2.5(b). It follows that J(ε) = / for
all 0 < ε < 1. At this point, the integral identity in Part (e) follows
by approximating the function φ(x): f —> R by suitable piecewise
constant functions.
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