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V I N C E N Z O A N C O N A , T H O M A S P E T E R N E L L

A N D JAROSLAW A. WISNIEWSKI

The aim of this paper is to describe the structure of Fano bundles
in dimension > 4.

Introduction. In this paper rank 2 vector bundles E on projective
spaces Ψn and quadrics Qn are investigated which enjoy the addi-
tional property that their projectized bundles Ψ(E) are Fano mani-
folds, i.e. have negative canonical bundles. Such bundles are shortly
called Fano bundles. Up to dimension 3 Fano bundles are completely
classified by [SW], [SW], [SW"], [SSW]. The aim of this paper is to
describe the structure of Fano bundles in dimension > 4. Namely we
prove the following

MAIN THEOREM. Let E be a rank 2 Fano bundle on Ψn or Qn,
n > 4. Then up to some explicit exceptions on Q4 and Q$ (see ex.
(2.1), (2.2), (2.3)), E splits into a direct sum of line bundles.

A rank 2 bundle E on Ψn is Fano if and only if the "Q-vector
bundle" E <g> (det£*)/2 ® &{?ψ) is ample, i.e.

( ® 0 {^γ~\) i s a m P l e

If we normalize E in the following sense: EQ = E ® (detl?*)/2, so
that C\(EQ) = 0; then E is Fano iff EQ(J^-) is ample. Similarly on
quadrics. In other words, we show that bundles with Eo(!L^) ample
must split (on ¥n, n > 4). In other words: ample bundles with
Cχ(E)<n + l split.

We prove even more:

THEOREM (9.1). Let F be an ample 2-bundleon Fn. Then F splits
if one of the following assumptions hold:

(1) π = 4, cx(F)<6,
(2) n = 5

17
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(3) /i = 6 or 7,
(4) n > 8

For testing the well-known conjecture of Hartshorne, that every 2-
bundle on PΛ (n > 5, or 6, or 7) should split, it would certainly be
interesting to prove better bounds than in (9.1).

It is equally interesting to prove splitting theorems assuming only
information of E on the lines in Ψn. The archaeopteryx of these
theorems is the uniform splitting theorem. In the last section we prove
among other things:

THEOREM (10.11). Let E be a 2-bundle on P π . Assume for every
line LcFn:

with \aλ(L) - a2{L)\<%- \.
Then E splits.

1. Preliminaries. In this section we fix notations, give basic defini-
tions and some elementary propositions which will be frequently used
in the later sections.

(1.1) We will consider vector bundles only on the projective space
P n and on the ^-dimensional quadric Qn . If E is a vector bundle,
we let Ψ(E) be its associated projective bundle—taking hyperplanes
in the fibers of E. We always let

ξ = cι(&nE)(l)) and η = π*(cι(0x(l))),

where π: ¥(E) -> X is the projection and X = Ψn or Qn . If E is a
2-bundle on X, we denote by Ci(E) its Chern classes, / = 1, 2 and
consider them as numbers. Since we work only in dimension at least
4, we have

with the possible exception of Q4 in this case

and we fix generators Hi, H2 and identify c2{E) = aHγ + bH2 with
the pair (α, b).

DEFINITION 1.2. Let E be a vector bundle on a projective mani-
fold X.
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(1) E is said to be a Fano bundle if Ϋ{E) is a Fano manifold, i.e.
-Kp(E) is ample.

(2) E is said to be nef ("numerically effective") if ^P>(£)(1) is a nef
line bundle, i.e.:

for all curves C c Ψ(E).

REMARK 1.3. Let r = rk£\ Since

- * P ( 2 0 = <*{E)(r) <g> π * ( - ^ x ® det£*),

E is Fano iff the "Q-vector bundle"

r

is ample, i.e. the Q-Cartier divisor

is ample. We will often abbreviate E <g> (det E*)/r by Eo we have

PROPOSITION 1.4. (A) Lei F be a nef 2-bundle on an n-dimensional
projective manifold X with bι{X) = 1, b^{X) = 1 where the square
of a generator of H2(X, Z) generates H4(X, Z). Let c, = ct{F) (as
numbers). Then:

(1) c2>0,
(2) c\>2c2 ifn>3,
(3) cj>3c2 ifn>5,

(4) C 2 > ( 2

(5) c 2 > ( 5

( 6 ) c 2 > ( 2 + v

/ 3 ) c 2 if n > I I .

If F is ample, all inequalities are strict.
(B) Let F be a nef 2-bundle on Q4. Write C\ = cx{F), c2 =

c2(F) = {a,b). Then:
(1) a>0, b>0,
(2) c\>a, c\>b,
(3) a2 + b2 - 3c2(a + b) + 2c4

ι>0.
Again the inequalities are strict for F ample.

Proof. (1) in (A) or (B) is well known. The other inequalities follow
from positivity of the Segre classes for ample or nef bundles ([FL],
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[Fu]) and the following computations for the Segre classes s, = Si(F)

= c\-c2,

sη = dicj - 2c2){c\ - (2 - ^c2)){c\ - (2 + yfl)c2)

- 7>c2){c\ - (2

(3) is just the semi-positivity of s* .

Later we will also use s^ on Qβ :

= 2cf - \Qc\c2 + bc\c\ - c\.\

An important tool will be le Potier's vanishing theorem [SS]:

THEOREM 1.5. Let X be aprojective manifold, E an ample vector
bundle of rank r. Them

Hi(X,E®Kx) = 0 fori>r.

We will also use

PROPOSITION 1.6. Let F be a 2-bundle on X = Ψn or on X = Qn

with n > 5.
Assume

and that c2{F) < 1. Then F splits.
The same holds for X = Q4, provided a < 0 or b < 0 or a = b = 0

where c2(F) = (a, b).

Proof Take s e H°{F), s φ 0, and let Z = {s = 0}. If Z = 0,
clearly i 7 splits. If Z ^ 0, then Z is of pure codimension 2, and

By our assumption on c2(F), we obtain a contradiction.
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(1.7) A rank 2-bundle E on Ψn or Qn (n > 3) is called (semi-)
stable if for every line bundle 3> c E:

ψ< („(*) <

c2

ι{E)Λω2<4 f c2

1(E)Aω2

If E is stable on Fn , it is well known that

(*) c2(E) < 4c2(E)

([Ba]). This is also true for quadrics Qn observe that for n Φ 4, (*)
is just an inequality of numbers, for n = 4 (*) means

f c1(E)Aω2

4 Q,

for every Kahler form ω on Q4 .
In order to see (*) for quadrics, one can proceed as follows. If

E is semistable then E carries an "approximate" Hermite-Einstein
connection and hence

c2(E)<4c2(E);

see [Ko].
Now assume c\ = 4<?2. Since we may also assume C\ (E) = 0, we

have C2(E) = 0. But it is obvious that such an E cannot be stable.
Thus a stable bundle satisfies c\ < 4c2 .

(1.8) Some further notations: h\X, &) will always be the dimen-
sion of H\X, &) Kx will denote canonical line bundle of the com-
plex manifold X [x] denotes the integral part of x.

2. Statement of the main result. Before stating our main result we
shortly review some facts on special rank 2 vector bundles on quadrics.

EXAMPLE 2.1. We denote by S! and S" the two "spinor bundles"
on the 4-dimensional quadric Q4 . These are bundles of rank 2 with
Chern classes a(S') = cι(S") = - 1 and c2(S') = (1,0) , c2{S") =
(0, 1). Since Sf(l) and S"(l) are globally generated, they are Fano
bundles, i.e. P(S') and P(S*') are Fano manifolds (see [Otl]). We will
need in the sequel the following fact due to Ottaviani ([Otl, Remark
3.4]): Every stable 2-bundle on Q4 with Chern classes C\ = - 1 and
c2 = (1, 0) (resp. (0, 1)) is isomorphic to Sf (resp. S").

EXAMPLE 2.2. Applying the Serre correspondence (see e.g. [OSS])
to the union of two disjoint planes in Q4 we can construct a family
of stable rank 2-bundles F with
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Their moduli space can be identified with Ψj\Qβ ([Ot2, Remark 3.4]).
By [OT2], F(2) is generated by global sections and thus F is a Fano
bundle. Moreover: every stable 2-bundle on ζ?4 with Chern classes
C\ = - 1 and Ci = (1, 1) is isomorphic to some F described above.

EXAMPLE 2.3. On Q5 there is a family of stable 2-bundles C with
C\(C) = - 1 , C2(C) = 1. These were introduced in [Ot2], where they
are called Cayley bundles. Again C(2) is globally generated; hence
Cayley bundles are Fano. Moreover we have by [Ot2, main theorem
and Theorem 3.2]: Every stable rank 2-bundle on Q5 with Chern
classes C\ — - 1 , C2 = 1 is isomorphic to a Cayley bundle. No Cayley
bundle extends to Qβ.

We are now able to state the main result of this paper.

MAIN THEOREM 2.4. (1) Let E be a Fano bundle of rank 2 on Ψn,
n>4. Then E splits as a direct sum of two line bundles.

(2) Let E be a Fano bundle of rank 2 on Qn, n>4. Then either
E splits or:

(a) n = 4 and E is—up to a twist—a spinor bundle or one of the
bundles described in (2.2)

(b) n = 5 and E is—up to a twist—a Cayley bundle {Example
(2.3)).

Fano 2-bundles on Ψn or Qn with n < 3 are classified in [SW] and
[SSW]. Let E be a 2-bundle on X = Fn or Qn . Since E is Fano if
and only if E® (detE*)/2®—Kχ/2 is ample, we can restate Theorem
2.4 as follows.

COROLLARY 2.5. (1) Let E be a normalized 2-bundle on Ψn, n >
4. If C\(E) = 0 assume that E(nψ-) is ample. If C\(E) = - 1 , assume
that E(*ψ) is ample. Then E splits.

(2) Let E be a normalized 2-bundle on Qn, n > 4. If c\ (E) = 0,
assume that ls(§) is ample. If C\(E) = - 1 , assume that E(lL^-) is
ample. Then either E splits or E is as in 2.4 (2)(a), (b).

The rest of this section is devoted to the proof of the following
important technical result.

PROPOSITION 2.6. Let E be a normalized Fano bundle of rank 2
on Vn, n>4. Then:

(1) // cχ{E) = - 1 and n is odd, then £([§] + 3) is generated by
global sections and E([%] + 2) is ample.
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(2) In the other cases, £([§] + 2) is generated by global sections and
£([§] + 1) is ample.

In particular, in all cases E(n) is generated by global sections and
ample.

Proof. The ampleness statements are just translations of (1.3).
(1) The le Potier vanishing Theorem (1.5) gives

Hi(Ψn,E(t)) = 0

for / > 2 and t > k + 2 - (n + 1) = -k with k = [f ].
In particular:

H\Ψn , E(k + 3 - 0) = 0 for i > 2.

Now we claim that this holds also for / = 1.
Consider on Ψ(E) the divisor

D is clearly ample; hence by Kodaira vanishing

i.e. 0 = Hι(F{E) ,ξ + (k + 2)η) = Hι{Ψn, E(k + 2)), whence our
claim.

Now E(k + 3) is globally generated by the Castelnuovo-Mumford
lemma.

(2) We treat shortly the case n = 2k and C\ (E) = 0 leaving the
remaining cases to the reader.

The le Potier vanishing theorem gives now

while the Kodaira vanishing theorem applied to the ample divisor
3ξ + {3k + 2)η yields

Hi(Ψn,E(k+l)) = 0.

Thus E(k + 2) is globally generated.

The corresponding result for Qn reads

PROPOSITION 2.7. Let E be a normalized Fano bundle of rank 2
on Qn, n>4. Then:

(1) // a(E) = 0 and n is even, E(%) is ample and £(§ + 1) is
globally generated.
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(2) In the other cases, £([§] +1) is ample and £([§] + 2) is globally
generated. In particular, E(n-1) is ample and generated in all cases.

The proof of (2.7) is just an adaptation of (2.6) and will be omitted.
The proof of Main Theorem 2.4 will be given in the subsequent

sections; several cases have to be treated separately.

3. The case P n , c\(E) > 4c2(E). In this section we shall prove

P R O P O S I T I O N 3 . 1 . Let E beaFano 2-bundleon Ψn, n>4. Assume

Cχ(E) > 4c2(E). Then E splits.

The proof rests on the following result due to Holme and Schneider
[HS, Theorem 4.2].

PROPOSITION 3.2. Let F be a 2-bundle on Ψn admitting a section
whose zero locus is of pure codimension 2. If F is not stable and if
moreover

(3.2.1) c2(F)<(n-l)(c1(F)-n + 2),

then F splits.

COROLLARY 3.3. Let F be a globally generated 2-bundleon Fn. If
F is not stable and if (3.2Λ) holds, then F splits.

Proof. Let s e H°(F) be a general section. Then Z = {s = 0} is
either empty (hence F splits) or Z is smooth of codimension 2. In
this second case now apply (3.2).

Proof of (3.1). We may assume E to be normalized. E is unstable
by [Ba], because of the inequality c\(E) > 4cι{E) (which is invariant
under twists). Put F = E(n). Then by (2.6) F is globally generated.
Since c2(E) < 0 and cλ(F) = cx(E) + 2n, we have

Ci(F) = c2(E) + a (E)n + n2<Cι (E)n + n2

hence (3.2.1) holds as is easily verified. Thus F—as well as E—splits
by (3.3).

4. The case Qn, n > 5, and c\(E) > 4c2(E). We now treat the
analogous case to §3 for quadrics Qn, n > 5. The case Q4 will be
done later.
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PROPOSITION 4.1. Let E be a Fano 2-bundle on Qn, n > 5. As-
sume c\(E) > 4c2(E). Then E splits. In order to prove (4.1) we need
the following analogy to (3.2):

PROPOSITION 4.2. Let F be a 2-bundle on Qn, n > 5, admitting
a section whose zero locus is of pure codimension 2. If F is unstable
and if moreover

(4.2.1) c2(F) < (/i - 2){cx{F) -n + 2) + n-3,

then F splits.

Postponing the proof of (4.2) for a moment we have as in §3 the
immediate

COROLLARY 4.3. Let F be a globally generated 2-bundle on Qn,
n> 5. If F is unstable and if (4.2.1) holds, then F splits.

Proof of'4.1. Let E be normalized. Since c\(E) > Ac2(E), E is
unstable (1.7). By (2.7), F — E(n- 1) is generated by global sections.
Now

c2(F) = c2(E) - Cl{E)(n - 1) + (n - I ) 2 < c{(E)(n - 1) + (n - I ) 2 ,

so (4.2.1) holds. Hence F (and E) splits by (4.3).

Proof of 4.2. The proof of (4.2) follows the same lines as that one
of (3.2), so we give only a sketch, following [Ra] and [HS]. We may
assume that our section vanishes in codimension 2, so we have a se-
quence

where C\ = C\(F) and X = {s = 0} is a locally complete intersection
of codimension 2 in Qn and of degree d — c2 — c2(F). For t eZ let

For a fixed point p e Qn let Sp be the set of lines / c Qn with p e /,
and let

Σk = Σk,p = {le Sp\ length(/ ΠX)>k}

be the set of /c-secant lines through p contained in Qn .
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Then we have (compare [Ra]).

PROPOSITION 4.3.1. Assume k < n - 3 and e(0)-e(l) e(k) Φ
0. Then dimΣ^+ 1 >n-k-2. In particular, ΣkJrl Φ 0 .

Proof of 4.3Λ. Since ΣQ = Sp ~ Qn-2 it suffices by induction on
k to show the following. If C c Σ^ is an irreducible curve with
CnΣfc+1 = 0 and with min{length(/nX)|/ e C} = k, then e(k) = 0.
But this is proved by easily adapting the proof of the proposition in
[Ra] to our situation.

Arguing as in [Ra] we obtain

LEMMA 4.3.2. If cx{F) > c2{F)/(n-3) + n-3 or if c2(F) < / ι - 3 ,

then F splits.

Finally, the proof of Theorem (4.2) in [HS] can be copied almost
word for word to give a proof of (4.2) (note that the inequality (4.2.1)
is equivalent to e(n - 2) < n - 3).

5. The case Ψn, n > 6, and c\{E) < 4c2(E).

PROPOSITION 5.1. There is no Fano 2-bundle E on Ψn, n > 6,
with c\{E) < 4c2(E).

The proof of (5.1) will be based on the following result of [HS]
(Corollary 3.4 and Proposition 6.1).

PROPOSITION 5.2. Let F be a 2-bundle on Fn admitting a sec-
tion whose zero locus is smooth and of pure codimension 2. Assume
c\{F) < 4 c 2 ( F ) . Then:

(1) Cχ(F) > 2n + 3 for n>6,
(2) cx(F)>3n for n > 8 .

Actually only (1) is used at this place but (2) will be needed later.

Proof of '5.1. Assume E to be a normalized Fano bundle of rank
2 o n P w , n > 6 , with c\{E) < 4c2(E). By (2.6) E(n) is glob-
ally generated. Now take a general section of E(ή) which vanishes
along a smooth 2-codimension subvariety (of course the zero locus
is non-empty). Hence cx{F) > 2n + 3 by 5.2(i); hence cλ{E) > 3,
contradicting the fact that E is normalized.
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6. The case: Qn, n > 12, and c\(E) < 4c2(E).

PROPOSITION 6.1. There are no Fano 2-bundles on Qn, n > 12,
with c2(E) < 4c2{E).

In order to prove (6.1) we must have a substitute of (5.2) which is
given by

PROPOSITION 6.2. Let F be a 2-bundle on Qn, n>\2, admitting
a section whose zero locus is smooth and of pure codimension 2.

Assume c\{F) < 4c2{F). Then

71 / . π Y2

First we show how (6.1) is derived from (6.2).

Proof of'6.1. Suppose again E to be normalized and let F = E{j+\)
if C\(E) = 0 and n even, F = E([%] + 2) otherwise. In any case
CiCF) < n + 3, E being normalized. By (1.4), we have c\(F) >
3c2(F) thus

F being globally generated (2.7), (6.2) applies to F. Hence (6.2.1)
leads to a contradiction, since for n > 12 we have an inequality

- 2
1

for n > 12.

Proof of 6.2. We mimic step by step the proof of the corresponding
Theorem 2.2 of [Sch] on Ψn . Note that the Segre class s^E) can be
written as

sk(E) = sk(E)hk

with SjζiE) G Z and h the class of a hyperplane section of Qn . Ac-
cording to the fact that the normal bundle of a submanifold of Qn is
always globally generated, we find as in [Sch, Corollary 1.2] that

sk{E) > 0 for k <n-2.

Now write

Cι(E) = δ + δ9 c2(E) = \δ\2

with δ = reiφ , r > 0 , -π <φ <π.
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Repeating the proof of Proposition 2.1 of [Sch] we get

LEMMA 6.2.1.
i i π

Now put F(Qn) = min{m e N\m = 4c2(G) - c\(G), with G a
topological 2-bundle on Qn}, analogously F(Fn).

As in [Sch] we obtain from (6.2.2)

Since n > 12, we find a linearly embedded Ψ^ in Qn hence

F(Qn)>F(Ψ6).

By [Sch]: F(P 6) > 71, hence

F(Qn)> 71,

finishing the proof of (6.2).

7. The case P π , n = 4, 5, and c\{E) < 4c2(E). This is the last
case to finish the main theorem for projective spaces.

PROPOSITION 7.1. There are no Fano 2-bundles on ¥n, n = 4, 5
with c\{E) <4c2(E).

Proof. Assume E is such a Fano 2-bundle. We may assume E to
be normalized. Let c; = C/(2?) and introduce the Q-vector bundle

The fact that E is Fano can be expressed as EQ(J) (if n = 4) resp.
2SQ(3) (if Λ = 5) to be ample.

As usual let ξ be the class of * % E ) ( 1 ) , >? the class of the pull-back
of the hyperplane divisor.

(1) n = 4. Applying (1.4) to £Ό(f) gives (by c? > 2c2)

c2(EQ)<—;

hence c2 = C2(£r) < 6 (and of course we also have c2 > 0). Moreover

0 < *
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Both inequalities easily imply

c2(E)<3.

By the Schwarzenberger conditions

c2(c2 +I) = 0(12) ( i f c ! = 0 ) ,

2) = 0(12) ( i f d = - l ) ,

we conclude that only the case C\(E) = 0, C2(E) — 3 is left.
By Riemann-Roch we obtain

The le Potier vanishing theorem applied to E(3) yields

//'(P 4,£(-2)) = 0, i>2.

Hence
/f °(P 4 ,£(-2))^0,

and consequently ζ - 2η is an effective divisor on Ψ(E). Thus

On the other hand one computes easily

a contradiction. Thus also the case C\ = 0, c2 = 3 is excluded.
(2) n = 5. This case is even simpler. The ampleness of EQ(3) gives

by c\ > 3c2 (1.4):

c2(E)<3 i f c i = 0 ,

c2(E)<3 if ci = - 1 .

The claim follows again by using the Schwarzenberger conditions on

8. The case: Qn, 4 < n < 11. We now treat the final case of low-
dimensional quadrics in order to finish the proof of the main theorem.

PROPOSITION 8.1. Let E be a Fano 2-bundle on Q4. Then either
E splits or is—up to a twist—a spinor bundle or one of the bundles of
Example (2.2).

Proof. As usual we assume E to be normalized and let c, = Cj(E),
% . Moreover let c = c2(E0), ζo = ζ-
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We write C2 = (α, b), c = (#o, &o) > s o that (a, b) =
^o + ̂ i/4). We will use Riemann-Roch on Q4:

2)) = ±(a(a + l)

χ(E(-l)) = ±(a(a - 1) + b(b - 1)) if cx{E) = - 1 .

The Fano condition says that £Q(2) is ample. Hence by (1.4):

c2(E0(2)) > 0, c?(Eo(2)) > 2c2(^o(2)),

and consequently we obtain the bounds

- 3 < α < 3 , - 3 < Z > < 3 ( i f d = 0 ) ,

- 3 < α < 4 , - 3 < Z > < 4 (if ci = - 1 ) .

LEMMA 8.1.1. Suppose χ{Q^\ E) > 0 and moreover:
(1) if cx = 0 : a+ 1 < 0 or b + 1 < 0 or a = b = -l
(2) if cι=-l: a + 2<0orb + 2<0ora = b = -2.

Then E splits.

Proof. (1) Assume C\ = 0. So E{2) is ample. By le Potier vanish-
ing:

Hi{Q^E(t-2)) = 0 f o r / > 2 , ί > 0 .

Hence

Since /(£) > 05 we conclude h°(E) φ 0.
By duality: tf°(E(-2)) - if4(£(-2)) = 0.
If now i/°(E(-l)) ^ 0 , then by (1.6) E splits, since c2(E(-l)) =

(a+l,b+l). If/ί°(£(-l)) = 05use(1.6)for E instead of £(»1).
(2) The case c\ = -1 is done in the same way starting with the

ample bundle E(3). We omit the details.

Since the condition χ(E) > 0 is always satisfied if a + b < 0 (by
Riemann-Roch), the following cases are settled by Lemma 8.1.1:

c\ = 0: a < -\, b <2 and α < 2, 6 < -1 and (fl,fc) =
(-1,-1) .

d = - 1 : <z < - 2 , & < 3, and a < 3, 6 < - 2 , and (α,fc) =
(-2,-2) .

(a) Suppose now c\ = 0.
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Riemann-Roch on <23 and Q4 for the bundle E gives the following
congruences:

a + b = 0 (2), -23(α + b) + a2 + bx = 0 (12).

Hence (α, ft) must be one of the following: (—1,3), ( 3 , - 1 ) ,
( 0 , 0 ) , ( 2 , 2 ) , ( 3 , 3 ) .

In the first two cases we have

hence ζ cannot be effective, i.e.

H°(E) = 0.

In particular E is stable. This is a contradiction because for (a, b) =
(-1,3) or (3,-1) the discriminant c\ - 4c2(E) > 0.

(a2) Let now (a,b) = (0, 0). Then χ(E) = 2. By le Potier
vanishing we get h°(E) φ 0. On the other hand h°(E(-l)) = 0,
since

Now apply (1.6) to obtain the splitting of E.
(a3) If (a,b) = (2,2) then χ{E{-2)) = 1 by Riemann-Roch;

hence le Potier vanishing gives H°(E(-2)) Φ 0, contradicting

(a4) If (α, 6) = (3, 3), we have

(Co + 2η)5 =a2

0 + bl- 40(α0 + bo) + 160 < 0

(observe (a, b) = (CIQ, bo)), which is in contradiction to the ample-
ness of E{2).

(b) We consider now the case C\ = — 1. We have a congruence

Thus the only possible values for (a, b) are: (4, - 3 ) , ( - 3 , 4),
( 3 , - 2 ) , ( - 2 , 3 ) , (0 ,0) , (1 ,0) , (0 ,1) , (1 ,1) , (0 ,4) , (4 ,0) ,
(1 ,4) , (4, 1), (3 ,3) , (4, 4). The first two cases are settled by
(8.1.1) since then χ(E) = 2. In the next three ones, we have χ(E) >
0, hence h°(E) by le Potier vanishing; moreover h°(E(-l)) = 0 since

So E splits by (1.6).
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I n t h e case ( 0 , 0 ) , ( 1 , 0 ) or ( 0 , 1 ) , E m u s t be stable because
H°(E) = 0 by

ζ(ζo + 2η)4<O.

So E is as in (2.1) or (2.2).
The case (0,4) , (4, 0) are ruled out as in a\. The remaining cases

finally contradict

PROPOSITION 8.2. Let E be a Fano 2-bundle on Qn, 5 < n < 11,
with c\(E) < 4c2(E). Then n = 5 and E is—up to a twist—a Cay ley
bundle (2.3).

Proof. Again suppose E to be normalized. Let Eo = E(-C\/2). E
being Fano, 2so(§) is an ample Q-vector bundle. By positivity of the
Segre classes of 2so(§ ) w e obtain

with
(3 for n — 5, 6,

2 + v^2 Λ = 7 , 8 ,

(see [FL], [FU]).
Hence: n2 > a(c2(E0) + n2/4).
Since C2(EQ) > 0, we easily obtain

with the exception n — 6, C\ (E) = — 1.
Let us first consider this exceptional case. Then we have only

Ci{E) < 3. Assume c2 — 3. Then we compute

{ G
contradicting ampleness of 2s(3).

So we may assume c2(E) < 2 in all cases. The case c2 = 2 is ruled
out as follows: if C\{E) — 0 (resp. C\(E) = -1) take a β 5 c &
(resp. β4 c Qn) and Riemann-Roch gives /(Q5, E\Q5) φ Z (resp.

By observing /(Q4, £|β4) ^ Z, also the case Ci(.E) = 0, C2(2s) = 1
is impossible. It remains to consider the case Ci(2s) = - 1 , c2(E) = 1.



FANO BUNDLES AND SPLITTING THEOREMS 33

If E is unstable, apply (4.2) to the bundle F = E(n - 1) which
is globally generated by (2.7) (the condition (4.2.1) is immediately
verified). So E splits.

If E is stable, the restriction E\Q5 to a generic linear Q5 c Qn is
stable again with c\ = —I, C2 = 1. Hence by (2.3), E\Q5 is a Cayley
bundle.

Since no Cayley extends to Qβ (Ottaviani, see 2.3), we must have
n = 5 . The proof of (8.2) is now complete.

Combining all results of §§3-8 gives a proof of the Main Theorem.

9. Generalizations. The Main Theorem for projective spaces can
be improved considerably (we will not consider the case of quadrics
here):

THEOREM 9.1. Let F be an ample 2-bundle on Ψn. Then F splits
under one of the following assumptions.

(1) i = 4, c1(F)<69

(2) /i = 5, Ci(F)<8,
(3) n = 6 or 7, c{(F) <
(4) π > 8 , &±

REMARK. (9.1) can be reformulated as follows. Assume that F
is a Q-vector bundle with C\(F) = 0. Then e.g. (1) says that in
case n = 4, F splits if F(3) is ample. We should also mention the
Horrocks-Mumford bundle H in this context. It has c\(H) = -1
and C2(H) = 4; moreover H(4) is generated by global sections. So
the statement (1) or (9.1) is almost sharp, see also (9.2) below.

Part (1) of Theorem 9.1 will follow from the more general state-
ment:

PROPOSITION 9.2. Let E be a 2-bundle on P 4 . Let Eo = E ®
(det£*/2). If Eo(3) is nef then E splits.

For the proof of (9.2) we will need

LEMMA 9.3. Let E be a normalized 2-bundleon Ψn such that E{m)
is nef for some m e Q. Let r eZ be the maximal number such that

Then either E splits or
(a) r<m-2 (ifcl(E) = 0) or
(b) r < m - 3 (ifCι(E) = -l).



34 VINCENZO ANCONA ET AL.

Proof. We treat only the case C\ (E) = 0, the other case being simi-
lar. Let s e H°(E(-r))9 sφO, and let Z = {s = 0} If Z = 0 , E
splits. So assume Z Φ 0 . By our assumptions, Z is locally a com-
plete intersection of codimension 2. If degZ = 1, Z is a complete
intersection and E splits. So let degZ > 2. Then take a 2-secant
line L of Z with L ^ Z .

Then ls(—r)|L has a section with at least two zeros; hence

E(-r)\L = @L{2 + k)® &L{-2r -2-k)

for some k > 0. Hence

E(m)\L = @L{2 + k + r + m)® @L{m -r-2-k)

and by nefness of E(m)\L we conclude.

Proof of 9.2. We may assume E to be normalized.
(a) First let c2(E) < 0. So E is unstable. Let r be the biggest

positive integer such that

H°(Ϋ4,E(-r))φ0.

Assume that E does not split. Then we deduce from (9.3): r < I in
case C\ (E) = 0 r < \ if C\ (E) = - 1 . In the second case r < 0 we
must have r = 1, and thus E(—\) has a section whose zero locus Z
is either empty or of codimension 2 with degZ = cι{E) + 1 < 1. But
then clearly E splits.

(b) Now we consider the case C2(E) > 0. Let c = C2(EQ). By
nefness of Eo(3) we obtain

0 < d (£ 0(3)) 2 - 2c2(E0(3)) = 36 - 2(c + 9)

hence c < 9. On the other hand, the highest Segre class 54(^0(3)) >
0 hence c2 - 90c + 405 > 0, which together with c > 9, proves
c < 45 - 7Ϊ620 < 5.

Hence c2(E) < 4 if c{(E) = 0 and c2(E) < 5 if Ci(£) = - 1 . By
the Schwarzenberger conditions we find:

= 3 or

In both cases a short computation shows

hence H°(E) = 0 and E is thus stable.
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By [BE] there is no stable 2-bundle on P 4 with C\ = 0, c2 = 3
by [DS] the only stable 2-bundle on P 4 with c\ = - 1 , c2 = 4 is the
Horrocks-Mumford bundle for which it is easy to see that EQ(3) is
not nef (restrict to jumping lines). This completes the proof of (9.2).

REMARK. (1) In the proof of (9.2) one shows also the following
stronger statement: let E be an unstable 2-bundle on P 4 , assume
J?o(3) to be nef on every line L c P 4 . Then E splits.

(2) It would be interesting to do the next step in (9.2): assume only
EQ(4) to be nef. This leads to some interesting problems. Let e.g. E
be a (semi-stable) 2-bundle on P 4 with c\ = - 1 , c2 = 6 and assume
£o(4) even to be generated by global sections. Take a general section
with smooth zero locus X. Then

i.e. X is a "half-canonical" surface in P 4 with degX = 1 8 . Half-
canonical surfaces are investigated in [DPPS] and it is shown that they
cannot exist (or are complete intersections) with possible exceptions
in degree 18 and 22 (and some other restrictions). "Of course" one
expects that half-canonical surfaces are complete intersections in these
degrees, too.

Part (2) of (9.1) will be a consequence of

PROPOSITION 9.4. Let E be a 2-bundle on P 5 such that E0(4) is
nef. Then E splits.

Proof. As usual we suppose E normalized.
(a) Assume C2{E) < 0; so E is not stable. Let r be the maximal

positive integer such that

By (9.3): r < 2 if cx(E) = 0; r < § if cx{E) = - 1 . If cx(E) = - 1
we have r = 1, so by c2(E(-l)) = c2(E) <0,E splits (1.6). This
argument settles also C\ (E) = 0 and r = 1. Finally let C\ (E) = 0 and
r = 2. Then (1.6) settles the case c2(E) < - 3 . Take a linear P 4 c P 5

and use the Schwarzenberger condition for 2s|P4 to obtain c2{E) = 0
or - 1 . But in both cases:

contradicting the nefness of ζ + 4η.
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(b) Assume now C2(E) > 0. From c\(E${4)) > 3C2(EQ(4)) we
deduce c2(E) < 5. Now the Schwarzenberger condition for 2?|P4

implies:

cl(E) = 09 c2(E) = 3, or cι(E) = -l, c2(E) = 4.

In both cases:

hence H°(E) = 0, and consequently E is stable.
Now for a general linear P 4 c P5, E\Ψ4 is again stable with the

same Chern classes, so C\ (E) = 0, c2(E) = 3 is ruled out by [BE] and
the other case by [DS], since the Horrocks-Mumford bundle does not
extend to P 5 .

Proof of 9.1, parts (3) and (4). Let a = Ci(F). If cx < n + 1, F is
a Fano bundle and hence F splits by the Main Theorem. So assume
now c\ > n + 2.

First let us show that
(1) F(cι-n) is generated by global sections. In fact, Hi(ΫnF(t)) =

0 for / > 2, t > -n - 1 by le Potier vanishing; moreover by Kodaira
vanishing for the divisor ζF :

0 = Hι(V(F), 3ζF+Kv{F)) - H\ψn, F(cx - n - l ) ) .

So (1) follows from the Castelnuovo-Mumford lemma. As a conse-
quence we obtain

(2) c\{F)>4c2{F).
In fact, if c\(F) < 4c2(F) we can apply—using (1)—Proposition

5.2 for F(c\ - n) conflicting our assumptions.
We suppose c\ to be even, the odd case being treated similarly. Let

E = F(—c\/2). Let r be the maximal integer such that

Since E is unstable by (2), r must be positive.
Since Hn(Ψn , F(-n-l)) = 0 we have by duality H°(Fn , E(-c{/2))

= 0; hence r < C\/2.
Since c2(E) < 0, we have moreover c2{E{-r)) < r2 < c\jA, so our

assumption yields
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Since any section of E{-r) vanishes nowhere or in codimension 2, E
splits by [HS, 4.7].

10. Numerical splitting of rank 2-bundles on Ψn. In the previous
sections we considered Fano bundles E on Fn , i.e. £ Ό ( ^ ) is ample,
EQ denoting the normalization E(c\(E*)/2). Here we want only to
make an assumption on the behaviour of E on the lines and try to
get some information.

Let E always denote a vector bundle of rank 2 on Fn .

10.1. DEFINITION. (1) For a line L c Ψn put

δL(E) = δL = a2-au

if E\L = @(aχ)®@{a2) with ax < a2.
(2) For xeΨn define

jmax _ m a x { j L | £ a ϋ n e through x} and

<J™in = min{<JL|L a line through JC} .

10.2. DEFINITION. For x eΨn let P* be the variety of lines through
x. Write δ™in = δ0 < δx < < δr = δ™x, where ί, are the "splitting
types" realized by E on some line passing through x.

Define F^ = {L e Ψx\δL = <*,•}.

10.3. REMARK. We have clearly:
( a ) F J o = P x ?

(b) K^^uu^n^).

10.4. DEFINITION. If δ^ > 0 5 the ruled surface P(JF|L) has a
unique exceptional section C^ (i.e. C\ < 0). We define a map (for
fixed x eΫn)

by setting

It is easy to check that Φ<? is holomorphic.
The key to this section is

10.5. THEOREM. Assume that for some δi the map φ# has a fiber
containing a compact curve. Then E splits numerically:

a + b, c2{E) = ab, where E\Lδi = 0{a) Θ0{b) .

In other words E has the same Chern classes as a decomposable bundle.
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REMARK. The assumption means that there is a "compact" family
(Lt)teT of lines through x with T compact, such that Q, Π Ψ(EX)
does not depend on t.

Proof. After normalizing T we obtain a compact curve C and
a geometrically ruled surface p: S —> C with a map ψ: S -^ Ψ(E)
such that ^ ( p " 1 ^ ) ) = CL, where c is a point in C over ί. By our
assumption the ruled surface contains a section, say Q , such that

for any teT.

Now consider the relative Euler sequence

0 - ωp^/p^l) -> π*(£) -^ ^ ) ( 1 ) ^ 0

where Ψ(E) is the projective bundle taking hyperplanes and n

is the relative dualizing sheaf.
Since cop^/p (1) — ̂ p(£)(-l) ® π*(<f(a\ + aι)) we obtain by ten-

soring with π*(σ(—a\)):

0 -

Now we have

this has only to be checked on Q (obvious!) and on a fiber p~λ(c).
But for this it is sufficient to see

which is clear since

and since Q, is the exceptional section (see [Ha, Chap. V.2]).
Since π o ψ is generically finite, (*) implies

c2(£(-fl!)) = c2{ψ*{π*{E{-ax)))) = 0.

Hence C2(J?) = a\a,2.
An obvious consequence of 6.5 is
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10.6. COROLLARY. Assume that E does not split numerically. Then
(1) dimϊ̂ max < 1 and

(2) dim F ^ - dim(F^ n U7>/ Vδ)<2, for δt < δ™*.

10.7. THEOREM. Assume that there is some x e Fn such that

^

Then E splits numerically.

Proof. First observe that in general

<\{δrδr) + \<

by our assumption.
On the other hand (10.6) implies: 2 #{J^} > n, if E does not

split numerically. Both inequalities being incompatible, E has to
split numerically.

For n — 3 Theorem 10.7 says that every uniform (w.r.t. lines
through x) 2-bundle E numerically splits. Of course it is well known
that E in fact splits. But already for n = 5, the assumption of 10.7
is less restrictive than uniformity.

Another immediate consequence of 10.5 is

10.8. COROLLARY. If there is some x eΨn and some i such that
Vδ contains a compact surface, then E splits numerically.

10.9. COROLLARY. Assume that E is a semi-stable 2-bundle on
P« > n > 4, with c\ (E) = 0. Assume that there is some x e Ψn

and some a > 0 such that for all L e Ψx either E\L = & ® & or
E\L = @(a)®@{-a).

Then E splits numerically.

Proof. Of course we may assume that E\L = @{a) Θ tf(-a) for
some line. Since C\ (E) — 0, the jumping lines of E form a divisor
D in G(l9n) (=lines in Ψn , see e.g. [OSS]). Hence D n Ϋx— which
is the set of jumping lines through x—is a divisor in Ψx . Therefore
we obtain a compact surface in Vδ = V$ = Vja , since n > 4.

In order to prove splitting criteria rather than merely criteria for
numerically splitting we prove
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10.10. PROPOSITION. Let E be a 2-bundle on Ψn. Choose x e Ψn

generic such that <5™ax is minimal If dim Vδ™ > § , then there is

s e H°{E({-cι + <5™ax)/2)) with s(x) φθ.

Proof, (a) We claim that φ := φδ«™: V := ϊ̂ max —• Ψ(EX) is con-
stant. In fact, otherwise by our assumption φ would have fibers of
dimension > f - 1. On the other hand we have F c P x ^ Pn_i so
algebraic sets in V of dimension > f - 1 must meet, contradiction.

(b) Let D = \J{CL\X e P π , LeΨx and δL = δfax} c Ϋ(E). If x
is general, then D n F(EX) consists of one point by (a). Hence there
is an irreducible component Do c D and some d eZ such that

Taking a line L through our general x and observing

we conclude

d =

10.11. THEOREM. Let E be a 2-bundle on Ψn. Assume δL<\-\
for every line L c¥n. Then E splits.

Proof. This follows from (the proof of) Proposition 10.10 since our
condition implies

dim Vf™ > -
x Z

for every x hence the section constructed in the proof of 10.10 does
not vanish at any point and consequently E splits.

Again 10.11 can be viewed as a generalization of the fact that uni-
form 2-bundles on Ψn , n > 3, split.

10.12. REMARK. Most of the above can be applied to manifolds
containing "plenty of lines" if we only can control their cohomology.
For example, if X is a Fano manifold of index r > ^dimX + 1
(recall that the index r is the largest integer dividing ~Kχ in Pic(X)
and that for r > \ dimX + 1, we have Pic(X) = Z by [Wi]) then
through every point of X there passes a line (i.e. a rational curve
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whose intersection with the ample generator H of Pic(X) is 1). For
a 2-bundle E on X we can define (via normalization) the splitting
type of E on any such line. Similarly we can define δ™x, δ™m.
Then we obtain an equivalent of 10.7.

10.13. THEOREM. Let X and E be as above, let moreover b^{X) =
1. // δ™x - δ™in <r-3 for some xeX, then E splits numerically,
i.e. cχ(E) = (a + b)cι(H), c2(E) = (ab)cι(H)2 for some a, b e Z.
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