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Let Mm be a closed and oriented submanifold of a closed or
oriented manifold Nn, such that [M, i] = 0 e Ωm(N) 9 where
i: M —> N is the inclusion and Qm(N) is the mth oriented bor-
dism group of N. If n = m + 2 or m < 3 or m < 4 and n Φ 1
then M bounds in TV.

Introduction. Let us consider Mm a closed submanifold of Nn.
In this paper, we study the possibility that there exists submanifold

Wm+\ c Nn s u c h t h a t 3^7 = M \f M = Sm and Λ̂  = ^ m + 2 , such

that a submanifold W is called a Seifert surface knot Sm. In [5],
Sato showed that every connected closed and oriented submanifold
Mm of Sm+1 is a boundary of an oriented surface of Sm+2 .

In [4], Hirsch studies the following problem: If a compact connected
and oriented manifold Mm bounds, does there exist embedding from
Mm into W which is a boundary in W1 ?

The answer is yes, if n > 2m .
The difference between the two problems is that, in our case, the

embedding from M into N is fixed.
There is an obvious necessary condition for the existence of W,

when M and Λf are oriented manifolds.
Let Ωm(N) be the mth oriented bordism group of N [2]. If

/: M —> N is the inclusion map, we can define an element [M, /]
in Ωm(N) and see that [M, /] = 0 if M bounds in N.

Generally, the converse in not true, but sometimes the vanishing of
[M, i] guarantees the existence of W, for example if the codimension
n - m is large.

We prove the following theorem.

THEOREM 5.2. Let us suppose that Mm c Nn, n > m+ 1, is such
that [M, /] = 0 in Ωm(N). Then M bounds in N if one of the
following conditions occurs:

(a) n = rn + 2,
(b) m < 3 ,
(c) m < 4 and n φ l .
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In his Doctoral thesis [1] the author proved that, when n = 2m +
1, and M and N are closed and oriented, a submanifold M c N
bounds in N if, and only if, [M, i] = 0 G Ωm(iV).

1. A more general problem of ambiental bordism. Let

G c O(n - m - 1), n> m+ 1,

be a closed transformation group and let JQ ̂  BG be the classifying
fiber bundle of (n-m- l)-vector bundles which have a (7-structure.

Let us consider MG the Thorn space of JQ . We have:

{ 0, / < n-m-1,
Z, i = n-m-l and G c SO(« - m - 1),
Z 2 , / = i - m - 1 and G £ SO(n - m - 1).

Let us consider now Nn to be a closed connected manifold which
we assume to be oriented if G c SO(rc - m -1). (If (7 £ SO(« - m -1)
we drop the orientability hypothesis.)

Let Mm c Nn be a closed submanifold and let us suppose that the
normal fiber bundle uM of M in N has a cross section s, nowhere
zero, such that VM = {$} ®ζ, where {s} is a subbundle generated by
s and £ is a (n-m- l)-vector bundle endowed with a G-structure.

We shall say that a submanifold W c N satisfies condition (*) if
it has the properties:

(i) dW = M and s is the inward-pointing vector field on d W.
(ii) the normal fiber bundle vψ has a (/-structure which agrees

with the given (/-structure of ξ over M. (Observe that ζ = i/ψ\M.)

2. Primary obstruction to the existence of W. Let F be a closed
o

tabular neighborhood of M in N, A = dW and X — N - V. We
can think s a function s: M —• ^4. Then s(Af) is a submanifold
of A, whose normal fiber bundle is isomorphic to ζ. By the Thorn
construction there exists a function / : A —• M(? such that, if oo is
the point at infinity to MG, then / is differentiate on A - f~ι(oo),
/ is transversal to BG and f~ι{BG) = (M) [6].

We shall take πm_w_i(MG) as the cohomology coefficient group.
Let e e Hn~m-ι(MG) be the fundamental class of the space MG.
We know that f*(e) = α, where a is the dual class of S^M) and
μM is the fundamental class of M. _

If / : 4̂ —• MG extends to a map f:X—> MG, then_we can
suppose, up to homotopy, that / is differentiate in I - /~ι(oo)
and that / is transversal to BG. Taking W\ = / (BG) we obtain
a submanifold of X whose boundary is s(M).
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Let us observe that this submanifold can be extended to a subman-
ifold W which satisfies condition (*).

We conclude then that there exists W, satisfying (*), if and only
if / extends to X.

The class δf*(e) is the obstruction to the extension of / to the
{n - m)-skeleton of X, where δ: Hn-m~l(A) -> Hn~m{X, A) is the
coboundary operator.

Consider the commutative diagram:

Hn-m-\A) —?—> Hn~m(X,A)

{•> 1°
Hm{A) - ^ - > Hm{X) = Hm(N - M).

We conclude that the primary obstruction to the extension of / ,
up to duality, is the element S^M) € Hm(N - M) (regarding s as
function from M into N-M).

Hence, we have:

PROPOSITION 2.1. / extended to the (n - m)-skeleton of X if, and
only if s*{μM) = 0 in Hm(N - M).

Assuming that s*(μM) = 0, let us consider two cases:
1. G = O(n-rn-l).
Here, / extends up to the (n - m + l)-skeleton of X , because

πn-m(MG) = 0 and, if n - m = 2, then / extends to all of X since
MO{\) is a ϋΓ(Z2, 1) space.

2. G = SO(n-m- 1).
Since πn-m+i(MG) = 0, / = 0 , 1 , 2 , / extends up to the

(n - m + 3)-skeleton of X. Hence, if dimM < 3, / extends.
On the other hand, if n - m = 2 or 3 then MG is a K(%, 1) or

jfiΓ(Z, 2), respectively. In any case, / extends globally.

3. Oriented ambiental bordism. From now on, all manifolds and
submanifolds will be considered to be oriented.

THEOREM 3.1. Let us suppose that:

(a) Hj(X) = 0, 0<j < m - 3 .

(b) The canonical homomorphism πw_i(MSO(« - m - 1)) - ^ Ω m

w injective.
There exists W satisfying (*) if and only if s*(μM) = 0 e Hm{X)

and M is a boundary.
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Proof, Let us use the notation π, = πz(MSO(π - m - 1)). If
S*(VM) = 0, then / extends to the (n - ra)-skeleton of X.

From hypothesis (a) and Lefschetz duality, we conclude that

HJ(X9 A , π ; _ i ) = 0 , n-m < j <n.

Let D be an open disk of X - A. Since X is orientable,
W{X -D,A,%j-{) = HJ(X,A,πj_ι) = 0, n - m < j < n.
H e n c e , t h e r e e x i s t s a n e x t e n s i o n f : X — D — > Y of f : A — > Y 9 w h e r e
Y = MSO{n-τn-l).

Let us consider S = dD and h = f\dD: S -+Y. We may suppose
that h is transversal to BSO(n — m — 1) and let

i

Consider W = / (BSO(n - m - 1)), a bordism between Mi and
5 (A/). Since s(M) is a boundary, M\ also is.

We have also that ψ([h]) = [Mi] = 0 and since ψ is a monomor-
phism, h is homotopic to a constant map and so h extends over
D.

The converse is straightforward. D
4. On the existence of normal vector fields homologous to zero in

N - M. In the next section, we show that in certain situations it is
possible to obtain a cross-section s: M —> S{vM) such that J*(//JJ/) =
0 E Hm(N - M), where S(vM) —• M is the normal sphere bundle of
Λ/ in iV.

PROPOSITION 4.1. The Euler class of the normal bundle of Mm in
Nn is zero if and only if U(βM) C imy'*, where βM is the fundamental
class of M and i: M —• N, j : N - M —• JV are inclusion maps.

Proof Let us consider e e Hn~m(M, Z), the Euler class of the
normal bundle vM, and let DA: Hn~m(M : Z) -> /ίm(iV, N-M Z)
be the Alexander duality. We have that A4(e) = ̂ *(/^M) where α* is
induced by the inclusion map a: (N9 N — M).

Using the exact sequence of pair (N, N-M) it follows that a^μ^)
= 0 if, and only if, /*(//M) C imj* . D

COROLLARY 4.2. /f Mm c iV" w homologous to zero, n - m = 2
<?r n>2m, then M has a normal vector field that is nowhere zero.

Proof. By Proposition 4.1 the Euler class of vM is zero. Then
there is a nowhere zero normal vector field on the (n - m)-skeleton
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of M, which can be extended to all M , because n — m > m or

πi(R2 - 0) = 0, / > 1 in the case n-m = 2. π

Let π: £ -> Afm be a differentiable SO(τι + l)-bundle with fiber
Sn and base M™ (and oriented manifold).

If s: M —• £ is a cross-section, let 05 be the Poincare dual to
s*(μΛ/0 , where s = —s is the opposite cross-section to s.

Having fixed a cross-section SQ : M —• £ , the following diagrams
are commutative:

Hm-n(M)

where [Λf, £ ] isthesetof homotopy classes of cross-sections, ξ([s]) —
s*(θg ) φ([s]) = ΘΊ - θj, is Poincare duality and last line is a portion
of the generalized Gysin sequence.

We define ψ: [M, E] -> //^(-E) by ψ([s]) = ss^{μM) -S*(VM) and
observe that ψ = D o ψ.

If m < n + 1 or rc = 1, then the function ζ is onto and so the
image of ψ is the kernel of π*.

This fact will be applied in the proof of Proposition 4.3 below,
where the fiber bundle to be considered is S{VM) —• M.

PROPOSITION 4.3. Let Mm c Nn, n = m + 2 or n > 2m, be an

oriented submanifold homologous to zero in an oriented manifold N.
Then there exists a cross-section r: M —• S{vM) such that its image is
homologous to zero in Hm(N -m).

Proof. Let SQ: M —• S(VM) be a cross-section that is nowhere zero
(Corollary 4.2) and let us consider the commutative diagrams:

Hm(M)

>Hm{N-M) -±-+ Hm(N)

where s* = U(SQ ) and /* is induced by the inclusion S{vM)
(N-M).
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We have j*s*(μM) = i*π*s^(μM) = 0 implying that s*{μM) belongs
to the kernel of 7* which is the image of d: Hm+\(N9 N - M) —•
Hm(N-M).

Let us consider the following commutative diagram:

Hm+ι(D(uM)9S(uM)) - 2 — Hm{S{vM))

It follows that there exists an element μ e Hm(S{yM)) such that
μ e Kerπ* and 7* = s*(μM) -

Since i m ^ = kerπ*, there exists a cross-section r: M -+ S{VM)
such that ψ([r]) = μ.

But ^([r]) = JO,(AJI/) -> r*(/*ji/) SO j*r*(μM) = 0 in #W(ΛΓ - M).
Hence, the image of r: Λf —• S{VM) is homologous to zero in N-M.

5. A theorem on ambiental bordism. Let us consider Ω7(iV) to be
the j th bordism group of N.

If Hj(N) = 0, 0 < j < m - 3, it is possible using the bordism
spectual sequence [2] to show that the function Ωm(N) -> Hm(N) Θ
Ω m , which associates to each pair [M, /] the element μ([Λf, /]) +
[Λf ], is an isomorphism, where μ is the canonical homomorphism.

In the proof of Theorem 5.2, we are going to use the following
lemma, which has been proved in [1] (the proof, if q > m, is due to
Thorn [6]).

LEMMA 5.1. The homomorphism φ: πg+m(MSO(q)) —• Ω m , q >
m, is an isomorphism.

THEOREM 5.2. Let us suppose Mm c Nn, n > ra + 1, is such that
[M, /] = 0 in Ωm(N). Then M bounds in N if one of the following
conditions occurs:

(a) n = m + 2,
(b) m < 3 ,
(c) m < 4 and n Φ 7.

Proof. Any one of the conditions (a), (b) and (c), based on previous
results, imply that normal bundle VM has a cross-section nowhere
zero such that, considering s as a function from M into N — M,
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If (a) or (b) occurs, the theorem follows from case 2, already dis-
cussed in §2

If n = 4 and n > 8, we apply Theorem 3.1.

REMARK 1. If n = m + 2 or m < 3, then [M, i] = 0e Ωm(N) if,
and only if, M is homologous to zero in N.

REMARK 2. When m = 4 and n Φ 7, although we shall prove that
[M, /] = 0 implies the existence of a normal section nowhere zero
(Th. 5.3) we are not able to prove that there exists a normal vector
field homologous to zero in N - M, which in this case would be
sufficient to prove the conclusion of Theorem 5.2.

THEOREM 5.3. Let us suppose M4 c NΊ. If [M, i] = 0 in Ω4(iV)
then VM has a cross-section which is nowhere zero.

Proof. There exists W c N x / such that dW = M xO c N x I

[1].
Let vw and vM be the normal fiber bundles of W in N x I and

of M in N, respectively. We can also suppose that uw\Mx0 = uM.
Let us consider W c Nx R to be the double of W and let i:W ->

i V x l and 7':iVxIR->TF->7VxR be inclusion maps.
Since i*{μψ) C im j * , then W has a normal vector field which is

nowhere zero in N x R up to the 3-skeleton of W.
Hence, there exists a 2-dimensional oriented vector bundle ξ over

M such that vM\M^ =ξ®^1.
Let us consider e to be the Euler class of ξ in H2(M^) and let

e e H2(M) be such that io*(e) = e, where /: M^ -> M is the
inclusion map.

Let f be a 2-dimensional vector bundle over M such that its Euler
class is e. Let us observe that ξ\M^ = ξ.

Let / , g: M —• BSO(3) be classifying maps ξ θ ^ 1 and ẑ />
respectively.

Since the Euler classes of <* ® Wx and of vM are equal, then their
second Stiefel-Whitney classes are equal.

Let p\ be the Pontryagin class of the classifying fiber bundle γ —•
BSO(3) and let e be the Euler class of γ. Since f*{βx) = g*(βχ).
Hence, the vector bundles ξ θ ^ ι and vM are equivalent [3]. D
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