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The main purpose of this note is to give a classification of com-
plete locally conformally flat manifolds of nonnegative Ricci curvature.
Such classification for the compact case has been obtained by various
authors in the past decade.

1. Introduction. Recall that an n-dimensional Riemannian mani-
fold (M™", g) is said to be locally conformally flat if it admits a coor-
dinate covering {U, , ¢,} such that the map ¢,: (U,, &) — (S™, &)
is a conformal map, where g is the standard metric on S”. It follows
from this definition that the Weyl tensor of g vanishes. In particular,
the full curvature tensor of g can be recovered from the Ricci tensor
of g (an alternating sum). Thus conditions on the Ricci tensor of
such manifolds impose very strong restrictions on their metrics. In
the first part of this note we confirm this by showing,

THEOREM 1. If (M™", g) is a complete locally conformally ﬁat Rie-
mannian manifold with Ric(g) > 0, then the universal cover M of M
with the pulled-back metric is either conformally equivalent to S™, R"
or is isometric to R x S"~1. If M itself is compact, then M is either
conformally equivalent to S™ or isometric to R*, Rx S""1, where S"
and S™1 are spheres of constant curvature.

The second part of Theorem 1 was obtained by various authors as
consequences of investigating more general classes of manifolds, see
the work of Schoen and Yau ([SY]) for references. An elementary
proof for this case was also given recently by Noronha ([No]).

We remark that although the validity of Theorem 1 is not surpris-
ing, many similar problems in Riemannian geometry still remain open
in the noncompact case, while the compact case has long been solved.
The difficulty usually lies in the lack of analytic techniques for non-
compact manifolds. The analysis in our case does carry through ([SY])
essentially because of the developing map as outlined below.
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Our argument for the complete case uses heavily the results of
Schoen and Yau. Let us outline the idea here. In [SY], Schoen and
Yau proved that the developing map for locally conformally flat man-
ifolds with nonnegative scalar curvature is injective, thus exhibiting
them as quotients of domains in the sphere by Kleinian groups. Just
as in the study of Kleinian groups in the works of Patterson ([Pa])
and Sullivan ([Su]), Schoen-Yau studied the Hausdorff dimension of
the complement of the image of M under the developing map, and
proved that it can be controlled by properties of Green’s functions of
the conformal Laplacian on M . Our observation is that under the
condition of Ric > 0, Green’s function gives a much stronger control
on the Hausdorff dimension than in the case of nonnegative scalar
curvature. In fact, we will show that the Hausdorff dimension is zero.
Theorem 1 is a consequence of this fact and the splitting theorem of
Cheeger-Gromoll ([CG]).

In the second part, we study locally conformally flat manifolds un-
der the more general condition of Ric > —AZ2, and prove,

THEOREM 2. If (M", g) is a compact locally conformally flat man-
ifold with

Ric > -A?, diam(M)<D,

then bj(M, R) < C(n, AD) for any i, where C(n, AD) is a constant
depending only on n and AD.

Theorem 2 is a consequence of a general result about elliptic in-
equalities based on Moser iteration and P. Li’s lemma. This line of
thought was initiated by P. Li and later developed by Gallot, Besson
and Berard, among others (see [Be]). Theorem 2 is basically known
without being explicitly stated; we find it illuminating to put it here
since it gives a parallel to Gromov’s famous estimate for Betti numbers
for Riemannian manifolds with lower sectional curvature and diam-
eter bounds. And together with a corollary of Theorem 1, it gives
strong evidence to the validity of the following conjecture, which was
the author’s initial motivation for studying locally conformally flat
manifolds.

Conjecture. There are only finitely many homotopy (homeomor-
phism, diffeomorphism) types of locally conformally flat manifolds



CONFORMALLY FLAT MANIFOLDS 191
satisfying
Ric(M) > —A?, diam(M)< D, vol(M)>V.

2. Nonnegative Ricci curvature. As pointed out in the introduction,
we will use heavily the results from [SY]. Since [SY] is a long paper
with many results, we will summarize here what is needed for our
argument.

By the definition of locally conformally flat manifolds and a stan-
dard monodromy argument (as in the proof 2{ analytic continuation),
it is easy to construct a conformal map ®: M — S” which is unique
up to conformal transformations of S”. @ is called the developing
map. It is an easy consequence of the existence of the developing
map that any compact simply connected locally conformally flat man-
ifold is conformally equivalent to S” (originally due to Kuiper ([Kul],
[Ku2])). In the general case, the significance of the developing map
is at least twofold. Firstly, it gives in a natural way a compactifica-
tion for M which makes the analysis easier when M is not compact.
Secondly, when @ is injective, it gives a uniformization for locally
conformally flat manifolds, exhibiting them as quotients of domains
in the sphere by Kleinian groups. The major result of [SY] is to find
a class of manifolds for which the developing maps are injective. In
order to state the results from [SY], we need to consider the conformal
Laplacian L, , which, when acting on a function ¢, is defined as

2
Lo =A¢ — (—n_j-l—)R(g)¢ 3

where R(g) is the scalar curvature of g and A is the usual (nega-
tive) Laplacian. L, is conformally invariant in the sense that for any
conformal metric g, = u*/("~2) g, we have

(1) Lg (¢) = w202 Lo (ug).
Letting ¢ = 1, we get the Yamabe equation:
n-2 n-—2
_ 2T py=__"T~% ,(nt2)/(n-2)
(2) Au A 1)Ru A= 1)u R(g.).

By the help of the developing map, it is quite standard to show that
the conformal Laplacian L, of M has a minimal Green’s function
on M, denoted by G,, where p is the pole. We will now state the
result we need from [SY] as the following lemma.
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LeEMMA 1 ([SY]). Let (M™", g) be a complete locally conformally flat
Riemannian manifold with nonnegative scalar curvature and ®: M —
S" the developing map. Then,

(1) @ is injective (Theorem 4.5 in [SY]).

(2) OD(M) C S" is of codimension at least two (Propositions 3.3
and 4.4 in [SY]).

(3) Forany ¢ > 0, any open set O containing p (Proposition 2.4(iii)
in [SY)),

G+9/("=2) gy, < oco.
M\O

As pointed out in the introduction, our strategy is to give a good

estimate for dim(atb(ﬂ )), where dim is the Hausdorff dimension.
The idea in [SY] is to consider the quantity

G102 dvg < oo} ,

d(M) = inf {r

M\O
and proved dim(ad)(ﬂ ) <d (H ). The starting point of our inves-
tigation is that this inequality is not sharp for the following trivial
example, and in trying to give a sharp estimate for this example we
obtained a proof of Theorem 1.

ExaMpLE. Consider (R"”, wp) and (S”, go) where the metrics are
the standard metrics. Let ¥: (R", wg) — (S”, go) be the stereo-
graphic projection (which is the developing map for (R", wg)) de-
fined as

W= (B 2 DY),
¥ l(x, ,xn,é)—<'1)i—l’ ,1?5)
Then,
(¥~ 1)*(wo) = g% = ut/"=2g,
¥*(go) = (1—+‘|1y—|2?w°’

where u = 1/(1 - &)("=2/2 | The Green’s function for (R", w) at 0



CONFORMALLY FLAT MANIFOLDS 193
18
1

2—n
(n - 2)wn—l I '

Go(y) = YI*" = caly

The Green’s function for (S”, gy) at S (the south pole) is

Hg(xy, ..., xn, &) =u(0, ..., _1)—(n+2)/(n—2)u

(¥ Go)(x1 s e s Xn, &)
— 2("+2)/20n(1 + é)(Z—n)/Z'

Similarly, for the north pole N,
Hy = 2042126, (1 — &)2-n)/2,

From the formula for Gy, we see that d(R", wg) = 5. This shows
that (3) of Lemma 1 is sharp. But obviously dlm(a‘I’(R")) 0. Thus
the inequality dim(0®(M M)) < d(M) is not sharp when M = R".

Since the functions in the above examples are explicit, it is not hard
to give an analytic proof that dim(0'¥(R")) = 0. Because this proof
illustrates the idea for the proof of Theorem 1, we will first give a
proof in this case.

To this end, as in [SY], we consider the concept of capacity, which
is easier to handle analytically than the Hausdorff dimension.

DEeFINITION. For a subset S C (M", g), we define
Co(S) = igf{/ Vol dx:de Cs, dlo= 1} :
M

where O is some open set containing S.
The relation between capacity and the Hausdorff dimension is that
if C,(S) =0, then dim(S) <n—p ([AM]).

EXAMPLE (continued). We now give an analytic proof that
dim(0¥(R")) = 0. In fact, choose a function ¢,: R" — R such
that

0, ly|<a,
¢a(.VIa---,.Vn)—{ 1’ |y|22a,

and ]V%d)a] < 2/a. Note that
1+|y|2

|V\P‘(g0)¢a| = IV4wo/(1+|y|2)2¢“| = |Vw Pal.

Thus,
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/,, V5, (¥ (Ga)l"* dvg, = [ 1V al" ™ v

- L+ )"‘8( 2 )"
"‘/n ( va ¢a| 1+|y|2 deo

< / (1+ [2)¢ dvg, < — (1+a2)—8/ v
A" Ja<|y<2a @ —an ¢ a<ly|<2a @
n In—g 2a) — 4"w,at 50
)¢ w,(2a)" = 0t a2¢ as a — oo.

Thus C,_(0¥(R")) =0 for any ¢ > 0. Hence dim(0¥(R")) =0
We are now ready to prove the following main lemma.

LEMMA 2. Let (M", g) bea locallyﬁgonformally flat manifold with
nonnegative Ricci curvature. Let ®: (M, g) — (S™, go) be the devel-
oping map. Then,

dim(8®(M)) = 0.

Proof. By Lemma 1, ® is injective, thus we can view M as a
subset of $”, and there is a function u: M — R* such that ®*gy =
u—4/(n-2)g = Without loss of generality, we assume ®(p) = N. By
equation (1), we calculate,

Le(u™" - @*(Hy)) = Lig-1),(@7)*(u™") - Hy)
= L[(d,_l).(u)]4/<n_2)go(((1> H*u=1). Hy)
= (@) (] DL, (Hy)
= u(p)~ (D=5
thus Lg(u(p)+2/("=2) . y~1. ®*(Hy)) = d,. Using (2) of Lemma
1 and the minimality of G,, it is standard to conclude that G, =

u(p)+2/(n=2) .y=1.®*(Hy) (see [SY], p. 55). Therefore, the integra-
bility condition in (3) in Lemma 1 is equivalent to

3) /ﬁ . u=(+9/(n=2) gy < 0.

(Note that Hy is bounded in S"\O.) Now for any a > 0, we choose,
as in the example, a function ¢, on M, such that

0, dg(x,p)<a,

¢a(x)={ 1, de(x,p) 2 2a,
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and |Vgd,| <2/a. Then

/;) i Tl @ dvg, = /ﬁ Vg ol AV (g

B /ﬁ (Vg a)ud/ (=D |n=2=21/(1=2) goy

2 n-—-¢&
< (_> / u-26/1=2) gy
a<d(x,p)<2a
2\ "t 2¢/(n+e)
< (_) / = 0(=2) gy
a a<d(x,p)<2a
(n—¢€)/(n+e)
(s )
a<d(x,p)<2a
2\ "¢ 2¢/(n+e)
< (_) / w02 gy
a M\O

- (volL (B (2a))) "=/ r+2)
)n (n—¢g)/(n+e)

_ Ca—8 n— /(’H'E) Y 0 (as a — +OO) >

where in the last inequality we have used (3) and the Bishop volume
comparisg} theorem. Thus C,_.(0®(M)) =0 for any ¢ > 0. Hence
dim(0®(M))=0. O

Proof of Theorem 1. Since any manifold with more than one end
contains a line, it follows from the Cheeger-Gromoll splitting theorem
that a manifold of nonnegative Ricci curvature has at most two ends.
Consider the developing map ®: M — S". Each end of M gives a
connected component of BCD(M ) ; therefore, BCD(M ) has at most two
connected components. By Lemma 2, 8<I>(M ) consists of at most two
points. We therefore have the following three cases.

() If 8d>(M M) is empty, then M is conformally equivalent to S”.

(2) If 8(I>(M ) has only one point, then M is conformally equiva-
lentto R".

(3) If 0D(M) has two points, by composing @ with a conformal
transformation of S”, we can assume 6®(M) = {S, N}. Writing the
metric of S” in polar coordinates, we have g = u(t, x)(d 2+sin’ tdo)
where do is the standard metric on S7-1_ On the other hand, by
the splitting theorem, M is isometric to R x N with N closed and
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simply connected, hence conformally equivalent to S”~!. Therefore,
the metric g can be written as g = dr? + f?(x)do . It follows that
the function u is independent of x. By a change of the parameter ¢,
we conclude that M is isometric to R x $”~! with S"~! of constant
curvature.

In the case when M is compact, we only need to show that in case
(2) M is actually isometric to R". In fact, from (2), there is a positive
function ¥ on M with wy = u*/("*~2g. The Yamabe equation (2)
implies

n-2
Au— —Ru=0.
4(n - 1)
Thus u satisfies the maximal principle. Since M is compact, u is a
constant. This shows M is isometric to R". O

COROLLARY. If (M", g) is an open locally conformally flat mani-
fold with
Ric >0, vol(By(r)) >cr"
for some point p € M and some constant ¢ > 0, where B,(r) is the

geodesic ball of radius r around p, then M" is conformally equivalent
to R".

Proof. 1t is well known that 7,(M) is finite and M has only one
end; thus M is conformally equivalent to R". This implies that
n1(M) is torsion free, hence trivial. Therefore, M is conformally
equivalent to R”. o

REMARK. This corollary says that the local model in the sense of
M. Anderson ([An]) for the class in the conjecture in §1 is conformally
equivalent to R”. This gives evidence that the conjecture is correct.

We end this section with a family of examples of conformally flat
metrics on R" with nonnegative Ricci curvature and various volume
growth.

ExXAMPLE. Let (R", wy) be the standard flat metric on R"”. Con-
sider g = (r2+1)"22w,, a globally conformally flat metric. It follows
easily from a direct computation that

Rics: — do(n —2)(1 = a)(r? — xiz) 4(n - 1)
" (r2+1)? (rr+1)2°
Thus when 0 < a <1, we have Ric > 0. It’s also easy to see,
(a) % < a < 1:Ric > 0, noncomplete;
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(b) a =1 :Ric>0, complete, vol(B(r)) = ¢cur;
2
(c) 0<a< i:Ric>0, complete, vol(B(r)) = cpr™.
2

3. Estimating Betti numbers. As pointed out in §1, Theorem 2 is
a consequence of a general result stated in [Be] and the following
well-known Weizenbdck formula. Since the proof is simple, for com-
pleteness, we will give a detailed proof of Theorem 2 here. The first
part of the proof is the standard Moser iteration. The second part is
what is known as Peter Li’s lemma.

LEMMA 3 ([G1]). Let (M", g) be a compact locally conformally flat
Riemannian manifold and ¢ a harmonic p-form. Then

2p(n 2p) Ryt ,¢; 2p(p 1)-p

Th-Dn-2
where R;; is the Ricci tensor of g .

Alg* =2|ve|* + 2 RI#P,

Proof of Theorem 2. Let us assume that Ric > —A? and diam(M) =
D. Then R > —n(n~— 1)A2. It follows from Lemma 3 that

Alg]* > 2|V¢)* ~c(n, p)A*),

where c(n, p) is a constant depending only on » and p. In what
follows constants will always be denoted in this way, while their values
may change. From the definition of the Laplacian, we have

Algl* = 2|VI4|1* + 2i4|Al].
Thus,
|BlAlg] > [Vo|* —|V||1> — c(n, p)A®|H.
By the Schwarz inequality, it is easy to see |V|*> > |V|4||?; therefore,
~A|g| < c(n, p)A?|¢|.
Multiply both sides by |¢|2¢~! for k > 1/2, and integrate by parts,

[ a6 Vil < cn, p)A [ 102,

that is, A
V181 < === 19111

Recall the Sobolev inequality for a Riemannian manifold says ([Be]),

1 fllansn- < 7 (c(n, DA)- DI s + 1 f11)
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forany f € W2 where V = vol(M). Using the Sobolev inequality,
we continue the previous inequality,

k 2/k _
19130k n-2) < (1 +e(n,p, DA)Vzk:") VA3

Let k = (;%5)', and multiply all inequalities with i =0, 1, ..., we
deduce,

() i 2/t
o1 <TT (1+ctn. p. DAYZ=) " V013,
i=0

where we have denoted 7 = ;25 . It is easy to see that the product in
the above inequality converges.
Let H? be the space of harmonic p-forms with the L? inner prod-

uct. By the Hodge theory, dim(H?) = b,. Let vy, ..., Ws, be an
orthonormal basis for H? . Consider the following function on M,
f(x Z l‘//l X)l
fM lwil?

Note f is independent of the ch01ce of orthonormal basis. Let f(xg)
= max f. Define a map H? = AP(T; M) by s(y) = y(xo). Then
H? = Kers @ (Kers)*. Let {¢;} be an orthonormal basis adapted to
this decomposition, there are at most dim(Kers)* of the ¢;’s with
$i(xo) # 0. Thus,

f(x0) < dim(Kers)* - max sup | l2<( ) +sup 1915

Juléil?2 ~ l#ll3
Therefore,
2
by(M,R)= /Mf(x) dvg < f(xp) -V < ( ) sup I:Iq;llllz
. © Ti 2/t
< (p) g) (1 +c(n,p, DA)\/”—z?,——-‘__—l)
< C(n, DA). -
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