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In this note we prove that if N C M C P is an inclusion of II,
factors with finite Jones index such that N C P has finite depth,
then N C M and M C P have finite depth. We show this result by
studying the iterated basic constructions for M C P and NCP.In
particular our proof gives detailed information about the graphs for
N C M resp. M C P. Furthermore, we give an abstract charac-
terization of intermediate subfactors in terms of Jones projections in
N' NP ,where N C P C P, is the basic construction for N C P
and give examples showing that if ¥ C M and M C P have finite
depth, then N C P does not necessarily have finite depth.

1. Introduction. The problem of classifying subfactors of the hy-
perfinite II; factor is one of the most challenging problems in oper-
ator algebras. Starting with an inclusion N C M of hyperfinite II;
factors with finite Jones index [M : N] < oo, one constructs the as-
sociated Jones tower of factors N ¢ M ¢ M; c M, C ..., where
M, is the II; factor obtained from the Jones basic construction for
M;_ C M; (see [Jol]). The centralizer algebras {M; N M;},<; are
finite dimensional C*-algebras sitting in the envelopping II; factor
M, =M, . Furthermore, inclusions of four such algebras

M l/ n M, ¢ M l’ N M,y
U U
Ml{+1 n M, C Ml{+1 N My
satisfy certain symmetry conditions: they form what is called a com-
muting square ([Po2], see also [GHJ]). All the information contained

in this double sequence of finite dimensional algebras is actually con-
tained in the following sequence of commuting squares

M N M, Cc M n Mg, C---
U U
Mi n M, C Mi N Mgy C--
which is an invariant for the inclusion N C M, called the standard in-
variant ([Pod] or paragroup [Ocl]). From this sequence one can form
the inclusion |J, M OM," c Uk M} NM," of hyperfinite II; von
Neumann algebras and ask if these algebras form a model for N C M,
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i.e. are (anti-)isomorphic to the inclusion N C M. Popa introduced
recently a concept of amenability for inclusions N C M ([Po3], [Po4])
and showed that precisely the amenable subfactors of R, the hyperfi-
nite II; factor, are classified by their standard invariant. A particular,
but important class of amenable subfactors of R are the finite depth
subfactors, referring to the condition sup,dimZ(M’' N M;) < oo,
where Z(M'NM,;) denotes the center of M’ N M, . Equivalently, this
condition expresses the fact that the width of the Bratteli diagram de-
scribing the inclusions C=M'NnM cM' nM; Cc M'NnM, C ... is
bounded from a certain point on. Popa showed in ([Po2], see also
[Oc1])) that finite depth subfactors N of the hyperfinite II; factor M
are classified by an initial commuting square

M N Mko c M n Mk0+1
U U

for ky large enough (which can be made precise). Subfactors of index
< 4 are automatically of finite depth and the associated commuting
squares can be classified in terms of graphs of Coxeter-Dynkin type A,
D, E and certain connections on them ([B-N], [I1], [I2], [Jol1], [Ka],
[Oc1], [Oc2], [SV]). Wenzl constructed interesting series of finite depth
subfactors via braid group representations, generalizing Jones’ original
construction of subfactors of the hyperfinite II; factor. It is by now
well-known that Jones’ discovery of certain remarkable braid group
representations in the higher relative commutants of every finite index
subfactor lead him to the construction of his link invariant, the Jones
polynomial. Similarly, Wenzl’s subfactors carry representations of the
braid group in their higher relative commutants which can be used
to obtain the HOMFLY and Kauffman polynomials using the same
method as Jones’ original construction of his link invariant ([Jol],
[Jo2], [Wel], [We2]). The simplest finite depth subfactors are obtained
by letting a finite group G act by properly outer automorphisms of R
and considering the inclusion R C R x G. The canonical (classifying)
commuting square of this inclusion contains all the information on G
and its representation theory: G can be completely recovered from
the inclusion. Similarly, if H C G is a subgroup of G of finite index,
then RxH C RxG is again a finite depth inclusion and the associated
canonical commuting square can be described explicitly in terms of
induced representations (for details of all this and more examples
coming from groups, see [Bi2], [KY]).
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It is a well-known theorem in the theory of extensions of von Neu-
mann algebras that if G is a countable discrete group of outer au-
tomorphisms on the II; factor N and P is a subfactor with N C
P C N x G, then there is a subgroup H C G such that P=Nx H
(INT1, [Su]). This result is quite apparent for a finite group G and it
is natural to ask if a similar result holds for finite depth subfactors,
where the role of the group is played by the more general object, the
canonical commuting square or the paragroup. In other words, given
an inclusion of II; factors N ¢ M C P such that N ¢ P has fi-
nite depth, does this force the finite depth condition on N C¢ M and
M C P? We prove that this statement is indeed true, more precisely
we show the following theorem:

THEOREM. Let N C M C P be an inclusion of 11, factors with
[P: N]< oo and assume N C P has finite depth. Then N C M and
M C P have finite depth.

This theorem will follow from a detailed study of the basic con-
struction for N ¢ P and M c P. We are able to describe the higher
relative commutants of M C P completely in terms of the higher
relative commutants of the inclusion N C P. In particular we obtain
information on the graphs for N ¢ M and M C P and our proof
provides an algorithm for computing these graphs from the graphs for
NcP.

In §2 we collect for the convenience of the reader some facts about
the basic construction, fix the notation and prove some useful lemmas.
We proceed then with the proof of our theorem. Furthermore, we give
some examples showing that the converse of our theorem does not
hold: if N ¢ M and M cC P have finite depth, then N C M need
not have finite depth, in fact N C M need not even be amenable in
the sense of Popa ([Po4]).

In §3 we give an abstract characterization of intermediate subfac-
tors M of a given irreducible inclusion N C P in terms of Jones
projections in N’ N P;, where N C P C P; is the basic construction
for N C P. This allows us to recognize intermediate subfactors by
looking at the projections in N’ N P; and reconstruct the subfactor
from these projections.!

2. The proof of the theorem. Let N C M be an inclusion of II,
factors with finite Jones index [M : N]. We denote by L%(M, try)

ly. Kawahigashi informed us that A. Ocneanu has a characterization of intermediate sub-
factors using his Fourier transform.
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the closure of M in the Hilbert norm ||x||, = tras(x*x)!/?2 induced
by the unique trace try; on M. Let e : L2(M, try) — L*(N, try)
be the orthogonal projection and let JM L2(M , tryr) — L*(M , tryy)
be the canonical conjugation defined by J3/(x) = x*, x € M viewed
as a vector in L?(M, try). The algebra M; = vN(M,e¥) =
(M, e}{‘,l ), i.e. the von Neumann algebra generated by M and e¥ in
B(L*(M , tryy)) is called the basic construction for N ¢ M ([Jol]).
We recall ([Jo1]):

(1) eMxel = E¥(x)eM , where E¥: M — N is the unique trace
preserving conditional expectation from M onto N.

There is a unique trace try, on M; such that try, (xed) =
[M: NI ltry(x) forall xe M.
Y
(7) M =spanNeM N ([PiPol]).

It is easy to see that N C M has finite depth iff M C M, has finite
depth iff sup, dimZ(M' N M) < oo iff supy dim Z(M' N My) < oo
iff sup, dim Z(M' N My, q) < oo iff sup, dimZ(N' N My,) < oo iff
supy dim Z (N’ N My,;) < oo (see for instance [Po2] for a proof).
We will use at various instances the following simple abstract char-
acterization of the basic construction ([PiPe2]): Let N C M be an
inclusion of II; factors with [M : N] < oo and let P be a II; fac-
tor containing M and a projection p such that [p, N] = 0 and
EP(p) = [P : M]7'13y = [M : N]"'1,, then P is the basic con-
struction for N C M, i.e. there is an isomorphism from M; onto P
leaving M pointwise fixed and carrying eN to p.

It will be useful for the proof of our theorem to study the basic
construction for certain reduced algebras. This is done in the next
few lemmas.

LEMMA 2.1. Let N ¢ M be 11, factors, [M : N]<oo. Let p€e N,
q € N'NM be projections and consider the inclusion qpNpq C pgMpgq
with trace ttp p1pq(qpxpq) = trar(p) "' try(g) "t trar(paxpq), x € M.

Then the unique trace preserving conditional expectation E”;’%"q” :

pqMpq — pqNpq is given by

Egg]@gpqq(pqqu) =tra(q) "' pEN (axq)pq, x e M.
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Proof. The proof is a straightforward computation and left to the
reader. O

Recall that N C M is called extremal iff trpr|nyaar = U IN A
([PiPo1]), which happens for instance whenever N C M has finite
depth.

LEMMA 2.2. Let N C M be an extremal inclusion of Il; factors,
[M:N]<oo andlet NCM C M, =(M,eM) be the basic construc-
tion. Suppose we have projections p € NN NM and q € M' N\ M, with
tryr(p) = trag (q) such that tra (pgedl) = [M : N1 try(p). Then
(1) Npg C (pMp)q C paMipq

is the basic construction for the pair (Npgq C (pMp)q) ~ (Np C pMp).

Proof. Note that

[apMDpq : Npq) = [pgMipq : pgMpq] = try(p)*[M : N]

since N C M is extremal ([PiPol]).
Consider e := tra(p)~'pged pq € pgMipgq, then

trqulpq(e) = tI'M(p)—z try, (e) = trM(p)—3 try, (pqe]]\‘//[)
=try(p)"*[M : N1~ = [pgMipq : pgMpql™".
Let m be the unique element in M satisfying med = gel!,

ie. m=[M: NJE)(geM). Then m € N'n M. We have 2 =
tras (p) 2EM (pm)pge¥ pg = e, since by hypothesis

[M : N1 trar(p) = tra (pgedl) = trag (pmedf)
= try, (BN (pm)ey() = EXf (pm)[M : NI,

which implies E¥ (pm) = trps(p). In order to see that (1) is indeed
the basic construction we use the above-mentioned characterization
of the basic construction ([PiPol]). Since e clearly commutes with
Npg, we only need to check that

M — —_
(2) EﬁZM};];q(e) =tra(p)"'[M : N7 pq.
By Lemma 2.1 we know that
M, _ M,
(3) Eporpg (€)= v (p) *pEy (geN @)pg

= try(p)"2pm[M : NI"'m*pq
= try(p) *[M : NI"'pmm*pq.
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Computing traces on both sides of (3) gives
trar(p)? = try (pmm*pq) = |lpm|3 tray ()
and hence
lpm — p|3 = lpm||3 — trar(p) = 0,
i.e. pm = p. Note that this implies in particular that pqeﬁ,’ = pe¥

(the condition pm = p 1is actually equivalent to the condition on the
traces in the statement of the lemma). Thus

M — —
E} i (€) =ty (p)~'[M : N1 'pq,

which completes the proof. O

REMARK 2.3. Note that if N C M is extremal, given a projec-
tion p as in the lemma, we can always find a projection ¢ € M’ N
M, such that try (pgep!) = try(p)[M : N17', trp(q) = trae(p).
Namely, let g := JypJy € Jy(N'NM)Jyy = M' N M;, where Jy,
denotes as usual the canonical conjugation on L?(M , try;). We have
then clearly trys (q) = try(p) (extremality) and tras (pJMpJMe]Q,I ) =
[M : N 'try(p) since pJypJyedd = pe.

The proof of the following lemma is trivial.

LEMMA 2.4. Let N ¢ M be 11, factors, [M : N]< oo, pe N a
projection and N C M C My C ... the basic construction. Then

pNp CpMp C pMip C ...

is that basic construction for pNp C pMp .

We describe now the construction which will be used to prove the
theorem. Let
(4) McPcCcQ@Q CcQC...

be the Jones tower of factors obtained by iterating the basic construc-
tion for M c P. Similarly, let

(5) NcPchPcCchC...

be the tower for N ¢ P. Notethat N c M c P Cc Q; C P, C
B(L%(P, trp)). Let O, = (P, eg‘) be the basic construction for
Q,C P ,then PCQ,Cc P, c(Q,CP,CB(LP, trp )) . Continuing
this construction we obtain

(6) NcMcPcQ cPcOhcPhcOscPcC...,
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where Q;_1 c P, Cc Q; = (P;_y, eg ') is the basic construction. If we
set a:=[M:N], p:=[P:M], then af =[P : N] and the indices
of the various inclusions are indicated as follows

(1) Nc*McPPcPQicoPceO,cPPcPs5c...,

and

(8) e C* O P Py P Qg € Po_y C® O

C? Py f Qgpeyy C* Popeyy C°
We will denote the Jones’ projections in the following way: for in-
stance ¢*~' denotes the Jones projection which implements the con-

2k—1
ditional expectation from Py, _; onto Qr_; -
The computation in the next lemma will be used in the theorem.

LEMMlz)A 2.5.}D With the n}gtatzon as above we have »
1 E ~2k+l e 2k =a e 2k and hence e 2k+l e 2k e 2k+l _a e 2k e 2k+l
( ) Q2k+l ( PZk—l ) P P P,

Q 2%+ 2%kl % 2%
k>1.
P, P Py, P, P, , P
(2) E;*(ep* )=~ 1eP%1 and hence e 2"e,,”‘ lep* =B le ek
Oy T2 Oy, Oy T2t et L ak—1

kZ 1: (Ql :=Q1)'

Proof. The proof of (1) and (2) are identical, so we prove only
(1). Since eé” € Qyi41 > We have that

P, P P P
2kE 2k+1 e 2/c —_ E 2k+1 e Zke 2k — E 2k+1 e 2k .
QZk 2k+1( Py ) 2k+1( 2%k Py 1) sz+1( 2k —1)
By [PiPol] we know that there is a umque element m € Py, such that

E132k+l( 2k ) —_ E 2k+1 (e 2k )e ~2k — me ~zk Applylng EQ2k+l to bOth

k1 Pt Pyt

sides of the equatlon glves

e N—1 1 Porsr ¢ Pk ~11 _
_trP2k+l(er) E, P ( ) BI[P:NI''1=a"'l.
Since
e132k+l ePZk eP2k+1 _ e{)zk+l ePZk e{>2k+l eP2k+l
2Ue+1 Pyeer” P 2k+l Pyes Qe P
P
p— E 2k+1 (e 2k )eP2k+1 R
k+1 21 2%
the second part also follows. o

We restate now the theorem and give then the proof.
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THEOREM 2.6. Let N C M C P be an inclusion of 11, factors with
[P: N]< oo and assume N C P has finite depth. Then N C M and
M C P have finite depth.

Proof. (a) We show first that M C P has finite depth. We actually
prove the following statement by induction:
9) (PCQCQsC- - COx)
=~ (Pfi—1 C fym1PaSko1 €+ C frc1 P fi1) s

P P P . e
where f; ;= eg e Q3 ---e 21 (note that f; is a projection since all the
L3 2k+1
P, .
e ’s commute). First we show

o,
P P~ P P, P
(10) (PCQ1CQy)~(Px~ PeQ1l C eQ‘l QzeQ‘1 C eQ‘leeQ“).

Since O, = (P, eg‘) we have eg‘ Qzeg‘ = Qleg1 and therefore (P C
1 1 1 1
Q1) ~ (Peg‘ C Qleg‘) and hence

P P P P
(11) (PC Q) CQr)=(Pey CQiey C(Qiey , Pey'))
1 1 1 1
P P ~ P P P

where the last isomorphism is checked by using again the abstract
characterization of the basic construction ([PiPo2]): Set e := eé‘ e,f‘ eg‘
1 1

and note that actually eheh = el Thus e isa projection in el PzeP‘
Q- P P » Q" “7Q,
of the right trace, namely f. Clearly [e, Pey]1=0 and it remains to
1
show that
0. Pe !
1

(12) E2 % 0) = plef.

P A
eg, &g,

Py

To simplify the notation we set 4 := eg‘ Pzeg‘ and we recall that
1 1
—_——w

0, = span P, eg‘ P, . We need to check that
1
P_ P _ P _ P
try(eg ey e) = B 1trA(eQ'ler‘l) ,
forall x € Q,. Let y € Q; with eg‘ xeg1 = yegl , then
1 1 1
P_P P P P P P
trA(telerl,ePlte,) =[P : Ql]trpz(yeQ‘leP‘) = atrp (vep')
_ _ P
=[P : P) ety (y) = (B) ' atrp,(vey)

- P _P
=p 1trA(eQ’ler‘l).
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This proves (12). In particular we have (P C Q;) ~ (Peg‘l - eg‘l Pzegl)
(note that this implies already that P C O, and hence M C P have
finite depth since P C P, does (assuming we know that reduced sub-
factors of finite depth subfactors have finite depth). Since we want to
get an explicit description of the higher relative commutants, we want
to prove more, namely (9)).

For clarity of exposition let us also do the next step of the induction

Since P ¢ P, C P, is the basic construction, eg e P NP, e Q
3

PiNPy, trp (eg‘) = trPA(e}}) =a~!, we only need to check
1

(13)  wp(egesey) =[P P trp(eg) = [P: N] o™

in order to be able to apply Lemma 2.2. By [PiPo2] we know that
elfz =[P:N ]e?ef: e;,)?’ell,) and hence

P _P, P P P P

trp4(eQ‘leQ~33eP) [P: Ntrp,(eg ep'ep' ePSePZeQ)

P, P, P

PZ 3
=[P:N]a™! trp, (e ep ep'ep eQ ) (Lemma 2.5)

_ 1 PP, P P,
=a trp“(eQ ep'ep' eQ )
=a g trp4(egle§te) (Lemma 2.5)

=[P: NI 2trp (e)) = [P: N] 207,

Thus we can apply Lemma 2.2 to (P C Q) =~ (Peg‘ C eg‘ Pzegl)
1 1 1

(Pe C eQ PzeQ P3) and obtain
1 1

(PCQrCQ4)=(PfiC fiPafi C [iPsfr).

This shows (9) for k =1, 2. Now suppose (9) holds for k, and we
will show it for k + 1. To this end it is enough to show that

(14) (Qak—2 C Q2 C Qrict2) = (i Pak—2Sx C fi PaucSi C fiePors2Sx)-

Note that f,_, € Py,_,, thus by Lemma 2.4 (and [PiPo2]) we know
that ﬁc—2P2k—2f/‘c—2 C fl'c—-ZPZkfl‘c—2 C f}c—2P2k+2f}c——2 is the basic con-
struction. We want to apply Lemma 2.2 with N « f; _,Py_>fi_2,

o fe2Putias, My < fioaPua Sz, P o fiog and ¢ <

Q”‘“f _p. Since fi_ 2P _2fi—2 C fi—2Poxfr_» is clearly extremal
2k+1

(because P,;_, C Py, has finite depth) and tr fo Pyt _z(el?z"+1 Ji—2) =

2k+1

Ql Q3
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try p g ( fi—1) = a~!, we only need to check the trace condition in
Lemma 2.2, i.e.

(15) tl'fk_zp

2k+2

S Pt “lrp . A—
f ke g ) = o PN
But using [PiPo2] and Lemma 2.5 we compute

JeaPutis _ k-1 P,
trflc—2P2k+2fIc-2(ﬁcefk‘ZPZk_sz_z) =a tI‘szu (‘ﬁcePz )

2%—2
P, P, P P
ok ) Kl ol el o 2%
(ﬁc Pyt Pyy Py P2k—l)

=o* [P N]trp

2k+2

k-1 . —1 4. Py Py Py Py
=a* '[P : Na trp2k+2(ﬁc_leP2k_leP2k_2e % esz)
k-2 P, Py i Py
=« tr _1€ e €~
P2k+2 (ﬁ{ 1 PZk—l sz—z sz)

_ _ — P.
= o ta B rp  (fisiep® )

2%k+2 U1

=[P:N]2* trp (fou1) =[P : N 2.

Applying Lemma 2.2 gives (14) and completes the induction, i.e.
(9) holds. Therefore we proved that

(16) P'NQy = fr—1(P' N Py) fr—t, 1<r<k,

which implies that P C Q, and hence M C P have finite depth since
P C P, does by assumption (P C P, has finite depth iff N C P has
finite depth, [Po2]).

(b) The fact that N C M has finite depth follows now from a
simple duality argument. We can choose P_;, M_; such that P_; C
M, ,cNcMcPand P ,c NcPand M.y C NC M are
basic constructions. P_; C N has finite depth since N C P does
by hypothesis and hence M_; C N has finite depth by what we just
proved. But M_; C N has finite depth iff N C M has finite depth,
which completes the proof of the theorem. O

The main motivation for giving a detailed proof of the theorem is
the fact that we want to obtain information on the principal graphs
(see [GHJ] for terminology) for N ¢ M and M C P in terms of
the principal graphs for N ¢ P. Some information can indeed be
obtained by looking at the Bratteli diagrams of the inclusions of higher
relative commutants associated to N C P. We summarize in the next
corollary what can be read off the above proof.

COROLLARY 2.7. Let N C M C P be as in the theorem. Then the
Bratteli diagram of N C M (from 2 to 2 steps) is obtained as a
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subdiagram of the Bratteli diagram for N C P (from 2 to 2 steps).
Similarly, the Bratteli diagram for P C Q; (from 2 to 2 steps), which
is the “dual” Bratteli diagram for M C P, is obtained as a subdiagram
of the Bratteli diagram for P C P, (from 2 to 2 steps), which is the
“dual” Bratteli diagram for N C P (from 2 to 2 steps). Furthermore,
the method in the above proof gives an explicit algorithm to compute
these Bratteli diagrams (see (9), (16)).

Note that the corollary generalizes what happens in the situation
N CNxHCNxG, where H C G are finite groups and H is a
subgroup of finite index of G (see for instance [KY]). Even for these
subfactors it is impossible to find a general and more explicit relation
between the principal graphs of the “big” inclusion and the ones of
the two “smaller” inclusions.

Let us also remark that since finite depth subfactors are classified
by their canonical commuting squares or paragroups ([Poel], [Ocl]),
our theorem can be viewed as defining a quotient of the canonical
paragroup associated to N C P by the one associated to N C M :
the result is again a paragroup, namely the one associated to M C P.
As pointed out previously by Ocneanu, the quotient G/H of two
groups (viewed as paragroups) H C G with [G: H] < oo is always a
paragroup. We intend to explore these ideas further in a future paper.

We mention that Popa has shown independently the analogous
statement of the theorem with “finite depth subfactor” replaced by
“amenable subfactor”, which does not imply our theorem.

Finally we give some examples of finite depth subfactors N C M,
M C P such that N C P is not of finite depth and/or amenable
in the sense of Popa ([Po3], [Po4]). Let N be the hyperfinite II;
factor and consider N C N Xq Zy C (N Xq Zy) g Zy =: P, with o
and S outer actions of Z, on N such that period () = co. Then
N C P has standard graph D, i.e. is not of finite depth ([Po3]).
Haagerup showed in [Ha] that if there are subfactors N ¢ M C P
of the hyperfinite II; factor where N C M and M C P have index
2 resp. 4cos’n/5 (hence are of finite depth), then N C P cannot
be amenable. Another such example was mentioned to us by V.F.R.
Jones: take PSL(2, Z) = Z,+Z3; with generators a and . Let a and
B act on the hyperfinite II; factor by properly outer automorphisms
such that the action of PSL(2, Z) is ergodic on central sequences
([Jo3]) and consider the inclusion N* C N C N xgZ3 of index 2-3 =
6, which cannot be amenable since all the central sequences for P
contained in the subfactor are trivial ([Bil]).
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Given an inclusion of II; factors N C P, [P : N] < oo, we would
like to determine all intermediate subfactors of N C P from looking
only at this given inclusion. This can indeed be done and we settle
this problem in the following section.

3. Abstract characterzation of intermediate subfactors. Consider II;
factors N ¢ P, [P : N] < oo, not necessarily of finite depth and let
N C P C P; be the basic construction. If there is an intermediate
subfactor N ¢ M C P, then the Jones’ projection ef, € N'N P; can
be abstractly characterized among the projections in N’ N P;. Let us
first collect the properties of el .

ProrosiTION 3.1. Let N C M C P be 11y factors with [P : N} <
c©. Let NNC NCcPchP, M.{CNCMand M C P C Q, be
basic constructions with N Cc M c Pc Q; Cc P, and N, Cc M_, C
NcCcMCcCP. Then

(1) el eN'NnP.

(2) elel =el.

(3) Ep'(ef) =[P: MI™'1p.
4) e PeM—MeMCPeP
(5) eﬁeNeN—Eﬂ(eN Jer, and Ef (e ) =[P : M] e

Proof. (1)-(4) follow from properties of Jones projections, (5) is
proved using the method of Lemma 2.5. |

It will turn out that (1)-(5) characterize the Jones projections com-
ing from intermediate subfactors, but that actually not all these prop-
erties are needed to give this characterization.

Consider the basic construction N ¢ P C P;, choose a subfactor
N; € N such that Ny € N C P is the basic construction and and
define the set

IS(N, P) := {q € N’ n P, projection such that
P

(1)gey = ey
P,
(2)E,' (q) € C.
(3) Let m be the unique element in P satisfying
. P
gey ey = mef;, ie. m=Ep'(qefy ef)[P: N1.
Assume that m is a scalar multiple of a projection.}
Note that (2) is equivalent to requiring that Elf‘(q) = trp(q)lp

and that (3) does not depend on the choice of the subfactor Ny C N
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(two different choices are conjugate by a unitary in N ). Furthermore,
it is clear that we always have 1, el € IS(N, P) and that every
Jones projection ef, coming from an intermediate subfactor M lies
in IS(N, P). Conversely, we prove that any projection in IS(N, P)
is a Jones projection coming from an intermediate subalgebra N C
McP.

THEOREM 3.2. Let N C P be I1; factors with [P : N] < oo. Then
every projection q € IS(N, P) implements a conditional expectation
from P onto the intermediate subalgebra M := {g¥ NP. If M isa
factor, then its index [P : M) in P is equal to trpl(q)'l. In particular,
g =1 corresponds to the subfactor P and q =e%; to N.

Proof. Let q € IS(N, P) and m = Eﬁ‘ (qeﬁ,’leﬁ)[P : N] = Ap for
some A € C and a projection p € P. We show first that ¢ implements
a conditional expectation from P onto M := {g} N P, a finite von

Neumann algebra. Since ¢Pg = span qu}\‘," Ngq =span N qe,{‘,’l gN , we
need to determine gey g. But
1

qe}\}’lq =[P: N]qe}\}’1 eﬁe}flq =[P : N]A%pelp.
We first compute 4:
trp(p) = A" trp (qef\‘,’leﬁ)[P :Nl=A"Y4P:N]L

. P
Since me}\‘,’l =[P : N]Ep (qe}t,’1 ef,e}\‘{l ) =trp, (q)e]]\‘,'1 , we get that pe}\‘f] =
e}:{lp is a projection. But pel,{‘,’l = A1 trpl(q)e]{‘{l , thus A =trp (q).

We show now that pefp = trp(p)pq . It is easy to see that Ef(m) =
[P: NI 'ly, hence Ef(p) =trp(q) '[P : NI"'1y = trp(p) . Thus

Ipefp — trp(p)pql3
= trp (efpefp) — 2 trp(p) trp (gpefp) + trp(p)* trp (q)
= trp(p)’[P : NI™' = 2 trp(p) trp (efp) + trp(p)*[P : N]! = 0.

This implies that qe]{‘,’lq = [P : Nltrp (9)*trp(p)pq = trp (q)pg. We
have therefore qPgq = (span NpN)gq, in particular gPq C Pq. This
allows us to define explicitly the desired conditional expectation. Let
x€P, yeP with gxq =yq, then y = E(x) :=trp (q)‘lE;:‘ (gxq).
Suppose x = x* € P, then yq = gxq = (gxq)* = (¥9)* = qy, which
shows that E(x) € M forall x € P. If x € M, then E(x) =
tr(q)‘lEf:'(xq) = tr(q)“xEﬁ’(q) = x. Furthermore, if we let try,
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be the trace on M induced from the trace on P, then try(E(x)) =
tr(g)~ ' trp (gxq) = tr(q)~ ' tr(g) trp(x) = trp(x), i.e. E is indeed the
unique trace preserving conditional expectation from P onto M with
gxq = E(x)q, for all x € P. Hence gqPg = Mg = (spanNpN)gq,
which implies M = span NpN . Note that factoriality of A/ does not
follow automatically. Using the Pimsner-Popa estimate ([PiPol]) it is
now easy to see that A(M, N)~! = trp(p)~! (A(M, N) denotes the
generalized index for non-factors ([PiPol])) and hence A(P, M)~ =
[P : Nltr(p) = trpl(q)‘l, which says [P : M] = trp[(q)‘1 if M isa
factor. a

The following corollary gives the desired abstract characterization
of Jones projections coming from intermediate subfactors of an irre-
ducible inclusion N C P.

COROLLARY 3.3. Let N C P be 11 factors with [P : N] < oo and
suppose N' NP = C. Then IS(N, P) is precisely the set of Jones
projections coming from intermediate subfactors N ¢ M C P and
gives therefore a complete description of the intermediate subfactors of
NcCP.

Proof. Apply Proposition 3.1 and Theorem 3.3. O

REMARK 3.4. (1) Property (3) used in the definition of the set
IS(N, P) can be replaced by the following condition: (3) g¢gPqg C
Pg . One can then show that (1), (2), (3)" are equivalent to (1), (2)
and (3), thus giving an alternative definition of the set IS(N, P).

(2) Conditions (1)-(3) in the definition of IS(N, P) do not in-
sure factoriality of the intermediate subalgebra M obtained from
q € IS(N, P) in general. Of course, if N C P is irreducible, then all

intermediate subalgebras are factors. Condition (2) will imply facto-

riality in many cases: if M is not a factor, then EII:‘ (el) = Eﬁ(eﬂ)

is a central element, i.e. of the form Eﬁ‘ (el)) = YI_, aip;, where
Z(M) = @_,Cpi, Si_pi = 1p = 1ys. Then Ej'(eL,) will be a
scalar iff a; = const.,, 1 < i < r. Whether this happens or not will
depend on the traces of the minimal central projections p,. For ex-
ample, if N C M C P is an intermediate subfactor, then MV (M'NP)
is an intermediate subalgebra, which will not be a factor in general,
however the Jones projection corresponding to it may a priori be in
IS(N, P). Conversely, if M is an intermediate subalgebra (not nec-
essarily of factor) of N C P, then it is not clear whether (3) holds in
general or not.
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(3) Since we are interested mainly in irreducible subfactors, the
corollary gives the desired description of intermediate subfactors in
terms of information just coming from N C P. Furthermore, the
Jones projections coming from all intermediate factors are contained
in the set IS(N, P), which will be enough information in many con-
crete examples.

Subfactors N C P with intermediate subfactors as in the corollary
are of course easily obtained from group actions, i.e. N:=RC P :=
R x G, G a finite (for instance non-simple) group acting properly
outer on the hyperfinite II; factor R. We define

DEeFINITION 3.5. Let N C P be II; factors, [P : N] < oo, then the
inclusion N C P is called maximal if there is no subfactor M of P
such that N ¢ M C P otherthan N and P themselves. Equivalently,
NcP, NnP=C, is maximal iff IS(N, P) ={1, e}}.

Note that clearly R € R x G is maximal iff the group G has only
the trivial group as a subgroup. Since an inclusion N C P can only be
non-maximal if the index is a product of two indices, we see that all
inclusions of index < 4 and those with index € (4, 8 cos? %) are cer-
tainly maximal. We gave above examples of non-maximal inclusions
at index 4, index 8cos?%Z and index 6.
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