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We consider the study of the tent spaces over general (possibly tan-
gential) approach regions and their atomic decomposition. As a con-
sequence, we obtain some pointwise estimates for a class of operators,
using the duality properties of a certain type of Carleson measures.
In particular, we can get the boundedness of a family of bilinear oper-
ators defined on the product of ¢ and some space of measures, into
a Lipschitz space; we give yet another proof of the pointwise bounded-
ness for the Fourier transform of distributions in H”? and we improve
and generalize the Féjer-Riesz inequality for harmonic extensions of
H? functions.

Several authors have studied the boundedness of maximal oper-
ators defined by means of general subsets. For example, in [8], a
Hardy-Littlewood type operator is associated with a collection of sub-
sets Q, C R¥!  x € R". The natural way to define the balls for
these sets is to take the subset of Q, at level ¢, that is, the set of
points z € R" so that (z, t) € Q,. Our idea is to also replace the
cone I'(x) = {(y, ) € R™! : |x — y| < t} in the definition of the tent
spaces (see [2]), by a more general family of subsets of R%"!. As an
application, we look at a family of integral operators (e.g. the Fourier
transform) as the action of continuous linear forms, and using the
duality established between certain spaces, we obtain pointwise esti-
mates that will allow us to give another proof of well-known bounds
for the Fourier transform of H? functions (see [4], [12]). We can
also improve the Féjer-Riesz inequality for harmonic extensions (see
[5]1) and we find a generalization considering Hardy spaces defined in
terms of arbitrary kernels (see [14]). Our main tool will be given by
the properties that the tent spaces satisfy (see [2], [1], [10]), and in
particular their relation with a class of Carleson measures, for which
we find a suitable atomic decomposition. We begin by giving some
basic definitions.

DEFINITION 1. Let Q = {Q},.ge be a collection of measurable
subsets, where Q, C R*"!. For a measurable function f in R we
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define the maximal function of f with respect to Q as

AZ(F)x) = sup_ |, 0.

(y,1)eQ,

We will always assume that Q is chosen so that AF (/) is a measur-
able function. We also define

TG =T, o={f:43(/) e L"(R")},

with ||f |7z = |45 (/) rwe) -

REMARK 2. It is clear that if Q, =I'(x) then T§ is precisely the
tent space T2 of [2]. If Q, = {(x, ) : ¢ > 0} then AY(f) is the
radial maximal function of f .

DEFINITION 3. Suppose Q = {Q}, g is as above and F is any
subset of R*. We define the tent over F, with respect to 2, as

Fo=R¥"\ | J Q..
x¢F
We also set Q. (1) ={y €R*: (y, 1) € Q\}.
For a measure u in R™! we say that u is an (Q, f)-Carleson
measure (f > 1) and write y € ng if

o ul(Qg)
Hﬂllygg—sgp IQIﬂQ < o0,

where the supremum is taken over all cubes Q C R".

REMARK 4. If Q, =I'(x) then 1/75 = F, the usual tent over F. If
we choose Q) = {(x, t):¢> 0} then Fo = F xRt and it is denoted
by C(F).

LEMMA 5. Suppose F C R® and Q = {Q} g are as above. Then
(1) AZ(xz)(x) < xr(x) for all x €R".
) A°°(XFAQ)(x) = xr(x) ifand only if Q.NFo# @ forall xe F.
(111) If Q is a symmetric family (that is, if x € Q,(t) then y €
Q. (1)), we have that

={(y, 1) eR¥:Qu(t) C F}.

(it

In particular if Qy = x + Q, for a fixed Q C R™!, the symmetric
condition holds if and only if Q(t) = —Q(t), forall t > 0.
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Proof. (i) Observe that
1, if(y,t)¢Q,, forallz¢ F,

1 ~(y,t)= .
() XFn(y ) { 0, otherwise.

Suppose x ¢ F. Then if (y, ) € Qx we have that x(y,?) =0

Q

(by (1)), and this shows (i).

(ii) Ag;’(x}f;)(x) = xr(x) if and only if for all x € F, AZ(xz )(x)

Q o

= 1 if and only if there exists (y, t) € Q. such that (y, t) € Fg if
and only if QxNFo # 2.

(iii) That (y, t) € Fo meansthat y ¢ Q,(¢), forall x ¢ F, which,
by symmetry, is equivalent to saying that for all x ¢ F, x ¢ Q,(¢);
that is, Q,(¢) C F. a

A simple example of a symmetric family of sets of the form x + Q
can be found in the comments previous to Lemma 11. Another
example, for a general family of sets {2}, is given by defining
Qu(t) =(—n,-n+1),if ne€Z, and Qu(t) =(-n—-1,-n+1),
fn<x<n+l.

DEFINITION 6. We say that a measurable function a: R*™! — C is
an (Q, p)-atom if there exists a cube Q C R™ such that suppa C é; ,
and [lall < Q|77 .

We now give the proof of the atomic decomposition for the tent
space TS. We restrict ourselves to the case n = 1, but a similar
proof also works in any other dimension. A related result is given in

[6].

THEOREM 7. If Q = {Qy}xcr is a symmetric family of sets (as in
Lemma 5-(iii)), such that Q. (t) is an interval, for all (x,t) € R2,
then, for 0<p <1, fe T} ifand only if

2) f=2 %4,
J

where a; is an (Q, p)-atom and 3, |A;|P < co. Moreover,

1/p
1 Il ~ inf (Z W) ,

J

Where the infimum is taken over all sequences satisfying (2).

Proof. We first show the easy part, for which we will not make use
of the extra hypotheses on Q. The only thing to observe is that || - ”TS
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is always a p-norm, for 0 < p < 1 and hence, if f = Zj Ajaj, then
If 5> < 32;14;17llajll%» - But, by (i) of the previous lemma:
Q Q

”aj”%:; = /R(Aff(dj)(X))” dx

< [ oz g 0r dx <yl [ 1o dx <1,

and hence, llflll}g <Y AP.

For the converse we need the following observation: if f € T2
and A > 0 then {x € R: AZ¥(f)(x) > A} is an open set. In fact,
if AX(f)(x) > 4, then there exists a point (z,?) € Qy so that
|f(z, t)] > A. By hypotheses, we conclude that x € Q,(¢) and there
exists an & > 0 such that if |x — y| < & then y € Q,(¢). Again, by
symmetry, (z, t) € Q, and so AF(f)(y) >4 if |x —y| < ¢. Set now
M, ={xeR: Ag’(f)(x) > 2k} | and write M} = U]EZ , where I¥
is an open interval and I¥ “1, =@ if j# j'. Since fe T” I is
bounded for all j, ke Z. Set

a,-,kszjf’lkf(x/\— > xkﬂ),

19 Ik+lC1k lﬂ

where 4; = 2K+1I¥|1/P Tt is clear that suppa; j C IkQ and

ZI% kl? = ZZ"("“ |Mi| < ClIf |75 < oo,

and so it remains to show that f = 3, ; 4; xa; x and [la; il <

\I¥|71/7 . Let (x,1) € I¥ , and suppose |f(x, t)] > 2¥*!. Let y €
Q,(¢). Then (x, t) € Q, and hence y € M;,,. Therefore Q\(¢) C
Mk+1 and there exists a unique / € Z so that Q,(¢) C Il’“rl . Since

Q1) c I¥ then If*' c I¥. Butif If™ c I¥ and I # I' then
Ik“ nIl’$+§12 # @. In fact, if (z,s) € I"Jrl nIkJ’s‘) then Q,(s) C
I lk“ NIk k+1 , which is a contradiction. Thus,

X (x5 1) = > xmbx,n=0

Ik+1C1k , Q

Therefore, for all (x, ) €[ J’.‘,Q

laj,k(x, )] < 27D IE 1P = |1 VP
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Finally, if (x, #) € R2 and 2! < |f(x, t)| £ 2/*! then Q\(¢) C M;.
Let K € Z be the greatest integer satisfying Q. (¢) C Mg (it is clear
that we can find such a number since AF(f)(x) < o0, a.e. x €R).
Let s € Z so that Q(¢) c IX. We want to show that if

gj,k(x9t)=xl/k\(xat)— Z le\“(x,t),

7,9 k+l — gk T,Q
ricr

then 3°; ; g; x(x, 1) = 1. If Qy(¢) C I¥ then k < K. Suppose that
k < K and (x,t) € I¥ o, then IX C IF*! C If for some r € Z

and hence g; x(x,t) =0. If (x,1) € I?\Q then clearly j = s and
gK,s(x,t)=1. )

We observe that in the previous proof, we obtained the atomic de-
composition for all 0 < p < co. An immediate application of this
theorem is given by the following duality result. We first recall that
for the case when Q, is the cone I'(x), it was proved in [2] and [1]
that the space of Carleson measures of order 1/p (0 <p <1) could
be identified as the dual of the tent space 72 (see Theorem 16). For
the general case we are considering, we restrict our study only to the
inclusion needed in order to obtain the estimates we mention below.

THEOREM 8. Suppose Q is a family of sets satisfying the hypotheses
of the previous theorem and 0 < p < 1. Then, for all f € T} and

1/
:uEVpr

< W g leellypom -

[, s 0dutx, 0
R+

That is, Vo!? < (TB)*.

Proof. Let f € Th and u € Vgi/p, and write f = > jAjaj, asin
Theorem 7. Then,

[, ¢, 0dutx, 0
R+

<) Al [ laj(x, Bl dlu|(x, t)

< S Willajllcleld;,0) < 3 LI P llally 1P
J J

1/p
< (Z Mjl”) ol 0

J
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REMARK 9. (i) In the proof of the previous theorem, if p =1, we
can give a direct argument without using the atomic decomposition. In
fact, if f € T and if we consider the set F* ={y e R: AZ(f)(y) >
A}, then

(3) {(x, ) €R2:[f(x, )] > A} C FA.

In fact, if |f(x, )] > 4, A¥(f)(z) < A, implies that (x, ) ¢ Q,
and, hence,

(x,t) € R\ ( U @ )
z¢ F*
As we saw before, F* is an open set and hence F* = (J ;I; . Moreover,

by symmetry, Fé cy j 17.\(2 , and hence, for u € Vgi , we have

|/2f(x, 0 du(x, 1
R+

< /O TG, ) €RE 1 f(x, )] > A dA (by (3))
</ |m<FQ>dAs; |

o
<luly [ U2,
J

di= |l N -

(i) If Q satisfies that for every compact K C R2, the set {x € R:
Q. NK # @} has finite measure, then using the ideas of [2], it is easy
to show that in fact equality holds; namely Vs;/ P = (T8)*. We do not
know what happens in the general case.

As was proved in [4] the non-tangential maximal function and the
radial maximal function of Poisson integrals of functions (distribu-
tions) in the Hardy space HP(R™) have an equivalent L?-“norm”,
p > 0. This leads us to consider how this result could be extended for
all functions in the tent spaces 72 relative to both cones I'(x) and
lines {(x, t):¢t > 0}. From the point of view of the dual spaces we
see that the latter is a much bigger space than the former. We give the
details in what follows.

EXAMPLE 10. If Q, = {(x, t): ¢ >0} then Og = C(0) = O x R*.

Let us denote V3, = V§, where € is the vertical line above x.



TENT SPACES AND APPROACH REGIONS 223

First suppose that 0 < o < 1, f € LY/(1-9)(R") and o is a positive
finite measure in R*. Then

du(x,t)= f(x)dxda(t) e Vgy.

In fact, if O C R" then
[ aux, 0| < ( [ i, z)|dx) ( / da(t))

Cc(0) 0 0
< llol I oo O

An example of a measure that is in 7® but not in ¥V, is the Dirac
mass at the point (xg, tp) € R™!. This follows by considering a
collection of cubes converging to xp .

However, for the case o > 1 we get that

V;gd = {0}.

To show this fix a cube Q C R" and N € Z*. Decompose Q in
2"V subcubes Q; such that Q;NQ; =@, i # j, @ =J;Q; and
|Qi| = 1Q|/2™V . Now, if u € V2, we have

rad

KI(C(@) < lu (L_J C(Qi)> <@ <Gy Ier

an o
=Cu)Y %ngN = C,|Q|*2"¥(1=®) 0 as N — 0.
i=1

Hence u=0.

Our first application of the duality result, deals with pointwise es-
timates for the Fourier transform of functions satisfying an H?-type
condition. Consider an increasing function w: Rt — Rt, v a C!
change of variables. Define the sets Q, = {(y,#) € RZ2 : [x —y| <
w(t)}. It is clear that Q, satisfies the hypotheses of Theorem 7. Ob-
serve that

(4) In={(»,)€eR2:d(y,R\I) > y(t)}.

We say that a function f belongs to Hj if PI(f)(x,t) = P, * f(x)
belongs to the space T35, where P is the Poisson kernel in R.

LEMMA 11. Let w and Q be as before, and suppose 0 < p < 1.
Consider the function ¢(t) = w'/P=2(t)y'(t). Then, if g € L® and
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du(yv,t) = g)e(t)dydt, we have that u € Vl/p and Hﬂ”VQW <
Cpllglloo -

Proof. Let I = (a, b) Then, by (4):

¥, R\D)
lul(Ig) < // Vet dtdy

(a+b)/2 y—a)
<&l (/ /O w20y (1) dtdy
a

b v (b-y)
+ / / WP (1) (1) dtdy) .
(a+b)/2 Jo

y(r)
/ w22ty (1) dt = 2 piir-1,
0 l-p

But,

and hence,

— (a+b)/2
o) < Gpllglleo (/a - aay

b
+ / (b — y)l/p=! dy>
(a+b)/2
< Cyliglloolb —a)V. 0

ProrosITION 12. Suppose v, Q, ¢ and 0 < p < 1 are as in the
previous lemma. Then, for f € H?,

00 -1
7601 Gl ([ e o0y ae)
Proof. Fix 0 <& <1 and set 9¢(t) = 9()X(c,1/¢)(t) . If we define
dus(y,t) = e *¢,(t)dydt, by Lemma 11, we have that “ﬂg”VQl/p <
Cp. Now, if f € HE then P, * f € T}, and by Theorem 8,

< Collf g -

[ROLTN)

But,

~

1/¢e
| P f0au. o 1) [ e Fip@dr. o
R £

+
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ExAaMPLE 13. (i) If w(¢) = ¢ in the previous result, we get the
classical estimate for the Fourier transform of functions in H? :

1fG0l < Golxf P71

We will give more details about this result in Corollary 20.

(i1) If for example w(t) = e/ — 1, so that Q, is a domain con-
taining the cone I'(x), then ¢(¢) = (e — 1)!/7=2¢?, and the integral
Jo© e~ 2*ltp(¢) dt converges if and only if |x| > (1—-p)/(27p) . Hence,
fx) =0 if |x] < (1 =p)/Q2np) and f € H} . Therefore, since
f(x) = f(rx) € HY, if f € HE, one finds that f(x) = 0, for all
xe€R,andso H5 =0.

(ii1) The above calculations show that, in fact, a necessary condition
for HE to be nontrivial is that the Laplace transform of ¢,

ZLo(x) = /Ooe_x’(o(t) dt < oo,
0

for all x # 0, which, for example, happens if for all s > 0, there
exists a constant C; > 0 such that y(¢) < Cses?, for all ¢ > 0.

We give now a characterization of the class of Carleson measures
in terms of the boundedness of the mean operator. Some related
questions can be found in [7] and [9]. Given a symmetric family
Q such that Q,(¢) is an open interval and for all intervals I C R
there exists (x, £) € R2 with Q,(¢) = I (these conditions hold if, for
example, Q is given by a function y as in Lemma 11), we define the
following mean operator:

1
Taf (5. ) = gy /Q Jwar

We extend the notion of Carleson measure to consider the case of
weights simply by saying that the pair (u, u) € V§ if

(5) u|(Ig) < C(u(D))®,

where u is a positive and locally integrable function in R and u(/) =
Jyu(x)dx. Thus, in our previous notation, x € V§ means that
(u, 1) € V§. Recall that 4, denotes the class of Muckenhoupt’s
weights (see [5]).

THEOREM 14. (i) Ifa>1, p >0 and Tg: LP(R, u)— L*?(R2, du)
is a bounded operator, then (u,u) € V§, and ||u|| < ||Tql|*?, where
||l is the best constant in (5).



226 MARIA J. CARRO AND JAVIER SORIA

(i) Ifue Ay, p>1 and (u,u)eV§, a>1, then To: LP(R, u)
— L*P(R2, dy) is a bounded operator, and ||Tg|| < C||p||V/(P).

(iii) Fix 1 <p < oo. Then, p € V§ if and only if Tq: LP(R) —
Lo?(R2 , dy) is a bounded operator.

(iv) Let &y ;) denote the Dirac delta at (xo, to) € R} Then the

operator Tg: LP(R, u) — LP(R2, O(x,,1,)) 1S bounded, for all (xy, to)
€RY, and || Toll < Cp(u(Q, (10)))~"/7 ., if and only if u€ 4.

Proof. (i) Evaluate Tqf, if f = x;, to get
1Qx(2) N 1]
=22 > ea
and hence,
11)"® < |\ Toxrllerau < 1Tall X1l = | Tallw@!/?.

(ii) As we saw in Remark 9, if F' = {y e R: A (Tqf)(y) > t},
then —
{(x,s)eRL: Tof(x,s) >t} CF}.

If M denotes the Hardy-Littlewood maximal function, it is clear that
by symmetry, Ay f(y) < M f(y), and hence,

u({(x,s) R : Taf(x, s) > t}) < u(FY)
< llull((F))* < |ull(u{Mf > 3)*.
Using now that LP(u) C LP-*P(u), the classical Lorentz space,

W TSl @

o) /(ap)
<C (/0 P u({(x, 5) GREr :Tof(x,s) > t})a’t)1 ’

00 1/(ep)
< gt ([~ oot uat > )7 de)
0
= CllM DM 1 o < Cl DS

(iii) It is a trivial consequence of (i) and (ii).
(iv) We first observe that for all u€ L} , (0, u) € ¥V$, and ||6]| <

(u(Qx,(20)))~* . Hence, if u € 4, , we get the boundedness of Tg, by
(ii). Conversely, if f € L?(u),

1707 20 = [ fo o, O GRG0 dx

< C(u(Qx,(10)) 2SNl zry -
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Taking the supremum when || f||z,) <1,

{ 1/p' -1/p
S — w P+ (x)dx < / u(x)dx )
[Qyx, (20)] (/QXO(tO) () ) (on(to) 0 )

Hence,
1 1 p-
—_ ux)dx | | —— [+ w?P+(x)dx <C,
(Iﬂxo(to)l /QXO(,O) () ) (lgxo(to)l aw’ )
and by the hypotheses on Q, this implies u € 4, . O

We consider now the usual case when Q, is a cone, to obtain some
results in the classical theory of Hardy spaces.

DEFINITION 15. Suppose ¢ is a Borel measure in R*. We say that
o is a measure of order B, with f > 0, if there exists a constant
C > 0 such that

t
(6) /d|a|gczﬂ, forall £ > 0.
0

In this case, we write ¢ € M# and also ||g]|,» = inf{C: C satisfies
(6)}-

The following result corresponds to Theorem 8.

THEOREM 16 (see [2], [1]). For 0 < p < 1, the pairing (f, du) —
Jeon f(x, £)du(x, t), with f € TE, and p € V/P, realizes the duality

of T2, with V/p,
For our next result, we need to introduce a densely defined bilinear
functional. We will restrict the action of this operator, when consid-

ering distributions in the Hardy space H?(R"), to the dense subspace
% of those functions in the class . with mean zero.

DEeFINITION 17. Fix 1 < ¢ < 00. Suppose F:R" X R" - C is a
measurable function such that if we set F;(x) = F(z, x), z, x € R*;
then F; € LI(R"). Let a > 0. For g € %, set

Re(e)(x, 2) = [ g0)F(z,+x)dy.
We define, for 0 € M,

Tr(g. 0)(z) = /0 “(Re(g)(+, 2)* P)(0) da (),
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where P(x) = cn(1 + |x|2)~(**D/2 is the Poisson kernel in R", and
P(x)=tT"P(x/t).

EXAMPLE 18. Suppose ¢ = co and F(z, x) = e~**?, Then ||F||c
=1 and if g € %) we have that

Rr(e)(x, 2) = [ g)e 7 dy = eng(2).
Hence,
(Re(@)(- )+ PO) = [ e ™2(2)P(x)dx = 2(2)P2).

If 0 < p <1 and we consider the measure da(¢) = "(1/P-D-14¢,
then we have that ¢ € M"(1/P=1) since

tn(l/p 1)
/ dlo|(t) = I

n(l/p—1)
and so,
(] Py pp——
Mn(l/p—l) = n(]/p — 1) .
Therefore,

Tr(g. 0)(z) = /0 " #(2)Bi(z) P gy

= c,2(2) /°° o-2mtlzl (1 /p-1)~1 g
0
and the integral is finite since n(1/p—1) > 0.

THEOREM 19. Suppose 1 < qg< o0, a>n/q and 1/p =a/n+1/q,
sothat 0 <p<1. Then

|Tr(g, 0)(2)| < cnllollarllFzll orey 18 | a7 ey 5
for all 6 € M* and g € 5.
Proof. The proof is a consequence of the nontangential maximal

characterization of H?(R") (see [4]): ||g||lprre) =~ IIPI1(8)ll7> , Where
PI(g)(x,t)=(P;* g)(x). To estimate this quantity we use Theorem
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16, (T2)*=V/P 0<p<l:

Te(g. o)) = [ ([ PRe(e)w. 2)du) do
= [.e0) ([ PF .y +wdu) dydoty

+

= [ 0 ([ 2w -»FE vav) dydaty
= / PI(g)(v, t)F(z,v)dvda(t).
R:_+1
For a fixed z, consider the measure

du(v,t)=F,(v)dvda(t).

Then, we claim that g € V12 and |||, < ||o||pe||Fz|lze - Thus,

Telg, @< [ IPI@)@. Dl dla(w. 0

< PI(Nze el e < callollare 1 Fzlzell gl ae -

To prove the claim, it suffices to show that if f e LI(R"), 1 < g <
oo, 0 € M*, with 8 = 1/q¢' + a/n > 1 and we set du(x,t) =
f(x)dxda(t), then pe V¥ and (ull,s < ||o|laellf L. Now, for a
cube Q C R",

@ < ( /Q 7ol dx) ( / “ d|a|<t))

< I el @1V Mo llage1 Q1™ = 1 f el llare1QIF

and so, ||llye < 1S llzellolae- =

1/n

COROLLARY 20. If 0<p <1 and g € F(R"), then
18(2)| £ Co,pl 2" PV gl e
forall zeR™,

Proof. 1t suffices to consider the case 0 < p <1 and z # 0. We
recall that by Example 18 we have

Tp(g, a)(z) = cng(z)/o e—27rt|z[tn(1/p_1)_1 dt.
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But,
(o ]
/ o2tz n(1/p-1)-1 g,
0

— Clzl—n(l/p—l) /°° e_27cuun(l/p—l)—1 du = Cn plzl—n(l/p—l) .
0 ’

Hence, by the theorem,

1Tr (g, 0)(2)| < cnllollar | Fzllooligll e ey 5

that is,
Cn

E(_ﬁ—p_—-_l)_”g 2 s
which gives the result. O

Cn,pl&(2)||2|7"/P~D <

ReMARK 21. Corollary 20 was first proved in [4], using a differ-
ent approach. Later in [12], it was also proved using the atomic
characterization of H?. We want to give yet another simple proof
using now the duality of the H?” spaces. In [3] it is shown that
(HP(R™)* = BX/P=D: g « b < 1, where the norm on this Besov
space coincides with the Lipschitz norm of order n(1/p—1) (see [11]);

namely,
_ (A} £)(x)|
1 o= = S02 ity
heR™\{0}
where, ke N, k >n(1/p—1) and
; =~ (k
CHREDY (§) v s rm,

is the kth order difference operator. Now, we have the following

LEMMA 22. Fix yeR" and o> 0. Then

—ivé
le™ | o ~ Iy

Proof. Let k € N, k > a and suppose y € R"\{0}. Then, for
heR®
k

(Alze—iy- )(X) — Z (f) (_l)re—iy(x+rh)

r=0

k
=3 () e = e - e,

r=0
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Hence,
|(Afe™")(x)|* = (2 — 2cos(yh))*.
Thus,
Ake—iy* _ k/2
qup [GIDN_ (g ll = cosirh)
X€R" |h| heR™ {0} Al
heR™\ {0}
_ k/2
ueR" u
_ a/2
< Ck sup (_L_._Cosu—)(l — COS u)(k"‘a)/zlylo‘
ueR”* u
< Ckal¥l®s

since k > a. Conversely, we want to show that for any y € R"\{0},
there exists an 4 € R"\{0} such that |y| = |#|~! and 1 — cos(yh) =
1 —cos(1) > 0. In fact, if & = y/|y|*> then trivially |y| = |h|~! and
y-h=1. Hence

le™" || go. e 2 25/2(1 = cos 1)*/2 |y O

Thus, by the duality between H? and Br/P=D.% g . p <1, and
using this lemma, we find that if g € %

12091 = | [ sre d| < Nelle™ .o
< Co "7 Dliglp.

As a curiosity, and from the proof of Corollary 20, we see that

0 -1
e g~ ([T Bwetar) L aso.
bt 0

One can also get very easily that, for s > 0, 1 < g < oo we have for
the Besov space B3:7, |le=""||zs.« = |y|°. Hence (see [13]), since

(B;,q)* — Bo—os+n(l/p—l),q'

O0<p<l1,0<g<oo, O<s<n(l/p-1),
and
(F;,q)* - B;os-i-n(l/p——l),oo

O0<p<l, 0<g<o, O0<s<n(l/p-1),
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where ¢’ = 0o if 0 < ¢ <1, and F;'? is a Triebel-Lizorkin space
(see [13]), then, by a similar argument as above, we obtain

O < Cly= =D £ gew,
O0<p<l1, 0<g<o0, O<s<n(l/p-1),

and

0 < C D) e
O<p<l,0<g<oo0, O<s<n(l/p-1).

The following result gives the regularity of a harmonic extension in
the x-variable, when integrated against an A/* measure on ¢.

COROLLARY 23. Suppose 1 < g < oo, a>n/q and 1/p = a/n+
1/q'. For a function f € LI1(R™) and o € M* define

K(f, o)) = /0 S (Bos £))do().

(i) If 0<p <1 then,
K: LI(R™) x M* — BX!/P=1>

and
1K (S s o)igrom-n.o < Callollarllf [l 2w -

(i) If p=1, then
K: Li(R") x M* — BMO,

and
IK(f > 0)llsmo < Callollarellf Nl Lowe) -

Proof. We will only show (i), because the proof of (ii) follows sim-
ilarly. Since (H?(R"))* = BX!/7=1): then to show that K(f, o) €
BI1/P=1. we only need to see that

| £ 0K, 0)0)dy] < Cullolel sl
forall ge .. Set F(z, x) = f(x), for all z € R". Then,

[ 0K,y = [ o) ["(RxFIm dowdy
R R 0
= Te(g, 0)(2),
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for all z € R". Hence, by Theorem 19,

[ £, )0 dy| < Calolar S sl .

We now give another application of our duality techniques to es-
timate harmonic extensions to R%*! of functions in H?. The next
theorem gives, as a particular case, a generalization to higher dimen-
sions of the Féjer-Riesz inequality (see [S] Theorems I-4.5 and II1-7.57,
for the case p = 1), and shows that it can also be proved in all cases
0 < p £ 1. Moreover, in the previous theorems, the authors work
with the atomic characterization of H! and some extra conditions on
the kernel are required, that will not be needed in our proof. This
inequality gives the behaviour in the vertical ¢-direction for the ex-
tension ¢, * f(x), relative to a kernel ¢, with f € %, instead of
the well-known growth on the x-direction for the harmonic extension
u = PI(f); namely,

sup [ Ju(x, )P dx < C|f |5,
t>0 JR"

The proof is based in finding the right pairing for an appropriate Car-
leson measure.

THEOREM 24. If 0<p <1, Fe€ T2 and o € M"/?, then

sup [~ |F(x, 0] dlol(0) < 1ollyon 1 Flzy -
xeR"JO

Proof. Fix x € R* and set du(y, t) = dx(y)da(t), where J, is
the Dirac mass in R® at the point x. Then x € V'/? and |ul,w <
lo ||y . In fact, since p < 1, then if Q is a cube in R® we have that

~ 1ol
(@) < (/Qéx(y)) (/0 dlal(t)) <1Q1"2||o || pgrir -

Therefore, since (TZ)* = V'1/7 we get that
| iFe idieiw < [ 1Fw, dlduo . 0
<NFlze Nallyve < Noll el E iz, - O

For the next result we introduce the following notation (see [14]):
if fe %, 0<p<1 and we choose p € L' NL>®, [pap(x)dx #0
then we say that f € Hj if ||f||H: =g« fllrz < 0.
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COROLLARY 25. Let ¢ be as above, 0 <p <1.

(i) (Féjer-Riesz inequality, if ¢ is the Poisson kernel.) If f € H} ,
then -
sup [~ l(gex £)C0)|1"71 di < Co gl .
x€R"JO ?
(i) With more generality, if p < q <1, then for f € H) we have

sup [ l(g1x NI di < Coplf I

x€R

Proof. (i) Consider the function F(x,t) = (¢;* f)(x) and the
measure do(t) = t"/?~1dt. Then F € T2, and ¢ € M"/? . Hence, by
the previous theorem,

sup /0 " \pex 1))l dt

xeR"

= sup [ 1F(x, 0]dlol(©) < Ca,pllf I

xeR"JO

(i) Let p < ¢ <1 and consider now the function
F(x, t)=|(g:* f)(x)]7.
Then F € TZ? with ||F|pwe = |f%, . Also, if we set do(t) =
tan/P=1dt then ¢ € M9"/P and hence, since p/qg <1,

'+ /o (e * £))|9297/2~1 At < Co || F i ois = Cu pllf Sy - O
xe n o0 [4
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