Pacific Journal of Mathematics

ASYMPTOTIC RADIAL SYMMETRY FOR SOLUTIONS OF $\Delta u + e^u = 0$ IN A PUNCTURED DISC

KAI SENG (KAISING) CHOU (TSO) AND TOM YAU-HENG WAN

Volume 163 No. 2

April 1994

ASYMPTOTIC RADIAL SYMMETRY FOR SOLUTIONS OF $\Delta u + e^u = 0$ IN A PUNCTURED DISC

K. S. Chou and Tom Y. H. Wan

In this paper a representation formula for solutions of the equation

(*) $\Delta u + 2Ke^u = 0$, K a constant,

in a punctured disc in terms of multi-valued meromorphic functions is found. As application it is deduced that a necessary and sufficient condition for a solution of (*), K > 0, being asymptotic radially symmetric is

$$\int e^u < \infty \, .$$

1. Introduction. In [3], L. A. Caffarelli, B. Gidas, and J. Spruck proved that non-negative smooth solutions of the conformally invariant equation

(1)
$$\Delta u + u^{(n+2)/(n-2)} = 0, \qquad u \ge 0,$$

in a punctured *n*-dimensional ball, $n \ge 3$, with an isolated singularity at the origin, are asymptotically radial. More precisely, if u is a solution of (1), then

$$u(x) = (1 + o(1))\psi(|x|)$$
 as $x \to 0$,

for some radial singular solution $\psi(r)$.

Geometrically speaking, to solve equation (1) is to find locally a conformal metric on a conformally flat *n*-dimensional manifold with constant scalar curvature. Therefore, its two-dimensional analogue is

(2)
$$\Delta u + e^u = 0.$$

In this paper, we shall establish a similar asymptotic radial symmetry result for a smooth solution u of (2) in the punctured disc, $D^* = D \setminus \{0\}, D = \{z \in \mathbb{C} | |z| < 1\}$, with an isolated singularity at the origin, under

(3)
$$\int_{D^*} e^u < +\infty.$$

Unlike the higher dimensional case, as one will see, that the integrability condition (3) is necessary for u being asymptotically radial. We point out that the isolated singularities or the behaviour at infinity of (2) in a punctured ball $B_1(0)\setminus\{0\} = \{x \in \mathbb{R}^3 : 0 < |x| < 1\}$ in 3-dimensions have been studied by M. Bidaut-Véron and L. Véron [2].

2. Results. Our approach to this problem is based on a classical result of Liouville which gives a representation of solutions of equation (2) in a simply-connected domain by analytic functions. We extend this representation to a punctured disc, and then deduce the result from analytic function theory.

Let us first recall Liouville's theorem.

THEOREM 1 (Liouville [6]; see also [1]). Let Ω be a simply-connected domain in \mathbb{R}^2 . Then all real solutions of

(4)
$$\Delta u + 2Ke^u = 0$$
 in Ω , K a constant,

are of the form

(5)
$$u = \log \frac{|f'|^2}{(1 + (K/4)|f|^2)^2},$$

where f(z) is a locally univalent meromorphic function in Ω .

COROLLARY 2. All solutions of equation (4) in $\Omega = \mathbb{R}^2$ with K > 0and

$$\int_{\mathbb{R}^2} e^u < \infty$$

are of the form

$$u(x) = \log \frac{16\lambda^2}{(4+\lambda^2 K|x-x_0|^2)^2}, \quad \lambda > 0, \ x_0 \in \mathbb{R}^2.$$

Proof. Let u and f be given in (5). Observe that Theorem 1 implies that $e^{u}|dz|^{2} = f^{*}g_{K}$, where g_{K} denotes the standard metric on \mathbb{S}^{2} with curvature K. By the integrability assumption f cannot have an essential singularity at infinity, for otherwise f would cover \mathbb{S}^{2} (possibly except one point) infinitely many times near infinity, which is impossible. Therefore $\lim_{z\to\infty} f(z) = \infty$ or some $z_{0} \in \mathbb{C}$. By compositing with an inversion, we may assume the former case holds. Then f maps \mathbb{S}^{2} onto \mathbb{S}^{2} . Since \mathbb{C} cannot cover \mathbb{S}^{2} (notice that $f'(z) \neq 0$ for all $z \in \mathbb{C}$), f does not have poles in \mathbb{C} . This means $f: \mathbb{C} \to \mathbb{C}$ is a covering map and therefore it assumes the form f(z) = $\alpha z + \beta$ for some $\alpha \neq 0$ and β in \mathbb{C} . A substitution into (5) gives the desired conclusion.

270

Corollary 2 was previously proved by Chen and Li [4] by the method of moving planes. From (5), one can see that the integrability condition is also necessary for asymptotic radial symmetry. All non-radial solutions, which arise from transcendental functions, satisfy $\int e^u = \infty$.

Theorem 1 is, in general, not true for domains which are not simplyconnected. For instance, the function $u = -\log 4r(1 + \frac{K}{4}r)^2$ is a solution of equation (4) in the punctured disc D^* , with an isolated singularity at the origin. Yet it is easy to see that this solution is given by a multi-valued analytic function $f(z) = z^{1/2}$ instead of a single-valued analytic function in the punctured disc via the formula (5).

We now give an extension of Liouville's theorem for the punctured disc.

THEOREM 3. Real solutions of the equation (4) are of the form (5), with f a multi-valued locally univalent meromorphic function satisfying:

1. When K > 0, $f(z) = g(z)z^{\alpha}$, $\alpha \in \mathbb{R}$, or $\varphi(\sqrt{z})$,

2. when K = 0, $f(z) = g(z)z^{\alpha}$ or $g(z) + c \log z$, $\alpha \in \mathbb{R}$, $c \in \mathbb{C}$; and

3. when K < 0, $f(z) = h(z)z^{\beta}$, $\beta \ge 0$. Here g, φ , and h are single-valued analytic functions in D^* , D^* , and D respectively, $\varphi(z)\varphi(-z) = 1$, $h(0) \ne 0$, and |h(D)| < 1.

Proof. Consider the universal cover $\widetilde{D}^* = (0, 1] \times \mathbb{R}$ of the punctured disc. Let $\pi(r, \theta) = re^{i\theta}$ be the projection and let $\tilde{g} = dr^2 + \frac{1}{r^2}d\theta^2 = \pi^*|dx|^2$. It follows from Theorem 1 that there exists a local univalent meromorphic function $\tilde{h}(z)$ on \widetilde{D}^* such that $e^{\tilde{u}}\tilde{g} = \tilde{h}^*g_K$, where $\tilde{u} = \pi^*u = u \circ \pi$ and now g_K denotes the standard metric on the two dimensional space form S_K with curvature K. Let $\tau: \widetilde{D}^* \to \widetilde{D}^*$ be the map $\tau(r, \theta) = (r, \theta + 2\pi)$. Then

$$\tau^*\tilde{h}^*g_K=\tau^*(e^{\tilde{u}}\tilde{g})=e^{\tilde{u}}\tilde{g}=\tilde{h}^*g_K.$$

Therefore, $\tilde{h} \circ \tau \circ \tilde{h}^{-1}$ is a local isometry of S_K . By a result in differential geometry (Corollary 6.4, p. 256 in [5]), $\tilde{h} \circ \tau \circ \tilde{h}^{-1}$ can be extended uniquely to a global isometry of S_K . Locally

$$\tilde{h} \circ \tau = \rho \circ \tilde{h}, \qquad \rho \in \operatorname{Isom}(S_K).$$

Since \tilde{D}^* is simply connected, this holds globally. Moreover, ρ is analytic since \tilde{h} and τ are analytic. Therefore, there exists a locally

univalent multi-valued meromorphic function $h(z) = \tilde{h}(\pi^{-1}z)$ satisfying $h(ze^{2\pi i}) = \rho(h(z))$, $\rho \in \text{Isom}(S_K)$, ρ analytic, in D^* such that

$$u = \log \frac{|h'|^2}{(1 + (K/4)|h|^2)^2}$$

Here $h(ze^{2\pi i})$ denotes the value of h after a turn along the circle centered at the origin with radius |z|.

By a change of coordinates, we only need to prove the theorem for K = 4, K = 0, and K = -4, where now ρ is an analytic isometry of the standard unit sphere, the Eucidean plane, and the Poincaré disc respectively.

For K = 4, ρ is given by

$$\frac{w-a}{1+\overline{a}w} = e^{i\theta} \frac{z-a}{1+\overline{a}z}$$

and

$$\frac{w-a}{1+\overline{a}w} = e^{i\theta} \frac{1+\overline{a}z}{z-a}$$

for some $a \in \mathbb{C}$ and $\theta \in [0, 2\pi)$. In the first case, let

$$f(z) = \frac{h(z) - a}{1 + \overline{a}h(z)}$$

Then f satisfies

$$f(ze^{2\pi i}) = e^{i\theta}f(z), \qquad \forall z \in D^*.$$

Consider the function

$$g(z) = f(z)z^{-\alpha}$$

on D^* , where $\alpha = \theta/2\pi$. We have

$$g(ze^{2\pi i}) = f(ze^{2\pi i})(ze^{2\pi i})^{-\alpha}$$
$$= f(z)e^{i\theta}z^{-\alpha}e^{-2\pi\alpha i} = g(z)$$

for all $z \in D^*$. Hence g(z) is a single-valued function and therefore analytic in D^* . So f(z) takes the form $g(z)z^{\alpha}$. Using the fact that $w = (z - a)/(1 + \overline{a}z)$ is an isometry of the standard unit sphere,

$$u = \log \frac{|h'|^2}{(1+|h|^2)^2} = \log \frac{|f'|^2}{(1+|f|^2)^2},$$

which proves the first case.

In the second case, letting

$$f(z) = \frac{h(z) - a}{1 + \overline{a}h(z)},$$

we have $f(ze^{4\pi i}) = f(z)$. Hence there exists a single-valued analytic function φ in the punctured disc satisfying $f(z) = e^{i\theta/2}\varphi(\sqrt{z})$. The condition $f(ze^{2\pi i})f(z) = e^{i\theta}$ implies $\varphi(z)\varphi(-z) = 1$. The proof of the positive case is completed.

For K = 0, we notice that analytic isometries of the Euclidean plane are of the form $w = e^{i\theta}z + c$, which can be represented by $w - a = e^{i\theta}(z - a)$ or w = z + c. Similar argument as in the positive case gives us the desired result.

Finally, for K = -4, analytic isometries of the Poincaré disc are in one of the following forms:

$$\begin{aligned} \frac{w-a}{1-\overline{a}w} &= e^{i\theta}\frac{z-a}{1-\overline{a}z}, \quad \text{with } |a| < 1, \\ \frac{w-e^{i\theta_1}}{w-e^{i\theta_2}} &= k\frac{z-e^{i\theta_1}}{z-e^{i\theta_2}}, \quad \text{with } k > 1, \, \theta_1 \neq \theta_2 \in \mathbb{R}, \\ \frac{w-e^{i\theta}}{w+e^{i\theta}} &= \frac{z-e^{i\theta}}{z+e^{i\theta}} + c, \quad \text{with } \theta \in \mathbb{R}, \, c \in \mathbb{C}. \end{aligned}$$

Using the same argument as above one can show that f assumes one of the following forms:

(i)
$$g(z)z^{\alpha}$$
,
(ii) $e^{i\theta_1}(e^{i\theta_2} - g(z)z^{i\alpha})/(e^{-i\theta_2} - g(z)z^{i\alpha})$, and
(iii) $e^{i\alpha}(1 + g(z) + \alpha \log z)/(1 - g(z) - \alpha \log z)$,

where g is analytic in D^* , and α , θ_1 , θ_2 , $\theta \in \mathbb{R}$. Observe that in (5) $(K = -4) \ u$ becomes singular at |f| = 1. Hence, by the analyticity of f and the regularity of u, the image of f lies either inside or outside D. Replacing f by 1/f if |f| > 1, we may assume $f(D^*)$ is contained in D. This immediately implies that the expression in (i) can be rewritten as $h(z)z^{\beta}$ where $h(0) \neq 0$ and $\beta \ge 0$.

In the following let h stand for an analytic function in D with $h(0) \neq 0$. We shall show that in (ii) and (iii) $\alpha = 0$ and g(z) = h(z), and consequently they are special cases of (i). To see this first observe that in case (ii) the image of D^* under the map $g(z)z^{i\alpha}$ lies in a half plane, which, modulo a rotation, may be taken to be the upper half plane. We have

$$0 < \arg(g(z)z^{i\alpha}) = \arg g(z) + \alpha \log |z| < \pi \pmod{2\pi}.$$

Applying the maximum principle to Im g(z) in the annulus $r_j < |z| < r_{j_0}$, $r_j = e^{-2j\pi/|\alpha|}$, $j > j_0$, j_0 large, we conclude that Im g(z) > 0 for

all z in a deleted neighborhood of 0. Hence 0 cannot be an essential singularity of g. Now we can write $g(z) = h(z)z^k$, $k \in \mathbb{Z}$. Then the inequality

$$0 < \arg(g(z)z^{i\alpha}) = \arg h(z) + \alpha \log|z| + k \arg z < \pi \pmod{2\pi}$$

implies $\alpha = k = 0$. Similarly one can show that in (iii) $\alpha = 0$ and g(z) = h(z). This completes our proof of the theorem.

Now we can deduce an asymptotic radial symmetry result for equation (4) from Theorem 3. First we need a lemma from complex analysis.

LEMMA 4. Suppose that g(z) is a holomorphic function in D^* which has an essential singularity at the origin. Then the multi-valued function $f(z) = z^{\alpha}g(z), \alpha \in \mathbb{R}$, takes all values infinitely many times except at most one value.

Proof. Consider the single-valued function $\phi(z) = z^{k-\alpha}f(z) = z^k g(z)$, where k is an integer such that $k > \alpha$. Since g has an essential singularity at the origin, so has ϕ . The sequence

$$\phi_n(z) = \phi\left(\frac{z}{2^n}\right)$$

is not a normal sequence on some annulus $\Gamma: r/4 < |z| < 2r$. In particular, the sequence is not a normal sequence on intersection Ω of Γ with any sector: $|\arg z - \arg z_0| < \varepsilon$, in the unit disc. Therefore the sequence

$$f_n(z) = f\left(\frac{z}{2^n}\right)$$

cannot be normal on Ω . Now, applying the Montel theorem [7], we see that for any $a \in \mathbb{C}$, except at most one point, there exist infinitely many n such that f_n takes the value a in Ω . This implies that f takes the value a infinitely many times in the sector. \Box

THEOREM 5. Let u be a smooth real solution of the equation (4) with K > 0 in the punctured disc D^* . Then u is asymptotically radial, more precisely,

$$u(z) = \alpha \log |z| + O(1) \quad as \ |z| \to 0, \ \alpha > -2,$$

if and only if

$$\int_{D^*} e^u < +\infty \, .$$

274

Proof. By Theorem 3, the metric $e^{u}|dz|^{2}$ is the pull-back of the spherical metric with curvature K via the holomorphic map f. Moreover f is a covering map on $D \setminus \{z < 0\}$ since $f' \neq 0$ for all $z \in D^*$. If g takes the value ∞ infinitely many times, then so does f. This implies $e^{u}|dz|^{2}$ has infinite volume, i.e. $\int_{D^*} e^{u} = +\infty$. So we may assume g takes ∞ for finitely many times. Then g is holomorphic near the essential singularity and we can apply Lemma 4 (in case $f(z) = g(z)z^{\alpha}$) to conclude that f covers the image of f in the sphere infinitely many times. Thus $\int_{D^*} e^{u} = +\infty$. Therefore, the integrability condition implies that g at most has a pole at the origin. Simple calculation now establishes the asymptotic radial symmetry of the solution u.

REMARK. Theorem 5 no longer holds for K = 0. In fact, it is straightforward to show that $\int e^{u} |dz|^{2} < \infty$ for some deleted neighborhood of 0 if and only if $f(z) = h(z)z^{\alpha}$, $h(0) \neq 0$ and $\alpha > 0$. In particular, all radially symmetric solutions corresponding to f(z) = $h(z)z^{k} + c \log z$, $k \in \mathbb{Z}$, $c \neq 0$, satisfy $\int e^{u} |dz|^{2} = \infty$ in any deleted neighborhood of 0.

On the other hand, Theorem 5 holds for K < 0. In fact, all solutions are asymptotic radially symmetric and satisfy $\int e^{u} |dz|^{2} < \infty$.

Acknowledgment. This work was partially supported by an Earmarked Grant for Research, Hong Kong. The authors are indebted to Professor Wei-yue Ding for many suggestions, especially those on the first draft of this paper. They also would like to thank Thomas K. K. Au for useful discussion.

References

- [1] C. Bandle, *Isoperimetric Inequalities and Applications*, Pitman Advanced Publishing Program, London, 1980.
- [2] M. Bidaut-Véron and L. Véron, Groupe conforme de S^2 et propriétés limites des solutions de $-\Delta u = \lambda e^u$, C. R. Acad. Sci. Paris Série I, **308** (1989), 493–498.
- [3] L. A. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math., 42 (1989), 271–297.
- [4] W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-623.
- [5] S. Kobayashi and K. Nomizu, *Foundations of Differential Geometry*, vol. 1, Interscience Publishers, John Wiley & Sons, 1963.

- [6] J. Liouville, Sur l'équation aux Dérivées Partielles $\partial^2 \log \lambda / \partial u \partial v \pm 2\lambda a^2 = 0$, J. de Math., 18 (1), (1853), 71-72.
- [7] P. Montel, Leçons sur les Familles Normals de Fonctions Analytiques et leurs Applications, Gauthier-Villars, Paris, 1927.

Received April 28, 1992 and in revised form July 6, 1992.

THE CHINESE UNIVERSITY OF HONG KONG SHATIN, N. T., HONG KONG *E-mail address*, K. S. Chou: b114733@cucsc.bitnet *E-mail address*, T. Y. H. Wan: tomwan@cuhk.hk

276

CONTENTS

D. Bisch, A note on intermediate subfactors	201
M. J. Carro and J. Soria, Tent spaces over general approach regions and pointwise	
estimates	217
J. A. Charris, M. E. H. Ismail, and S. Monsalve, On sieved orthogonal polynomials	
X: general blocks of recurrence relations	237
K. S. Chou and T. Y. H. Wan, Asymptotic radial symmetry for solutions of Δu +	
$e^u = 0$ in a punctured disc	269
M. E. Fogel, Knots with algebraic unknotting number one	277
K. N. Jones, The structure of closed nonpositively curved Euclidean cone 3-mani-	
folds	297
M. Kaneda, On the Frobenius morphism of flag schemes	315
H. T. Kaptanoğlu, Möbius-invariant Hilbert spaces in polydiscs	337
K. Kuribayashi, The cohomology ring of the spaces of loops on Lie groups and	
homogeneous spaces	361
A. Thompson, A note on Murasugi sums	393

.

PACIFIC JOURNAL OF MATHEMATICS

Volume 163 No. 2 April 1994

A note on intermediate subfactors DIETMAR BISCH	201
Tent spaces over general approach regions and pointwise estimates MARÍA J. CARRO and JAVIER SORIA	217
On sieved orthogonal polynomials. X. General blocks of recurrence relations	237
JAIRO A. CHARRIS, MOURAD ISMAIL and SERGIO MONSALVE	
Asymptotic radial symmetry for solutions of $\Delta u + e^u = 0$ in a punctured disc	269
KAI SENG (KAISING) CHOU (TSO) and TOM YAU-HENG WAN	
Knots with algebraic unknotting number one MICAH ELTON FOGEL	277
The structure of closed non-positively curved Euclidean cone 3-manifolds	297
Kerry Nelson Jones	
On the Frobenius morphism of flag schemes MASAHARU KANEDA	315
Möbius-invariant Hilbert spaces in polydiscs H. TURGAY KAPTANOGLU	337
The cohomology ring of the spaces of loops on Lie groups and homogeneous spaces	361
Katsuhiko Kuribayashi	
A note on Murasugi sums ABIGAIL A. THOMPSON	393

