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A structure theorem is proven for closed Euclidean 3-dimensional
cone manifolds with all cone angles greater than 2π and cone locus
a link (no vertices) which allows one to deduce precisely when such a
manifold is homotopically atoroidal, and to construct its characteristic
submanifold (torus decomposition) when it is not. A by-product of this
structure theorem is the result that any Seifert-fibered submanifold
of such a manifold admits a fibration with fibers parallel to the cone
locus. This structure theorem is applied to several examples arising
as branched covers over universal links.

0. Introduction. Much of the recent progress in 3-manifold topology
has to do with the link between topology and geometry in 3-manifolds.
There has been a great deal of work in the last decade on homogeneous
Riemannian metrics on 3-manifolds, spurred on by the tantalizing
prospect of the Thurston Geometrization Conjecture. At the same
time, there has been a renewed interest in branched covers, as a result
of the notion of a universal link, a link in S3 which has the property
that all closed, orientable 3-manifolds are obtained as branched covers
over S3, branched over this fixed link (see, for example, [HIM]).
It had, of course, long been known that all such 3-manifolds were
representable as branched covers over the 3-sphere, but in the older
construction, it was a very simple kind of branched cover (namely a
3-fold cover) over a possibly very complicated link in the 3-sphere.
One advantage of the newer branched cover construction is that many
geometric structures on the fixed link in S3 lift to the branched covers
and thus, to all 3-manifolds. So, it seems likely that by moving the
complication from the link to the branched covering map itself we
may gain some real insight into the geometry of 3-manifolds.

One particular kind of geometric structure which has this lifting
property is that of a cone manifold structure (see, for example, [A-R],
[Ho] and [Jol]). The purpose of this paper is to give a structure theo-
rem for 3-manifolds possessing a certain type of cone manifold struc-
ture, namely, a Euclidean cone manifold structure without vertices
and with cone angles greater than 2π. These are the "nonpositively
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curved" cone manifolds referred to in the title. It will become clear
subsequently why we refer to these as nonpositively curved. This kind
of cone manifold structure is possessed, for example, by all branched
covers over the figure-eight knot with branching indices greater than
2 and all branched covers over the Borromean rings with branching
indices greater than 1 (both the figure-eight knot and the Borromean
rings are universal).

More specifically, we will prove

THEOREM 2.1. Let M be a closed, orientable ^-dimensional
Euclidean cone manifold with no vertices and all cone angles > 2π.
Then there is a canonical compact 2-complex C in M such that

(1) the components of the complement of C {denoted by M\9 . . . ,
Mn) are each the interior of a compact Seifert-fibered manifold {possibly
with boundary)

(2) each Mi may be given a convex Euclidean cone metric
(3) M is atoroidal if and only if each Mj is an open solid torus.

Note that here (and consistently throughout this paper) atoroidal
means homotopically atoroidal, i.e., admitting no nonperipheral π\-
injectively immersed tori.

We will also deduce some corollaries of this structure theorem, in-
cluding results related to the Jaco-Shalen/Johannson torus decompo-
sition of these manifolds, restricting the kinds of geometric structures
that can be present in these manifolds. We will also be able to repro-
duce (only for manifolds of this type) Casson, Jungreis and Gabai's
recent result (see [Ga]) that manifolds with πi-injectively immersed
tori but no incompressible tori must be Seifert-fibered.

We will then apply this theorem to several illustrative examples. The
manifolds to which this theorem applies are known to be irreducible
and in fact to have universal cover R 3 , so finding the tori in these
manifolds is the key to understanding how they fit into the Thurston
Geometrization Program.

1. Cone manifolds. We will begin by making a few brief definitions
and state some preliminary results. More details may be found in
[Jo2].

DEFINITION. A Euclidean cone manifold is a metric space obtained
as the quotient space of a disjoint union of a collection of geodesic
«-simplices in En by an isometric pairing of codimension-one faces
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in such a combinatorial fashion that the underlying topological space
is a manifold.

Such a space possesses a flat Riemannian metric on the union of the
top-dimensional cells and the codimension-1 cells. On each codimen-
sion-2 cell, the structure is completely described by an angle, which is
the sum of the dihedral angles around all of the codimension-2 simpli-
cial faces which are identified to give the cell. The cone locus of a cone
manifold is the closure of all the codimension-2 cells for which this
angle is not 2π (the Riemannian metric may be extended smoothly
over all cells whose angle is 2π). For the purposes of this paper, we
are interested in the 3-dimensional case in which the singular locus
is a link (which must have constant cone angle on each component)
and we make this blanket assumption throughout the remainder of the
paper.

One particularly useful feature of the cone manifold structure is its
close relationship with the notion of a branched cover. Recall that a
branched covering map is a continuous map of pairs p : (M, L) —>
(M, L) where M, M are ^-manifolds, and L, L are (n - 2)-com-
plexes, which restricts to a covering map both on L and on the com-
plement of L (we will make the stipulation that L be saturated with
respect to p for technical convenience). The important result is that
if M is a cone manifold with the cone locus contained in L, then M
is a cone manifold with the cone locus contained in L. In particular,
cone metrics may be lifted to true covers as well as branched covers
(a covering map is clearly a branched covering map with any down-
stairs branch set whatever). Branched covering maps of degree d,
branched over a fixed branch set L are in one-to-one correspondence
with conjugacy classes of transitive representations of π\(M-L) into
Sd (that is, representations whose image acts transitively on the set
{ 0 , l , . . . , d - l } ) . We also note that the cone angles in the lifted
cone manifold structure are the downstairs cone angles multiplied by
the branching indices of the branched covering (we will need this in
our examples).

Geodesies in a Euclidean cone manifold are of three different types:
straight lines joining points on the cone locus which join in such a way
as to have an angle of at least π measured in either direction, straight
lines disjoint from the cone locus, and straight lines contained in the
cone locus. One consequence of the nature of geodesies in Euclidean
cone manifolds is that when a geodesic encounters a point of cone
angle less than 2π, that geodesic may not be extended beyond that
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point, since no possible direction of an extension will have the required
angle measure. Conversely, however, when a geodesic encounters a
cone point with angle greater than 2π there are an infinite number of
distinct ways to continue.

As mentioned earlier, there is a very strong analogy between cone
angle and curvature, as one might expect by considering, for example,
the Gauss-Bonnet theorem. More specifically, cone angles greater than
2π act like negative curvature and cone angles less than 2π act like
positive curvature. To be precise, we have the following

PROPOSITION 1.1. Let M be a Euclidean cone 3-manifold with cone
locus a link. If all the cone angles of M are less than In, M admits
a smooth Riemannian metric of nonnegative sectional curvature. If
all the cone angles of M are greater than 2π, M admits a smooth
Riemannian metric of nonpositive sectional curvature.

Proof. One constructs a metric of bounded sectional curvature
which is flat outside of a tubular neighborhood of the cone locus. See
[Jol], Theorems 2.1 and 2.2. Similar techniques are used in [G-Th]
with hyperbolic cone manifolds. D

One of the most useful aspects of this smoothing technique is that
it gives us immediately that the universal cover of a Euclidean cone
manifold with singular locus a link and all cone angles greater than 2π
is R3 (apply the Cartan-Hadamard theorem to the smooth metric). In
particular, such a manifold is irreducible.

By being a bit more careful with the smoothing, we can also deduce
the following theorem, which is an analogue (and consequence) of a
minimal surface result in Riemannian geometry due to Schoen and
Yau [S-Y].

PROPOSITION 1.2. Let M be a compact Euclidean cone 3-manifold
with cone locus a link and all cone angles greater than 2π. Then, any
π\-injective map of a torus into M is homotopic to a totally geodesic
torus {in the cone metric) which contains some component of the cone
locus.

Proof. See [Jo2, Lemma 3.1] for the details. Essentially, one shows
that one can take a sufficiently tight smoothing to which one applies
the Schoen and Yau minimality result and obtains a totally geodesic
torus in the smooth metric which is homotopic to a totally geodesic
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torus in the cone metric. This torus can be translated in a normal
direction and remains totally geodesic until it hits some component
of the cone locus, which it must in fact contain. D

This result will be the key to the proof of part (3) of Theorem 2.1.

2. Structure theorem.

THEOREM 2.1. Let M be a closed, orientable ^-dimensional
Euclidean cone manifold with no vertices and all cone angles > 2π.
Then there is a canonical compact 2-complex C in M such that

(1) the components of the complement of C {denoted by M\9...,
Mn) are each the interior of a compact Seifert-fibered manifold {possibly
with boundary)

(2) each Mi may be given a convex Euclidean cone metric
(3) M is atoroidal if and only if each Mt is an open solid torus.

Proof. We will construct this decomposition by working in M, the
universal cover of M. We will mimic, in some sense, the usual Dirich-
let domain construction of differential geometry.

Begin with disjoint metrically regular tubular neighborhoods of the
cone locus in M. Expand the radius of these tubular neighborhoods
equivariantly. When two of the neighborhoods touch, continue ex-
panding in such a way as to maintain the product structure of each
neighborhood. That is, after the first point at which two of these
bump into each other, each neighborhood will be a round tubular
neighborhood with a flat side cut off by a plane parallel to the core
geodesies of both of the intersecting neighborhoods (see Fig. 2.1 on
next page). These boundary "ribbons" intersect (nontransversely) in
parallelograms (generically—they coincide if the core geodesies of the
intersecting neighborhoods are parallel) and, as the neighborhoods
continue to expand, the ribbons widen until they bump into another
ribbon (or possibly the round part of another neighborhood if a tan-
gency of the round parts occurs exactly at a "corner" of the cross sec-
tion). Note that at all times the cross section of each neighborhood is
convex. Note also that this expansion cannot continue indefinitely (all
cross sections must eventually be compact polygons) since a regular
neighborhood of the cross section is imbedded under the projection
to M, which has finite volume.

When the expansion of these convex product neighborhoods has
been carried as far as it will go, the union of all the boundaries form
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FIGURE 2.1

an invariant (under the actions of the deck transformations on M) 2-
complex C\ whose complement is a collection of open parallellepipeds
with convex base (and a singular core geodesic) and a collection of
open Euclidean solid polyhedra. We note that each of these Euclidean
polyhedra (the components that do not contain a cone geodesic) has
compact faces, since each face is the portion of a ribbon between two
of the nontransverse intersections with other ribbons. We need to
eliminate these Euclidean polyhedra. First, however, we will note the
following lemma, which will be useful subsequently.

LEMMA 2.2. Let a be a cone geodesic in a Euclidean cone manifold
M satisfying the hypotheses of Theorem 2.1. Let ά be a component
of the preimage of a in M and let Ta be the deck transformation on
M with minimum translation distance which leaves a invariant {i.e.,
the deck transformation that "rolls up" a into a). Then, Γa rotates
a tubular neighborhood of ά by an angle rationally related to the cone
angle at a.

Proof of Lemma. Since the deck transformations act by isometries
and the preceding construction is geometrically canonical, any deck
transformation that leaves a cone geodesic invariant must leave the
component of the complement of C\ containing that cone geodesic
invariant also. In particular, the isometry must take polygonal cross
sections to polygonal cross sections and so must act locally as a trans-
lation composed with a rotation rationally related to the cone angle
at the center point (other symmetries of the polygon are ruled out by
orientability). D

Now, we will eliminate the Euclidean polyhedra in the complement
of C\ (at the cost of convexity of the complement) by cutting each
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of these Euclidean regions up by considering the shortest path from
an interior point to the boundary. The set of points that admit short-
est paths to two or more faces (including those whose unique shortest
path is to the intersection of two faces) is an invariant 2-complex
which decomposes the polyhedron into contractible bounded polyhe-
dra. We now alter C\ by removing the faces which are part of the
boundary of one of these Euclidean polyhedra and adding in the 2-
complex which subdivides each polyhedron to yield a 2-complex Cι.
The complement of C^ consists entirely of polyhedra which retract
to a cone geodesic. They are convex parallelepipeds with non-convex
"warts" attached to them along the faces which were between the in-
tersections with the other ribbons. Cι is still invariant under the
action of the deck transformations on M and, since each component
of the complement has exactly one cone geodesic in it, has the prop-
erty that the components of the complement are left invariant only by
a deck transformation that has an invariant cone geodesic. In particu-
lar, using Lemma 2.2, we see that the complementary regions project
to open solid tori in M which may be canonically Seifert-fibered by
the projections of lines parallel to the singular core geodesic (actually
the Seifert-fibration is canonical only on the complement of C\, but
it may be extended to the complement of C2 in an obvious, but non-
canonical, fashion—this will cause us no difficulties, as we will only
need the fibration to be canonical near faces which are in both C\
and C 2 ) .

Next, we will define a new invariant 2-complex C3 by removing
all the interiors of all the noncompact faces from C2. These are all
infinite strips which bisect an infinite strip cobounded by two parallel
cone geodesies. We note that this can be done without disturbing the
Seifert-fibration on the complement, since the Seifert-fibrations on the
two sides of all of the removed faces agree. If this face removal leaves
any isolated geodesies in C3, remove them also. Note that these may
be additional singular fibers for the complement of C3—it is no longer
true that all singular fibers of the fibration are cone geodesies. Singular
fibers of order 2 can also be introduced which bisect a type-II face (see
definition below) if that face is glued to an image of itself under a deck
transformation.

Now, let C be the projection of C3 to M. We claim that C has
the desired properties.

Let us now proceed to verify the conclusions of the Theorem: (1)
is clear from the construction. (2) follows from the following con-
struction: let a be a cone geodesic in M. Let N(ά) be the convex
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FIGURE 2.2

parallelepiped obtained by expanding a tubular neighborhood of a
until it hits either another bone geodesic or the perpendicular bisector
of the strip cobounded by ά and some parallel cone geodesic β. We
will refer to the former faces as "type-I faces" and the latter as "type-II
faces." JV(ά) has compact cross section since a regular neighborhood
of a polygon similar to the cross section, but shrunk by a factor of two
is imbedded under projection to M. Now, consider the collection of
N(β) for all β parallel to a (here parallel means "cobounding a to-
tally geodesic flat strip"). These may be glued along the type-II faces to
give a new parallelepiped P(ά) which is still convex since any type-I
face which is adjacent to a type-II face corresponds to a cone geodesic
j>i which is not parallel to the core geodesic and thus causes a type-I
face adjacent to the corresponding type-II face in the adjacent paral-
lelepiped (adjacent across the type-II face) making an angle of π with
the first type-I face (see Fig. 2.2) unless another geodesic fo c u t s it
off exactly at the vertex, causing an angle less than π .

Now, it need not be the case that N(ά) projects to an open solid
torus in M, or that P(ά) projects to a Seifert-fibered subset of M,
but it is true that P(ά) is homeomorphic to a component M& of the
complement of C3 whose stabilizer Γ leaves P(ά) invariant (it is
generated by deck transformations that either "roll up" or permute
the cone geodesies of M& which are also the cone geodesies of P(a)).
and thus, M& projects to a Seifert-fibered subspace of M that is
homeomorphic to P(ά)/Γ which is the interior of a compact convex
Euclidean cone manifold.

(3) is somewhat more difficult to verify: we will define an associated
convex cone 2-manifold (similar to the technique used in [Jo2]) which
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has the property that M is atoroidal if and only if the 2-manifold has
no closed geodesies. (3) will follow from this. First, we will define the
associated 2-orbifold for M and subsequently define the associated
2-manifold for M.

For each cone geodesic a in M, take a copy of the cross section
of JV(ά), then take a quotient of this cross section under the rotation
guaranteed by Lemma 2.2 and denote this quotient by O(a). O(a)
is a convex "cone orbifold"—an orbifold in which the cone angles
at singular points are not necessarily 2π/n where n is the order of
the isotropy group. Thus, in a cone orbifold, one needs to record
the cone angle at a singularity separately from the order of the local
isotropy group. Now, some boundary edges of the collection of cone
orbifolds will correspond to type-II faces of the N(ά) and some will
correspond to type-I faces (note that the rotation of which O(a) is the
quotient preserves face type). Take the collection of O(a) for all cone
geodesies a in M and glue corresponding type-II faces together—
this will perhaps introduce new orbifold singularities at vertices of
the O(a) and perhaps at the midpoints of edges (these must have
isotropy order 2). Note that we must orient the cone locus to fix a
normal direction for the O(a) in order to insure that the gluing is
well-defined. The components of this new cone orbifold (which we
will denote by O(M)) are the base orbifolds for the Seifert fibrations
on the various Λ/y.

Now, we are ready to define an associated 2-manifold for M, which
we will denote by 0{M) (note that this is slightly different from the
definition in [Jo2]—the 2-manifold in [Jo2] is the union of the cross
sections of the P(ά) which is the universal cover of the 2-manifold
we will define here). We use the fact that all orbifolds (with two fam-
ilies of exceptions) have a finite cover which is a manifold and take
O(M) to be the union of the minimal-degree manifold covers for each
component of O(M). This is perhaps not uniquely defined, but we
really only need some compact manifold cover, so our definition will
be sufficient for our purposes here. We need only show that none of
the components of O(M) are "bad" orbifolds (in Thurston's terminol-
ogy, see [Sc], [Th]). The bad orbifolds, however, all have underlying
space S2 and a simple Gauss-Bonnet argument shows that S2 can
admit a Euclidean cone metric only when there are at least 3 cone
points with cone angles less than 2π. But the only cone points on
O(M) that have cone angle less than 2π are points that have nontriv-
ial isotropy groups, and thus the orbifold structure must have at least
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three singularities. But all of the bad orbifolds have fewer than three
singularities.

To see that O(M) has the property claimed, we use Proposition
1.2 to see that any injectively immersed torus is homotopic to a totally
geodesic torus containing some cone geodesic a and thus corresponds
to a closed geodesic in any component of the 2-manifold which con-
tains a cross section of N(ά). To see this, lift the torus to a totally
geodesic plane in M which contains a geodesic a and observe that
this plane stays entirely in P(ά) and thus meets any cross section
of P(ά) in a geodesic which projects to a closed geodesic in O(M).
Furthermore, any closed geodesic in O(M) corresponds to a totally
geodesic (and hence πi-injective) immersed torus in M. Thus, M is
atoroidal if and only if there are no closed geodesies in the associated
2-manifold. It should be noted that, in general, a torus corresponds to
several distinct geodesies in O(M) which form an equivariant family
with respect to the orbifold covering projection to O(M).

It only remains to show that the associated 2-manifold of M con-
tains no closed geodesies if and only if each component of the com-
plement of C is a solid torus. Since each component of O(M) is a
Euclidean cone manifold with all cone angles greater than 2π, there
will be closed geodesies in each free homotopy class of loops in O(M).
Thus, M is atoroidal if and only if each component of O(M) is sim-
ply connected. Since the 2-sphere does not admit a Euclidean cone
metric with all cone angles greater than 2π, no component of O(M)
can be a 2-sphere. Thus, the only obstruction to the existence of tori
in M is the possibility that each component of O(M) is a disk. But,
the only orbifolds that are covered by a manifold disk are disks with
a single orbifold singularity and all of the Seifert-fibered spaces corre-
sponding to these bases are solid tori (again, see [Sc]). D

Actually, somewhat more can be said than the preceding theorem.
For each one of the Mt which is not an open solid torus, we observe
that we can find a collection of disjoint 2-sided embedded tori (one
for each end of A/j) which are parallel to C and saturated with re-
spect to the Seifert fibration on Mi (since each end of the interior
of an orientable Seifert-fibered manifold with boundary is a product
of a torus with an open interval). Each of these tori must in fact be
incompressible, since this torus fibers over a boundary curve of the
associated 2-manifold to Aff . This boundary curve is homotopically
nontrivial and hence homotopic to a geodesic in the 2-manifold which
is covered by a totally geodesic torus (hence πi-injective) in M.



EUCLIDEAN CONE 3-MANIFOLDS 307

Thus, if there is more than one Af,, the manifold must be Haken
unless all Mi are solid tori, in which case the manifold is atoroidal. In
particular, if M admits an injectively immersed torus, there must be
some Mi that is not a solid torus, and if M admits no incompressible
tori, there must be only one Mi. Thus, we recover the result (only for
manifolds of this form) that a manifold that admits an injectively im-
mersed torus but not an incompressible torus must be Seifert-fibered
(see [Ga]).

Furthermore, these tori form a collection T containing the canon-
ical collection of tori in the Jaco-Shalen/Johannson torus decomposi-
tion (see [J-S] and [Jh]). To see this, we observe that each torus in
T cuts off a "collar" from its associated Mi. The components of the
complement of T thus fall into one of three categories:

(1) a manifold homeomorphic to a non-solid torus component of
the complement of C

(2) a manifold consisting of a union of solid torus components of
the complement of C, together with one or more collars and compo-
nents of C

(3) a manifold consisting of collars and components of C.

We observe that each of these components must be Seifert-fibered or
atoroidal: a component in the first category is clearly Seifert-fibered.
For a component, N, in the second or third category, we observe that
each collar may be extended metrically (away from the component in
question) until the torus boundary is totally geodesic in the cone met-
ric. This cannot necessarily be accomplished in M, since the geodesic
homotopic to the boundary curve in the associated 2-manifold need
not be simple (also, the surface covering the geodesic might be a one-
sided Klein bottle instead of a torus), but it can certainly be done
metrically by working (for example) in the cover of M corresponding
to the fundamental group of the particular torus in question. This
metric extension is homeomorphic to N. Repeat this procedure for
all collars of N. We now have a Euclidean cone manifold with totally
geodesic boundary (note that it may have cone locus on the bound-
ary) which we may double to obtain a closed Euclidean cone manifold
(call it N') which either has no cone locus (possible only if N was
in the third category) and is hence a Euclidean manifold and thus
Seifert-fibered or has nonempty cone locus and satisfies the hypothe-
ses of Theorem 2.1. Note now that in N', all πi-injective tori may
be homotoped to the doubling tori and, thus, all tori are peripheral
in each half (using standard free product with amalgamation results).
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Note that we are not asserting that the atoroidal pieces obtained in
this way are not Seifert-fibered also—there are some spaces that are
both atoroidal and Seifert-fibered (the /-bundles over the torus and
Klein bottle).

Finally, we observe that there is a restriction on the kinds of geome-
tries that the Seifert-fibered pieces can possess—the base orbifold must
be negatively curved (since there are cone points on the associated 2-
manifold it must have negative Euler characteristic). So, a maximal
proper Seifert-fibered submanifold of a manifold of this type must
have H 2 x R or E3 geometry (for the components that consist of col-
lars only and have empty cone locus) and, if the whole manifold is
Seifert-fibered, it must have H 2 x R or SL2BL geometry (again, see
[Sc] for the relevant definitions—for a different proof of a slightly
weaker result, see [Jol, Chapter 5]).

We collect these results in the following

COROLLARY 2.2. If M is a Euclidean cone manifold satisfying the
hypotheses of Theorem 2.1, then

(1) if M admits a π\-injectίve torus but no incompressible torus,
M must be Seifert-fibered

(2) the collection of boundary-parallel tori in each non-solid torus
component of Mt forms a collection of tori containing the Jaco-
Shalen/Johannson characteristic tori

(3) if M is Seifert-fibered, it must have i 2 x R or SL2R geometry
(4) a maximal proper Seifert-fibered submanifold of M must have

E 3 or H 2 x R geometry.

3. Examples. The easiest way to get examples of cone manifolds
of this type is to consider sufficiently branched covers over Euclidean
orbifolds, that is, branched covers over a topological space which ad-
mits a Euclidean orbifold structure in which the downstairs branching
locus is equal to the singular locus of the orbifold and the branching
indices over each component are greater than or equal to the order
of the isotropy group of that component in the orbifold fundamental
group of the base. Two particularly accessible orbifolds to use in this
context are the figure-eight knot and the β\ link (see the link tables in
[Ro]) since both of these have had their lattice of branched covers cal-
culated up to degree 10 ([He], [Jo3]). These links are of interest since
they are both non-torus rational links and hence universal [HLM].

First, we note that much of the actual calculation of the 2-complex
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C is unnecessary if all we are interested in is, say, the homeomorphism
types of the various components of the complement of C . In this
case, we really need only calculate the associated 2-manifolds of M
corresponding to the various parallel classes of cone geodesies and
look at how the parallelepipeds over them fit together. This can be
done quite conveniently in the case of sufficiently branched covers
over orbifolds by simply examining the monodromy of the branched
cover.

First, the figure-eight knot (a more detailed development of whose
geometry may be found in [Jo2]): S3 admits a Euclidean orbifold
structure with cone angle 2π/3 along the figure-eight knot. Therefore,
any branched cover over S3, branched over the figure-eight knot with
all branching indices greater than 2 admits a Euclidean cone mani-
fold structure satisfying the hypotheses of Theorem 2.1. Let us fix
some notation by letting K denote the figure-eight knot and
φ: π\ (S3 - K) —• S^ be a homomorphism with transitive image in S^
(that is, whose image acts transitively on {0, 1, . . . , d-1}). Then, φ
is the monodromy of a degree d cover of S3 -K and thus a degree d
branched cover of S3, branched over K. We will use the presentation

for π\(S3 - K) and note that the group is generated by a and c so
that we need only specify φ on these generators. Then, a component
of the cone locus corresponds to a cycle in φ{ά) of length 4 or greater.
For each such cycle of length q, we have a parallelepiped with base a
2<?-gon which is the universal cover of a product neighborhood of the
component of the cone locus. It is possible that two or more of these
cycles represent the same component of the cone locus if φ of the
longitude of the knot (ba~ιc~ιad) takes one cycle to another. Let us
label the vertices of each polygon in the order of each cycle of φ(a) by
the labels 0, 1, . . . , d - 1 alternating with 0', 1', . . . , (d - 1)'. We
may ascertain which vertices of the polygonal cross-section correspond
to type-I faces and which correspond to type-II faces by the following
calculation: writing permutation actions on the right, and denoting
the set of fixed points of a permutation σ by fix(σ) we define

F = fLx(φ(d3))φ(a-ιcab~ι) n fιx(φ(d3))φ(b-1)

Πήx(φ(a3))φ{b-ι)Π&x(φ(a3))φ(cab-1).

Then, we set

G = {j I o r b i t ( ( φ ( b a - ι c - ι a d ) ) , j ) c F } .
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Then, a vertex with a label / is a type-II face if and only if / e
G and it is glued to the vertex with label {iφ{bd~1))'. From this
information, we can compute the associated 2-manifold.

For example, if we set

p(α) = (021)(347)(5698)

and

(which is branched cover number 43 in [He]), we find that there is
one component of cone locus (cone angle = 8π/3) whose associated
2-orbifold is a disk with two orbifold singularities, of orders 2 and
3. The 2-fold singularity comes from the fact that the monodromy
of the longitude in this cover rotates the disk normal to the cone lo-
cus through an angle of 4π/3, yielding a quotient orbifold with four
vertices in the boundary, each having angle 2π/3. The 3-fold sin-
gularity comes from the fact that two adjacent faces of this orbifold
correspond to type-II faces which are glued to each other, yielding the
orbifold asserted above. Thus, the torus decomposition of this space
consists of an atoroidal Euclidean piece (which is in fact a twisted
/-bundle over the Klein bottle) and the Seifert-fibered space which
fibers over the disk with two exceptional fibers, of orders 2 and 3 (the
trefoil knot complement).

Using another of HempeΓs examples (number 37), we set

= (021)(3758496)

and

and calculate that here there is also one component of cone locus (this
time with cone angle 14π/3) whose associated 2-manifold is a disk
(there are no type-II faces) with only one cone point and thus we have
an atoroidal manifold (which is in fact computed to be hyperbolic by
Jeff Weeks' computer program snapped).

At this point, a remark is in order about how the definitions for F
and G were obtained: this computation is done in detail in [Jo2] and
consists of examining the flat planes extending out from the cone lo-
cus in the direction of a potentially parallel component of cone locus
and checking which components of the branching locus are intersected
transversely along the way—for the two components to be truly par-
allel (and thus separated by a type-II face) it must be the case that
all components of the branching locus encountered must not be in
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the cone locus (in this case, they must be in the 3-fold branching lo-
cus). The definitions for F and G are merely codifications of these
intersection conditions in terms of the monodromy of the branched
cover.

The 62 link is somewhat more complicated than the figure-eight
knot because it is a 2-component link. In fact, the Euclidean orbifold
structure has different cone angles on the two link components even
though there is an involution of S3 that takes one component to the
other. The Euclidean orbifold structure has cone angle 2π/3 on one
component and π on the other.

We will use the presentation

{a,b,c,d,e: ab'ιd'ιba'ιb'1, de'1^1, caΓxe-χ, bece~ι)

for the fundamental group of the 6% link complement and note that it
is generated by a and b (which are meridians of the two components)
and thus we need only specify φ on these two elements. We will use
the orbifold structure in which a has cone angle 2π/3 and b has
cone angle π.

There are two distinct types of associated 2-manifolds here, the
ones corresponding to components of the cone locus that cover the a
component and the b component, respectively. For the former, as
before, we set

n fix^α3))^"1) n Άx(φ{a3))φ(b-ιa-ιec-{)

Πfιx(φ(d2))φ(a-ιec-ι)nfιx(φ(d2))φ(ec-1)

and let
Gf = {j I o r U \ { ( φ { c e - χ a - χ b ) ) , j ) c F ' }

and compute that the type-II faces run between the vertices labelled i
(where ίeG') and {iφ[ce-ιd-χ))f.

For the components of the cone locus that cover the b component
of the 6\ link, we set

F" = Άx{φ(a3))nfιx(φ(c2))

nΆx{φ(b2))φ{a-ι)nfιx(φ(a3))φ{e-1)

and let
G " = {j I o r b i t ( ( φ ( e a - ι b a - 1 ) ) , j ) c F " }

and we set

Fm = &x(φ(d2)) n &x{φ(a3))φ{ae-χ)

nfιx{φ{c2))φ{ae-ι)r\ϊιx{φ{a3))φ{c-ιae-1)
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and let

G"1 = {j

For covers over the 6% link, we have the type-II faces running be-
tween vertices labelled / and iφ{eά) where ieG" and also between
i' and (iφ(d)Y where i e Gf". We note also that crossing a type-II
face around a cone geodesic that covers b reverses the orientation of
the geodesic.

We will again apply this procedure to two examples. For the first
(10.56 in [Jo3]), we set

p(α) = (012)(34 5)(6 7 8 9), ψΦ) = (0 3)(l 4)(2 67 5 8 9).

We find that there are two components of cone locus, one of which
(covering b) has associated 2-orbifold a Mobius band with one order-
2 singularity and the other of which (covering a) has associated 2-
manifold a disk with one cone point. Thus, we have a manifold
whose torus decomposition consists of a Seifert-fibered space over the
Mobius band with one singular fiber of order 2 and an atoroidal man-
ifold with one cusp.

For our second example, we set

φ(a) = (0 1 2)(3 4 5)(6 7 8 9), φφ) = (013 4)(2 6 5 8)(7 9).

This is example 10.49 in [Jo3].
Here, we again have two components of cone locus (both of the 4-

cycles in <p(b) are on the same component of cone locus) and we find
that there are no type-II faces, so that we have an atoroidal manifold
(which is in fact hyperbolic—again courtesy of snapped).
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