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We define the Dirichlet space & on the unit polydisc U" of
C". & is a semi-Hilbert space of of holomorphic functions, contains
the holomorphic polynomials densely, is invariant under compositions
with the biholomorphic automorphisms of U", and its semi-norm is
preserved under such compositions. We show that 2 is unique with
these properties. We also prove & is unique if we assume that the
semi-norm of a function in & composed with an automorphism is
only equivalent in the metric sense to the semi-norm of the original
function. Members of a subclass of 2 given by a norm can be writ-
ten as potentials of .Z>-functions on the n-torus T". We prove that
the functions in this subclass satisfy strong-type inequalities and have
tangential limits almost everywhere on 9U” . We also make capaci-
tory estimates on the size of the exceptional sets on 5U".

1. Introduction. Mébius-invariant spaces. Let U be the open unit
discin C and T be the unit circle bounding it. The open unit polydisc
U” and the torus T" in C" are the cartesian products of » unit discs
and n unit circles, respectively. T” is the distinguished boundary of
U" and forms only a small part of the topological boundary 8U" of
U”. We denote by .# the group of all biholomorphic automorphisms
of U" (the Mébius group). The subgroup of /inear automorphisms in
A is denoted by % . The space of holomorphic functions with do-
main U” will be called #(U") and will carry the topology of uniform
convergence on compact subsets of U”" .

A semi-inner product on a complex vector space # is a sesquilin-
ear functional on #Z x # with all the properties of an inner prod-
uct except that it is possible to have ((a@, @) = 0 when a # 0.
llall = v/{a, a) is the associated semi-norm. We assume (-, -)) is
not identically zero.

DEerFINITION 1.1. # is called a Hilbert space of holomorphic func-
tions on U” if
(i) Z is a linear subspace of #(U"),
(ii) the semi-inner product (-, -)) of Z is complete,
(iii) & contains all (holomorphic) polynomials,
(iv) polynomials are dense in & in the topology of the semi-norm
|1l of 2.
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A space # of functions on U” is .#-invariant if foW¥ € #
whenever f € # and ¥ € # . An .#-invariant Hilbert space # of
holomorphic functions on U” will be called an .#-space for brevity.
7 -invariance and % -space have similar definitions.

N, Z,, Z, R denote the set of nonnegative integers, positive in-
tegers, integers, and real numbers, respectively. A multi-index o =

(a1, ... ,ay) isapointin N”. 3" indicates a summation with «

running over all the points in N”, and Y., is a summation where we
consider only those o in the index set I with all positive components.
Let also D; = 8/0z; and D; = 0/9z;. The following abbreviated
notations will be used:

lo| = a1+ +an, Z“=z?‘~--zf{",
al=a!ay!, DazD?“--Df;".
The Dirichlet space 2 (U") is the class of f(z) =Y, foz* € Z(U")
with
o0
(LY A =D el =) Y aran|faf <o
a k=0 |o|=k

Equivalently, &' (U") is the class of those f € Z(U") with

1918 = [ 11+ Dufdi < o0,

where u, isthe Lebesgue maesure on U” normalized so that u,(U") =
1. The semi-norm || - || is obtained from the semi-inner product

(. &g =T o1 an fua= [ (Dy-+-Duf) i Drg)dpin.

Main results. In this work, we first prove two theorems which show
that the Dirichlet space is unique among .# -spaces that have certain
properties.

THEOREM A. Let # be an # -space and suppose that
(1.2) Ifl=Nfo¥ (feZ, Yed).

Then
Ifl=Clifle (feZ),
where C = ||zy - zy||*. Thus #Z is 2 (U").
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Note that the assumption on the semi-norm is equivalent to
(f oW, go¥) = (f, g), and the conclusion implies that
(f, en=C(f, g)g,forall f,ge# and Ye /.

For the second theorem, we need a strengthening of condition (ii)
of Definition 1.1. To derive it, we write the Taylor series expansion at
0 of an f € # by seperating the higher and lower dimensional terms.
For example, when n = 2, using (z, w) for (z{, z;) and (k, /) for
(a1 , az) , WE write

flz,w)=foo + D frioZ + D fow' + > fruziw'.

k=1 I=1 k,l=1

Since we assume conditions (iii) and (iv) of Definition 1.1, we can
define a norm on # by

o0 o0 (o9}
2 2 2 2\ ko l12
AN = ool + 3 IolP2¥11F + Y- WPl I + D LhalPllz*w!)?,

k=1 I=1 k,l=1

where || -|| is still the semi-norm of # C #(U") and || -||; denotes
the semi-norm of a similar #’ Cc #Z(U). We already know (see [1])
that ([-||; is equvalent to ||-|[z in U. Since our proof of Theorem B
is by induction on the dimension of the polydisc, the above definition
of ||| - ||| makes sense. Now we make the alternate assumption

(i) # is complete in the norm ||| - |||.
A similar condition was assumed in [1], whereas [4] assumes (ii).

THEOREM B. Let # be an .# -space in the sense modified by (ii)’
and assume that there is a positive constant 6 < 1 such that

(1.3) S < I1f o ¥ Séllfll (fe#, Yed).

Then there exists positive constants K, and K, such that

Killflg <l £ Klfle  (fe).
Thus 2 (U") is unique again.

The proofs of these theorems will be presented in §2.

Next, we consider a subspace of the Dirichlet space, one that is
defined by a genuine norm similar to ||| - |||. This space is not ./Z-
invariant any more, but the stronger conditions on it allow us to prove
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that it has tangential limits as we approach 9U". In fact, tangential
limits exist for a wider class of functions which are potentials of cer-
tain functions in .#2(T"). The precise definitions and theorems are
stated in §3. Theorems C and D at the end of that section are the
major results in this direction.

In earlier work, Arazy and Fisher [1] proved, under slightly different
hypotheses, the analogs of Theorem A and Theorem B in U. Zhu [5]
found the equivalent of Theorem A for the unit ball in C" when
n > 2. Nagel, Rudin and Shapiro [3] obtained the unit-disc versions
of Theorems C and D.

After the submission of the manuscript, we were informed by a ref-
eree that in the preprint Invariant Hilbert Spaces of Analytic Functions
on Bounded Symmetric Domains by J. Arazy and S. D. Fisher, results
analogous to Theorems A and B were established for all irreducible
bounded symmetric domains.

NOTATION. A, is the Lebesgue measure on T" both normalized to
have mass 1; i.e., it is the Haar measure on the compact abelian group
T". If p e[l, ), its conjugateis q =p/(p —1). The £?- and ¢?-
spaces will have their usual meaning. z; will usually be an element
of U and {; of T. Apart from the usual big & notation, we will use
u ~ v to mean both u = Z(v) and v =& (u), and u ~ v to mean
u/v has a finite positive limit.

The Poisson integral of an f € Z1(T") is

$ |Zj| n
PIAE) = [ 10 }L ppdin(@ (e,

and its Cauchy integral is

ClLAz ./f@ din(l) (zeUm),

1_ JCJ

where the products are called the Poisson kernel P(z,{) and the
Cauchy kernel C(z, () for U”, respectively. These transforms have
the following invariance properties: If f ¢ Z'(4,), ¥ € 4, and
Ue, then

P[fo¥]=P[flo¥ and C[foU]=C[f]oU.

The automorphisms of U” for n > 2 are generated by the following
three subgroups: rotations in each variable separately

Ry(z) = (e'%zy, ... , ez,
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Mébius transformations in each variable separately

Dy (z) = (¢w,(zl)a cee s ¢wn(zn)) >

and the coordinate permutations. Here 6 € [-n, n]" and w € U" are
fixed, MoObius transformations are in the form

(1.4) duw(z) =

and the coordinate permutations are nothing but the n! members of
the symmetric group ¥, on n objects. Thus an arbitrary ¥ € #Z
can be written in the form

¥(z) = (eie‘ bu, (Zo(1)) s -+ » € ¢>w,,(Za(n))) ,

for some w € U" and 6 € [-x, n]", and 0 € .5,. % is generated
by o € % and the rotations R,. Each Mébius transformation @,
is an involution (its inverse is itself) exchanging 0 and w. /# acts
transitively on U": if a, b € U", then ®, oD, € .# moves a to b
(and b to a). Finally, #* denotes the component of the identity in
M ie., #* is A without the action of %, .

2. Uniqueness of the Dirichlet space. We start by showing that
Z(U™) has all the properties of a Hilbert space in the sense of Defini-
tion 1.1. Clearly the polynomials are in 2/ (U") and ||z¢||? = a; - an
for all @ € N". A quick look at (1.1) shows that the polynomials are
dense in Z(U") with respect to || - || . Again from (1.1), identify-
ing g by {g.}, we see that & (U") is a weighted ¢2-space, hence
every Cauchy sequence {f;} in <Z(U") convergesin || to some
f € Z(U") represented by {f,} for a € Z7}. To show that f is
holomorphic, let fin(z) = 34, Xjajak JaZ® and pick ¢ > 0. For any
0 < r <1 and positive integers m > [ > n,

> >

w—-z
—-wz

(welU, zel),

< 3 Sl

Sup | (fim — /i)(2)] = sup

zerl” z€rUM =141 o=k k=I+1 |aj=k
m . 12, m . 1/2
(> Swer) (X e
k=I+1 |a|=k k=I+1 |a|=k
1/2 m 1/2
(Z Eal can | fal ) (Zk”er) .
k=I+1 |a|=k k=I+1

The first factor is less than ¢ when / and m are large enough because
f € Z(U"), and the second factor is bounded as /, m — oco. Hence
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f(z) =3 foz® is uniformly convergent on compact subsets of U”,
and this proves f € #Z(U"). Note that we need not know f, if
a € N"\Z} . These coefficients of f can be taken arbitrarily as long
as f remains holomorphic.

LEMMA 2.1. # is generated by %, rotations Ry, (z) = (e'®z,, z,,
., Zpn) With w € [-n, n], and Mobius transformations of the form
D,(2) = (¢u(21), 22, ..., zn) With 0<t< 1.

ProrosITION 2.2. Z(U") is A -invariant.

Proof. The integral form of the Dirichlet semi-norm uses the mea-
sure u, which is invariant under rotations and permutations. Thus
Z(U") is #-invariant. To prove invariance under Mobius transfor-
mations, in view of Lemma 2.1, it suffices to consider

’UJ=<D,~(Z)=<r-Zl Zz,...,Zn).

1—"21 ’
Then Di(f o ®,) = (DY f)dw,/dz, and

(2~ 1

IDEDs -+ Dulf 0 @) = DY Dy Duf P )

= |D¥D; - Dpf|? Jg®,(2),

since dw;/dz, = (r*—1)/(1—rz;)?, where Jp®, is the real Jacobian
of ®,. Therefore

I 0@l = [ |DiDs - Dl 0 @)= dn(2)

— w 2 (r2_ 1)2 1
—/U"IDl Dy ---Dpf(w)| T 72.F Tad(2) d pin(w)
= [ 1DDs-Duf(w)] dia(w) = 11 .

Note that when n > 2, Z(U") does not put any conditions on
the infinitely many power series coefficients of f, those with at least
one a; = 0, ie., those in N"\Z%} . Thus if each term in the Taylor
expansion of some f € #(U") depends on fewer than n variables,
then ||f|l =0 and f € 2. The Dirichlet space can also be thought
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of as a quotient space of holomorphic functions satisfying (1.1) where
the functions whose Taylor series differ by terms depending on at most
n — 1 variables are identified. Trivially any holomorphic function f
of fewer than » variables or any constant f has ||f|l = 0 and is
in Z(U"). For comparison, when n = 1, only constants (a one-
dimensional subspace) have zero Dirichlet semi-norm.

We can define a modified Dirichlet space & (U”) similar to & (U")
by considering a norm instead of a semi-norm. This requires some
control on all the power series coefficients of f € #(U"). For sim-
plicity let’s look at the case n = 2. With notation as before, let

A5 = ool> + D klfaol® + D Ll + D Kl fual?
k=1

/=1 k,l=1

=|/(0, o)lz+/lle(z, O duui(2)
U
+ / |D2/(0, w)|* dps (w)
U

+ /2|D1sz(2a w)|* dppa(z, w).
U

This norm is % -invariant, but not .#-invariant; in fact, none of its
first three terms is preserved under compositions with @, .

Proof of Theorem A. First, {(z*, zf) = 0 if a # B. To see this,
assume, without loss of generality, «; # f;. Let @ be an irrational
multiple of 7 and consider the rotation R, (z) = (¢/“z(, z3, ..., zn).
By the .#-invariance of (-, -)),

(2%, ) = (o Ry, 2/ o Ra)
- «elalwz?lzgz . Zzn , elﬂ‘leﬂl 252 e Z’lfn»

= el oz, 2F),

and the desired orthogonality result follows.

Put C, = ((z*, z*)). Note that C, is defined only for « € N*. If
B is another multi-index and B = o(a) for some o € #,, then by
the ./#-invariance of (-, -)) again, C, = Cy.

Nowlet 0 <r; <1, ¥ = (ér,...,¢ ), and consider f(z) =
[1}-1(1 = rjz;) € # . Then since z° is orthogonal to z# for a # B,
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we get

n

2
H(l—erj) =

j=1

(f, /=

n n 2
”1 SS izt e+ (<) [z
j=1 J=1
n

= C,..,0) + (Z rjz) Cu,o0,...,0)

j=1

n
+ ( > rjzrlz)c(l,l,o,...,O) + -4 (Hr})C(l,m’l).

I>j=1

On the other hand,

j=1 j=1
=113[(1 —r})g)r]’zj’] = (j]i[la —r})) (Za:raza),

now the density of the polynomials and the axioms of a Hilbert space
imply

(fo¥, fo¥ (H(l—r )Zrhc

Putting x; = r]z and using the .# -invariance of the semi-norm gives

n
(2.1) Cpo, ... (Z%)Ql 0,. 0)+( > xjxl)C(l,l,o,...,O)

I>j=1
n
+ (H x,-) Ci,coty = ( (1 —xj)z) > x4Co.
j=1 ~

The constant terms (C(p,. ,¢)) cancel, and if we set the coefficients
of x1, x1x2, ..., and x;xy---x, on either side equal to each other,
we obtain, respectively,

Cu,0,..,00=Cu,0,..,00 = 2Cp,...,0)»
Cu.1,0,...00=Cu,1,0,...00— 2*C10,... ,0)

Ca,..)=Cu,..1n—2"Cq,..,1,0)-
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These imply Cp, .00 =0, Cu,0,..,00=0, ..., Cu,..,1,00 = 0.
After the elimination of the terms that are zero, (2.1) simplifies to

~XnCa,.. 1)
x*C, = 2
Z (l—xl) (1--Xn)2

=Cq,.. ,1)( Z axxf‘) ( Z anxff”) ;

a,=1 a,=1

and this implies
Co=ar-anCy, . 1y (a€ZY).

Thus the norm of a monomial of fewer than n variables is zero.
Since the polynomials are dense in /# , the same result is true for any
f € #Z whose Taylor expansion consists of monomials depending on
fewer than n variables. But C; ) # 0, because otherwise, since
the polynomials are dense in #, (-, -)) would be identically zero
contrary to hypothesis. Then renaming C(; ) = C completes the
proof. O

Proof of Theorem B. We will only show how the two-variable case
is obtained from the one-variable case. This then can be adapted to
prove by induction the case for arbitrary U”. Unless explicitly stated,
subscripted C’s will denote positive constants that are independent
of any parameters.

Step 1. We begin by introducing two other semi-inner products on
#Z .For f,geX,let

(£, 81= [ (o Ro. g0 Re) dAa(®)

and
(f, &) =m{fo®, god),

where m is an invariant mean (see [2]) on the abelian subgroup
N ={®= (s, $):0<s, <1}

of # . To actually make .#" abelian, in this proof we change our
definition of a Mobius transformation so that ¢,,(z) is the negative
of what is given in (1.4). The earlier definition was adopted to make
¢y an involution, since it simplified calculations involving ¢;'. The
required boundedness condition for the existence of this nonunique
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mean is furnished by (1.3). Rotations and .#", along with %3, suffice
to generate .# , by Lemma 2.1.
Now [-, -] is rotation-invariant

(22)  Uf,81=foRy, goRyl (9€l-7,aT"),
and (-, ) is ./ -invariant

23) (f,8)=(fo®,go®) (DeSN).
Moreover, (1.3) implies

(2.4 PIPSU, A< HIP (fe?),
and

2.5 PIP < NS HIP (Fe);

and combining these two, we further obtain

@6 SULASU NS [ LA (FeR)

(2.4) and (2.5) show that the semi-norms associated to [- , -] and (-, )
are both equivalent to || - ||.

As in the proof of Theorem A, the rotation-invariance of [- , -] gives
the orthogonality condition

(2.7) [zhwh, Zhwh]=0  ((k, ) # (k2, b)),
which leads to
Lf, 1= ) 1l 2w, 2w (fe®).
k,I=0
Therefore, to prove the theorem, it suffices to show that

Kkl <[Z%w!, 2w’} < Kokl ((k, 1) e N?)
or, equivalently,
K3 kl < (zkw’ s Zk’LUI> < Kkl ((k, l) € Nz)

for some positive constants K;, K, K3, and K4. Clearly K; > K;
and K4 > K3.

Step 2. Claim:
(2.8) (zkw!, ZXw'y £0 ifk>1and/>1.
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Suppose it is zero for some (N, M); then [zNwM | zZNwM] =0 also.
Then for 0 <s,t < 1, if we use (2.3), (2.6) and power series expan-
sion

) (e ) ey
> 58[ — SZ) (1 o )M’ (12—_ssz )N(lw—_wtt )M]

oo oo o0
= [chN ch,M yw!, chN(s)szch(t)w’]
k=0 k=0 1=0
o0
=Y i) |eiar O [2Fw!, 2Fwl].
k,1=0

A tedious computation shows that the coefficients ¢,y (s) # 0 for any
k, N, and s as given above; the same is obviously true for ¢, (7).
Thus [zFw!, zkw!] = 0. This means that every element in # has
zero norm and contradicts our basic assumption that (-, -)) is not
identically zero. Hence the claim is proved.

The one-variable result can be stated as

(2.9) Cik<(zF, ¢ <Gk (keN).

It is a consequence of condition (ii)’ of Definition 1.1 and of (2.8)
that the subspace of #Z consisting of functions whose Taylor series
expansion at 0 depend only on z is closed. Then (2.9) implies that,
for fixed M €N,

(2.10) Ci3k < (ZFwM | ZkwMy < C4k (keN),

and we have a similar equation when the power of z is held constant.
Of course, the constants C3 and Cj4 are different for different M . It
is our aim to find their explicit dependence on A . If we had only
finitely many M , we could pick C; and C4 independently of M and
the proof would be over. In the sequel, whenever we have only finitely
many n or M, we will use this fact without further reference.

Step 3 (upper bound). Let M € N be fixed and k, j € N. Put

afyy = (ZFwM, 2wy, = (FFwM, M),

bkM [Zk Ma kaM]-
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By (2.3), o}t = (¢FwM, ¢lw™M) for any s € [0, 1). Differentiate
both sides of this equality with respect to s and set s = 0. Then take
k = j+1 and add the resulting expressions from j=0to j=N2>1;
and finally divide both sides by N + 1. The result is

(2.11) Bniv,m _  28nm oy m
' N+1 NN+D N

where Sy = 2ﬂ0M+ZkN { Bear- In particular a%fz o is real. Now
using (2.3) and (2.5), and letting s? = 47, we obtain

yﬂlM = y(‘bsta ¢st> > [¢s'wMa ¢st]

= 5%bor + (1 =522 s%beiy u

k=0
a4 N
(N+ 2 <N+1)Bk+1M (N+1)2€Zﬂk+l M

which implies

Swvm < (eﬁlM + ﬂO—M)NZ.

o8 2
Using (2.10) twice on the right side gives
(2.12) Syu < CsMN2.

It is this inequality and its pair (2.15) below that allow us to pass from
one variable to several variables.

As a special case, when M = 0, we get Syo =0 forall N > 1.
Symmetric nature of the calculation shows also Sy =0 forall N >
1. It follows that
(2.13)

Brvo=(z",z")y=0 and Boy=(w",wV)=0 (NeZ,).

The inequality
O3(Bnar + Bwva,mr) < {(ZN + 2V HywM | (2N 4 N2y M)

is a direct consequence of (2.6) and (2.7). Using this, after some
routine calculation, (2.11) can be written as

Bnsi,m 4Snm 2BN42, M [ Bnym | Bni2 M)
> < > _ ’
2N+ S+ Ty T TR F 2

< 6CsM + (1—6%) (ﬂxM + ﬁ]’\vﬁjf) ,
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which is equivalent t0 2y, 1,4 < (1 = 83)(ynar + P2, m) if we let
—_— Bvu 3CsM
NM N 68 .
A result in [1] shows pyi1 ar < |yvamr| for positive N. Then using
(2.8), we get

By 3CsM Bivy 3CsM
N o8 S|T1 T ot |SCM
Multiplying both sides by M , we conclude

Bt < (66 + 3§5)NM — K, NM,

which holds for N> 1 and M >0, and for M >1 and N >0, by
the symmetry of the computation.

Step 4 (lower bound). If we combine the result of Step 1 with (2.6),
we also get

(2.14) bv < 54 Rapm.

We use (2.6), (2.7), (2.3), (2.14), and take s*> = {5 to calculate
08s2byar < 08[(1 + sz)wM, (1 + s2)w™]
=641 + s )wM , (1 + sps)w™M)

M M 1 2 o
<(1-¢2| Y w _ 2k
<=5 [l—sz’ l—sz] <N+1)Zs bicn

Sﬁ(gbkM-i—I;zM Z k(N]j-Jk)

k=mN+1

where m will be determined shortly. After approximating the second
sum by an integral, we have

N
53(N+1)b1M_ N+l )2ZbkM+ M(m+1)

Because of (2.10), M in the last term can be replaced with Cgbyys.
Now choose m so large that K,6~4(m+ 1)e~™ < §8/3. Using (2.10)
once again and some simplification yields

N
(2.15) > byar = CoMN?,

k=0
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which is the reverse inequality for (2.12). Combining (2.15) with
(2.11), we obtain

1/2 1/2
4 Bynii, M Byum Bni2,m
(2.16) 54CoM < PXL +(N) (N+2) :

Ve = (£
and consider
bya > 6% Bvar = 64 g wM | pYwM) > 83 [pNwM , g wH]

Now let

) chN 5)z¥

= 4" Z|ckN(S)|2bkM > 68|ew i, ()| *bast,
k=1

A calculation in [1] shows that |cN+1’N(s)|2 >1/2 forall s € [0, 1)
and N > 1. Thus there is a constant C;y such that
(2.17) Bn+i,m < CroBnm.
Now (2.16) and (2.17) together imply
04Cy
Bnm > NM =K3;NM,

for N>1 and M >0,andfor M>1 and N>0.

Step 5. The only term we have not yet accounted foris oo = (1, 1).
Since it represents a one-dimensional subspace of #, we now know
# = 2Z(U?). To complete the proof, we will also show fog = by = 0
To obtain a contradiction, suppose bgy =[1, 1]#0. Let fe€Z, ®
be a Mobius transformation, and denote the power series coefficients
of f and fo® by fi; and f},, respectively. Because of (2.13)

W12 > 62Lf, 11 =52 (boo|f(o, 0P+ 3 |fk,|2bk1)

k,l=1
and

[fo®, fo®]= b |f(PO, 0)) | + z | fs* -

k,iI=1
We have

o0 o0 N
o 1fulPou > Ko Y | fulPkl = K|l f o @)% = KIS
k,l=1 k,l=1

(e}

ad K
=K1 Y |ful?kl > F; > 1 falbi.

k,l=1 k,l=1
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Hence

bool£(0, 0)* + S 1fulPbi = f s /1288 f 0@, fo®]

k,l=1

= 5% (muol (@00, )P + 3 1)

k,l=1

=58(b00|f( 0. 0P+ 3 I bkl)

k I=1
from which we obtain
K o0
bool (0, O+ (1= 8% ) 37 UfiaPPbus 2 6%boo 1 (@(0. O

k,l=1

The left hand side of this equation is finite since it is equivalent to
Il flI>. Since ®(0, 0) can be any point in U?, it follows that every
element of #Z, i.e., of 2(U?), is bounded. But a Dirichlet space
contains unbounded elements. In U, this is seen most easily by the
Area Theorem; in U?, we take an unbounded function depending only
on one variable. Therefore byy = 0 and we are done. a

COROLLARY 2.3. Theorem B is true even if (1.3) holds only for ¥ €
M* . Theorem A is true even if (1.2) holds only for ¥ € #*.

Proof. The proof of Theorem B uses coordinate permutations no-
where. Theorem A is a consequence of Theorem B. o

3. Boundary behavior. Dirichlet-type spaces. This section requires
some new notions that were studied in U in [3] and [4]. For each
6 =(d1,...,0,) with each 0 < J; < 1, we define the Dirichlet-type
spaces Z5(U") to consist of those f(z) = Y, foz® € Z(U") that
satisfy

Ifllg, =3 o7+ an | ful? < 00
This definition makes sense even if some J; = 0 if we interpret 00 =
1. In fact, if all the §; = 0, then Z5(U") = Z*(U"). The space
corresponding to J; = --- = J, = 1 consists of functions f with
Dy---D,f € Z*(U"). When &, = --- = J§, = 1/2, we have the
Dirichlet space. For n = 1, all Dirichlet-type spaces are contained in
A#*(U), but this is not true if n > 1.
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Some subclasses of Z5(U") have certain integral representations:
If FeZ*T"),for 0<d;<1 and z € U", set

- 1
(3.1 o= [ FOT = gy 0

The product is the Cauchy kernel each of whose factors is raised to a
fractional power. Omitting j, each factor can be expanded as

I_ZC)J 1 Zb Zaca

where
bo— I'l—90+0a) 1
T TA-0)T1+a) of
In particular by = 1. Let ¢, be the (ay, ... , a,)th Fourier coefficient
of Fjie.,

/ £2 F() dan(0).

Setting fo = by, -+ ba, Ca, We get

f(z) = /HZbZJC’F Y din(0)

Jj= la—O

= Y b, bz [ 8 FQ) A
_ Zban by 2%Ca = Zfaz"‘

Now

1flg, = 30t i

«a

bo,|> -+ |ba | lcal? ~ S leal? < o0,
«

Hence f € 95(U"); i.e., any f given by (3.1) is in a Dirichlet-type
space.

But not all f € Z5(U") have integral representations as in (3.1),
because a Dirichlet-type space does not control all the power series
coefficients of its members. However, we can define a space Z;(U")
similar to &/ (U") in which an integral representation is possible. Let’s
concentrate on the case » = 2 again for simplicity. With obvious
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notation, f € I5(U?) if and only if

(3.2 17113, = 1ool® + D2 k2ol + 32 1P| farl?
k=1 I=1

o0
+ Y KPP f? < co.
k,l=1

Given f(z) = 3y fuzfw! € D5(U?), let cxy = fr/biby if (k, 1) €
N? (recall that by = 1), and let ¢;; = 0 otherwise. Then, using (3.2),

> el = |COO|2+Z|CkO| +Z|001|2+ Z |Ckl|2"‘”f”9 < co.

(k,hez’ k=1 I=1 k,l=1
Thus there is an F € Z%(T?) such that F(k, I) = cy;. Therefore

f(z) = Z Sz w! Z c bichy 7w

k,l=0 k,1=0
= 3 by / gL F(0) dan(0)
k,l=0

_ / F(Q)dA()
(1= §2)7%(1 - Lw)' =%
Clearly F is not unique. In fact, ¢;; can be defined arbitrarily for
(k, 1) ¢ N* as long as we retain 3 ;2 [cxl* < oo.

Kernels and potentials. From now on, we will also use ‘% for
{; T, e'%; for nj €T, and rje’ b = = r;{; for z; € U. The point

(1,...,1)€T" corresponding to 6, =--- = 6, = 0 will act like the
origin in R”. Now the Poisson kernel takes the more familiar form
n 1—r?
P.(0) = J ,
2 H 1 —2r; cosf; +r?
Jj=1 J

and it is considered as a function of 6 indexed by r. So the .Z?-
norm of a Poisson integral will be obtained by an integration on the
O-variable and will still depend on r.

A kernel K is a nonnegative . !-function on T" which is even
and decreasing in each |6;| when the other variables are kept fixed.
We will also have K(1,...,1) = co and normalize as ||K||; = 1.
A potential is the convolution of an .#?-function F on T" with a
kernel. Thus (3.1) defines f(z) € P5(U") as a potential. The Poisson
integral is simply the convolution with the Poisson kernel.
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Let’s define the Bessel kernels on the torus. For 0 <d; <1, let

G5(0) =11 &, (6)) = H(l +% > laj|—5,-f;'1’>
j=1

Jj=1 o, #0

_H(1+Za ' cos(a;0; )
o =1
where each &, is a Bessel kernel on the unit circle. gs5(0) = oo,
gs 1is a decreasing function of |w| for w # 0, gs(w) > 0, and
85(-w) = gs(w). Each g € ZYT), so Gs € ZL(T"), and
Gslly = TIj—; llgs li =1. When 0<d <1,
5-1

sin — as w — 0.

2

Also gi(w) = 1 —log|2sin(w/2)|. P;[gs] = P, * gs is the harmonic
extension of g5 to U. As r — 1, it satisfies the following:

8(w) ~

(3.3) 1P, * gsllg ~ (1 = r)°~ l/p (dp < 1),
1 \!/4
(3.4) ”Pr * gallq ~ (logm) (5]7 = 1, D> 1),
1
||Pr*g1||oo"’logl—_—r (6=1, p=1).

P,[Gs] possesses these properties in each variable seperately.
On the unit circle, for 0 < § < 1, the modified Bessel kernels are

N N — N 1

Z5(@) = (1-€®)~! and (o) =log 7
On the torus, let G5() = H}‘zl g',;j(ﬁj). These functions are not
positive, so they are not properly kernels, but they are domir~1ated
by the Bessel kernels: There are constants Cs > 0 such that |G| <
CsGs . If each 6; is less than 1,

n n
P[Gs16) = [] P [8s1(6)) = [T(1 — z)% ",
Jj=1 Jj=1
with a logarithmic term if some J; = 1. For F € Z7(T"), the map
that takes F' to Gs*F is one-to-one, and the Cauchy integral of Gs*F
is the same as its Poisson integral:

P[Gs + F1(0) = (Pr * G5+ F)(6)

- [ F© 1‘[ (—1——1)— din(0) = £(2).
=1
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Thus we have obtained the integral in (3.1). From now on, F and f
will always be related as in this equation. J; =1 does not give rise to
a Cauchy-type integral; so we will not pay any attention to this case
any more.

Tangential limits. Define the tangential approach regions to the unit

circle:
‘ y
(3.5) Ay.(p)= {re“g l—r>c },
-9

, -y
Ey,c(q))z{re’e: 1—r>exp(—-c > )}

A, (p) has (polynomial) order of contact y, and E, .(¢) makes
exponential contact, with T. A function f defined in U has A4,(E,)-
limit L at €'? if f(z) —» L as z — e'? within 4, .(E, ) for every
¢ > 0. In [3], it was shown that Poisson integrals of the modified
Bessel potentials have A4,-limits a.e. on T if dp < 1 for y = ﬁ; ,
and E,-limitsa.e.on T if dp=1 for y=¢g—1.

Let Q = Q(n,s) be the cube centered at n € T" with sides s =
(S15 ..., Sn), where each s; has the same order as max{s; : 1 <
Jj<n}— 0. Its volume is 4,(Q) = s;---5,. If F € ZP(T"), its
Hardy-Littlewood maximal function is

wrm=_sw (s /Q |f|1’d/1,,)1/p.

0<s,, ..., 5,51

0—¢p

sin
2

sin

M; is of weak type (1, 1); and since M F = (MIIFIP)I/", M, is of
weak type (p, p). Thus there are C, such that
C
In({MpF > 1)) < Z2|Flp  (F e (1), t€(0, ).

The proofs of the following assertions are similar to the proofs given
in [3] for n = 1 and will be omitted. Some of them are valid in more
general situations. The first result is obtained using the straightforward
inequality

/ \F|Gsdin < (MF)Y(1, ... ,1)/ Gsdin = (MyF)(1, ..., 1),
T’l T"
which holds for any F € Z!(T"), and whose proof is also in [3].

THEOREM 3.1. There is a C, < oo such that for F € ZP(T") and
£, neT”,

(G5 » F)Q)| < G {(MpF)(n) (H ¢ - rm”f’) 1Gslla + (ML F)(m)|.

j=1
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Convolution of two kernels is a kernel; so Theorem 3.1 holds with
P, « G5 = P,[Gs] in place of G5, which has the desired properties
1P % Gsll1 = 1Pl IGslly = 1 and ||PrxGsllg = ITj=y 1P, * s llq- The
Hélder inequality gives M F < M,F . In addition, |{; — 5| can be
replaced by |6, — ¢j|, or even by [sin((8; — 9;)/2)|, since they are all
of the same order as { — 7. Lastly, we can put G5 in place of G5 on
the left side of the inequality since the latter dominates the former.
Hence Theorem 3.1 yields

THEOREM 3.2. If F € £P(T"), then, using z = re'?, for all e, '¥
eT”,

(36) | /(2)] < Gy (MpF)(p) [1+H

j=1

0; - (/)J
sin ———< 3

"B« g la

For given ¢, any bound on the product on the right side gives a
bound on f(z). This leads us to the tangential approach regions to
T". So fixan n € T". As z — {, all r; — 1; and because of
(3.3) and (3.4), || * Gsllqg ~ [T}, b;, where b; = (1 - r)%YP or
b; = (log(1/(1 —r;)))1/% depending on whether d;p <1 or d;p =1,
respectively. In other words, an approach region should be determined
by

n
. Oi—o;
H bj'sm —2——' <c.
j=1
So define B, (1) by

0; - 0i—o0)
sin ——— 7

B Byl =Brelo) = { ze 0T[5, <cl.
Jj=1

Each of the factors in the above product is related to one of the re-
gions in (3.5). In particular, points in a cartesian product of one-
dimensional approach regions such as By (91) X --- X By ¢ (¢n),
where each Byj,cj((pj) is either A,,},c](¢ j) or E,,j,cj(wj), satisfy the
criterion for being in B, .(n). Hence an approach region can make
exponential contact with T” in one (complex) direction and polyno-
mial contact in another. For n € T", the maximal functions associated
to these approach regions are defined as

(Mg, ,y,.f)(n) = sup{|f(2)| : z € By,c(m)}-

A function f defined in U” is said to have B,-limit L at n € T" if
f(z) = L as z — n within B, .(n) for every ¢ > 0.
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THEOREM 3.3. If F € LP(T") and t € (0, 00), there is a C =
C(p, ¢) such that

C
/In({MGJ,y,cf> t}) < t—pllFllﬁ,

where

1 ) ‘
B8 y=1z5, Fop<l and y=q-1 op=1

This follows from the weak-type-(p, p) estimate for M,. The
weak-type estimate gives rise to a convergence theorem via classical
arguments. This is the content of part (i) of Theorem C. The case
p = 1 of part (ii) of that theorem also follows from Theorem 3.3.
Henceforth, p, 6, and y will always be related by (3.8).

Capacities. For E Cc T", let T(Gs, p, E) be the set of all nonneg-
ative F € ZP(T") such that (G5« F)({) > 1 for all { € E. The
p-capacity of E is

%6, (E) = inf{ |F|}: F € T(G;,p, E) }.

26,(E) = 0 implies A,(E) = 0. The functions Gj * F are defined
Zga-almost everywhere. If F € T(P, x G5, p, E), then 2p(E) <
2p.q,(E). For n € T" and fixed p > 1, let

) ={zeU":|z; -l <p(l-|zl), 1<j<n},

and set S(E) = U"\ Un¢E I'(n). I'(n) is the cartesian product of »
sets each of which is asymptotic, as z; — 7;, to an angle-shaped ap-
proach region in U with vertex at #;. For n € T", the nontangential
maximal function is

(NS)(n) = sup{ | f(2)| : z € T(m)}.

For W c U", J?(W) is the set of n € T" for which W intersects
BJ’,c(']) .

LEMMA 3.4. There exists a constant b = b(n) > 0 such thatif F >0
onT", F>1 on E€T", and z€ S(E), then P,[F](z)>Db.

We will use this lemma with G5 * F in place of F . It leads to the
following lower estimate for capacities.
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ProposITION 3.5. If F € ZY(T") and 0 <t < oo, then {Mg, ; .f
>t} is contained in J!(S({Nf >t})). Thus, thereisa C =C(p, c)
such that if t € (0, 00) and F € Z(T"), we have

ln({MG‘s,y,cf> t}) < CZGJ({Nf> l})

THEOREM 3.6. For 1 < p < oo, there is a constant C, < oo such
that if F € ZP(T") and F >0, then

/Ooo S, ({Gs + F > 1}) d(t") < G| F|1.

Combining Lemma 3.4~, Proposition 3.5, and Theorem 3.6 with the
fact that G5 dominates G; and that N(Gs*F) = Gs* NF , we obtain
the strong-type estimates in part (ii) of Theorem C.

THEOREM C. Let 1 <p <oo, Fe ZP(T"), 0<d; <1, define f
as in (3.1), pick y; as in (3.8), and for { € T", construct By ({) as
in (3.7).

(i) The B,-limit of f exists a.e. [A,] on T"

(i1) There are positive constants C, such that

Mg, 5,cfllp < GolIFl, (1 <p<o0),
C
In({ Mg, y.ef >13) < FIFlli (=1, 0<1<00).

If { € 9U"\T", then only one component of {, say the nth, has
|{n| = 1. Then the first n — 1 factors in the product in (3.6) are
bounded as z — {. So in this case, it suffices to apply the one-variable
result in the nth variable. The approach regions are restricted only
in the nth component as in (3.5), and (z;, ..., z,_;) can approach
(¢15 ..., ¢u_1) € 0U" in any manner whatsoever. Theorem C remains
valid except that in part (ii), we would use one-dimensional norm and
Lebesgue measure.

When p = 2 and all the ; = 1/2, this theorem takes care of
(U™, but cannot deal with 2/ (U"). Thus the functions in the mod-
ified Dirichlet space have tangential (B(; . 1)-) limits at almost every
boundary point of the unit polydisc. When n = 1, since #?(U) in-
cludes all Dirichlet-type spaces, elements of & (U) have nontangential
limits a.e. on T.
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Now we will look at the size of the exceptional sets. From Lemma
3.4, part (ii) of Theorem C, and the first part of Proposition 3.5, we
obtain

LemMA 3.7. If 1 < p < o0, then for some C = C(p, ¢)
S5 (J(S(E))) < CZpag,(E).
Hence for F € £P(T"),
ZP,({‘}MGé,y,cf > t}) < CEPr*G’, ({Nf> t})

THEOREM 3.8. If 1 <p < oo and F € LP(T"), then
|5 (e, y.cf > ) den) < CUFIE,

and thus W2
51, (Mg, ;.of > 1)) < 1Tl

This theorem is an analog of Theorem C in the language of capaci-
ties and proved similarly.

THEOREM D. Let 1 <p <oo, F € ZP(T"), and f be as in (3.1).

(i) There is a set Ey C T" with Zp.c (E1) = 0 such that the non-
tangential limit of f exists at every point of T"\E, .

(ii) There is a set E, C T" with Zp(E;) =0 such that the B,-limit
of f exists at every point of T"\E,.

This result is a consequence of the basic properties of capacities
and Theorem 3.10. For points on 0U"\T”, the one-variable result
can again be used to reach a similar conclusion. Hence if p = 2 and
all the d; = 1/2, the points on 9U" where the modified Dirichlet
space does not have nontangential limits have zero capacity in some
sense.
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