Pacific Journal of Mathematics

UNIT INDICES OF SOME IMAGINARY COMPOSITE QUADRATIC FIELDS

MIKIHITO HIRABAYASHI

Volume 164 No. 1

May 1994

UNIT INDICES OF SOME IMAGINARY COMPOSITE QUADRATIC FIELDS

MIKIHITO HIRABAYASHI

Let K be an imaginary abelian number field of type (2, 2, 2, 2)not containing the 8th cyclotomic field. Using the fundamental units of real quadratic subfields of K, we give a necessary and sufficient condition for the unit index Q_K of K to be equal to 2.

1. Introduction and results. Let K be an imaginary abelian number field and K_0 the maximal real subfield of K. Let E and E_0 be the groups of units of K and K_0 , respectively, and let W be the group of roots of unity in K. Then we call the group index

$$Q_K = [E : WE_0]$$

the unit index of K.

Using the character group of K, H. Hasse [2] gave sufficient conditions for Q_K to be equal to 1 or 2, by which we can determine Q_K for some types of fields K. However by his method we cannot always determine Q_K for arbitrary K, even if K is an imaginary composite quadratic field. (We call a field K a composite quadratic field if Kis a composite of quadratic fields.) K. Yoshino and the author [3, 4] gave criteria to determine Q_K of K with Galois group $Gal(K/\mathbf{Q})$ of type (2, 2) and (2, 2, 2).

In this paper we extend our previous results [3, 4] to the case that K has Galois group Gal(K/Q) of type (2, 2, 2, 2) and does not contain the 8th cyclotomic field, and then, we give a necessary and sufficient condition for the unit index Q_K to be equal to 2.

NOTATION. N, Z, Q: the sets of natural numbers, rational integers and rational numbers, respectively,

=: the equality except rational quadratic factors,

 $\overset{2}{d_0}$, d_1 , d_2 , ..., d_7 : square-free positive integers such that $d_4 = \frac{1}{2}$ d_2d_3 , $d_5 = d_3d_1$, $d_6 = d_1d_2$, $d_7 = d_1d_2d_3$ and $d_0 \neq d_i$ (*i* = 1, 2, ..., 7), $K = \mathbf{Q}(\sqrt{-d_0}, \sqrt{d_1}, \sqrt{d_2}, \sqrt{d_3})$: an imaginary composite qua-

dratic field of degree 16,

 $K_0 = \mathbf{Q}(\sqrt{d_1}, \sqrt{d_2}, \sqrt{d_3}),$ $\frac{E_0^+}{E_0^+}$: the group of totally positive units of K_0 , \overline{E}_0 : the group of units η of E_0^+ such that $K_0(\sqrt{\eta})$ is a composite quadratic field,

$$\begin{split} K_1 &= \mathbf{Q}(\sqrt{d_2}, \sqrt{d_3}), & K_2 &= \mathbf{Q}(\sqrt{d_3}, \sqrt{d_1}), \\ K_3 &= \mathbf{Q}(\sqrt{d_1}, \sqrt{d_2}), & K_4 &= \mathbf{Q}(\sqrt{d_1}, \sqrt{d_2 d_3}), \\ K_5 &= \mathbf{Q}(\sqrt{d_2}, \sqrt{d_3 d_1}), & K_6 &= \mathbf{Q}(\sqrt{d_3}, \sqrt{d_1 d_2}), \\ K_7 &= \mathbf{Q}(\sqrt{d_2 d_3}, \sqrt{d_3 d_1}), & \\ k_i &= \mathbf{Q}(\sqrt{d_i}) \ (i = 1, 2, \dots, 7), \\ \langle \sigma_i \rangle &= \operatorname{Gal}(K_0/K_i) \ (i = 1, 2, \dots, 7), \end{split}$$

N(x), Sp(x): the absolute norm and the absolute trace of x, respectively,

$$A = A(e_1, e_2, e_3) = \begin{cases} 2d_1^{e_1}d_2^{e_2}d_3^{e_3} & \text{if } d_0 = 1, \\ d_0 d_1^{e_1}d_2^{e_2}d_3^{e_3} & \text{otherwise,} \end{cases}$$

 ε_i : the fundamental unit of $\mathbf{Q}(\sqrt{d_i})$, $\varepsilon_i > 1$ (i = 1, 2, ..., 7).

When $N(\varepsilon_i) = +1$, we denote by Δ_i , Δ_i^* the square-free parts of $\operatorname{Sp}(\varepsilon_i+1)$, $\operatorname{Sp}(\varepsilon_i-1)$, respectively, and by m_i , n_i the natural numbers such that $\operatorname{Sp}(\varepsilon_i + 1) = \Delta_i m_i^2$, $\operatorname{Sp}(\varepsilon_i - 1) = \Delta_i^* n_i^2$. Then we have

(1)
$$\sqrt{\varepsilon_i} = \frac{1}{2}(m_i\sqrt{\Delta_i} + n_i\sqrt{\Delta_i^*}).$$

When $d_i d_j = d_k$ with $N(\varepsilon_i) = N(\varepsilon_j) = N(\varepsilon_k) = -1$, we denote by $\Delta_{ij} = \Delta_{ji}$ the square-free integer such that

$$\Delta_{ij} \stackrel{=}{=} \operatorname{Sp}_{\mathbf{Q}(\sqrt{d_i},\sqrt{d_j})/\mathbf{Q}}(\varepsilon_i \varepsilon_j \varepsilon_k - \varepsilon_i - \varepsilon_j - \varepsilon_k).$$

(We take (i, j) = (1, 2), (1, 3), (1, 4), (2, 3), (2, 5), (3, 6) and (4, 5).)

When $d_i d_j d_k = d_l$ with $N(\varepsilon_i) = N(\varepsilon_j) = N(\varepsilon_k) = N(\varepsilon_l) = -1$ and when $\mathbf{Q}(\sqrt{d_i}, \sqrt{d_i}, \sqrt{d_k}) = K_0$, we denote by Δ_{iik} the square-free integer such that

$$\Delta_{ijk} \stackrel{=}{=} \operatorname{Sp}_{K_0/\mathbf{Q}} \left(\varepsilon_i \varepsilon_j \varepsilon_k \varepsilon_l + 1 - \sum_{\alpha < \beta} \varepsilon_\alpha \varepsilon_\beta \right)$$

where α , β run through i, j, k and l.

For a totally positive unit η of K_0 let

(2)
$$\xi^*(\eta) = \eta + \eta^{\sigma_1} + 2(-1)^{s_1} \sqrt{\eta \eta^{\sigma_1}},$$

(3) $\theta^*(\eta) = \xi^*(\eta) + \xi^*(\eta)^{\sigma_2} + 2(-1)^{s_2} \sqrt{\xi^*(\eta)\xi^*(\eta)^{\sigma_2}},$
(4) $d^*(\eta) = \theta^*(\eta) + \theta^*(\eta)^{\sigma_3} + 2(-1)^{s_3} \sqrt{\theta^*(\eta)\theta^*(\eta)^{\sigma_3}}$ ($s_i = 0 \text{ or } 1$)

under the condition that

(5)
$$\sqrt{\eta\eta^{\sigma_1}} \in K_1$$
, $\sqrt{\xi^*(\eta)\xi^*(\eta)^{\sigma_2}} \in k_3$ and $\sqrt{\theta^*(\eta)\theta^*(\eta)^{\sigma_3}} \in \mathbf{Q}$.

We remark that for a totally positive unit η of K_0 this condition (5) is satisfied if and only if η is contained in \overline{E}_0 . This remark can be proved by Lemmas 4 and 5 (cf. proof of Theorem 4).

Throughout this paper we assume that K does not contain the 8th cyclotomic field $\mathbf{Q}(\sqrt{-1}, \sqrt{2})$. Our result is the following

MAIN THEOREM. Under the above notation and assumption we have that $Q_K = 2$ if and only if

$$\prod_{i} \Delta_{i}^{a_{i}} \cdot \prod_{i,j} \Delta_{ij}^{b_{ij}} \cdot \prod_{i,j,k} \Delta_{ijk}^{c_{ijk}} \cdot d^{*}(\eta_{0})^{f} = A(e_{1}, e_{2}, e_{3})$$

for some a_i , b_{ij} , c_{ijk} , f, $e_i = 0, 1$ and $\eta_0 \in \overline{E}_0$ represented in the form

$$\eta_0 = \sqrt{\prod_{N(\varepsilon_i)=+1} \varepsilon_i^{u_i}} \cdot \prod_{N(\varepsilon_i)=-1} \varepsilon_i^{v_i},$$

where u_i , $v_i = 0$ or 1. The number of *i*'s for which $u_i = 1$ is neither 1 nor 2.

More precisely we have the following Theorems 1-6.

THEOREM 1. In the case that $N(\varepsilon_1) = N(\varepsilon_2) = \cdots = N(\varepsilon_7) = -1$, we have

$$Q_K = 2 \Leftrightarrow \Delta_{12}^{b_1} \Delta_{23}^{b_2} \Delta_{31}^{b_3} \Delta_{123}^{c} = A(e_1, e_2, e_3)$$

for some b_i , c, $e_i = 0, 1$. Especially, if $\sqrt{\Delta_{ij}}$ is contained in $\mathbf{Q}(\sqrt{d_i}, \sqrt{d_j})$ for every (i, j), then $Q_K = 1$.

THEOREM 2. In the case that $N(\varepsilon_1) = N(\varepsilon_2) = \cdots = N(\varepsilon_6) = -1$ and $N(\varepsilon_7) = +1$, we have

$$Q_{K} = 2 \Leftrightarrow \Delta_{7}^{a} \Delta_{12}^{b_{1}} \Delta_{23}^{b_{2}} \Delta_{31}^{b_{3}} = A(e_{1}, e_{2}, e_{3})$$

for some $a, b_i, e_i = 0, 1$.

THEOREM 3. In the case that $N(\varepsilon_1) = N(\varepsilon_2) = \cdots = N(\varepsilon_5) = -1$ and $N(\varepsilon_6) = N(\varepsilon_7) = +1$, we have

$$Q_K = 2 \Leftrightarrow \Delta_6^{a_6} \Delta_7^{a_7} \Delta_{23}^{b_2} \Delta_{31}^{b_3} \stackrel{=}{=} A(e_1, e_2, e_3)$$

for some $a_i, b_i, e_i = 0, 1$.

THEOREM 4. (1) In the case that $N(\varepsilon_1) = \cdots = N(\varepsilon_4) = -1$ and $N(\varepsilon_5) = N(\varepsilon_6) = N(\varepsilon_7) = +1$, we have

$$Q_K = 2 \Leftrightarrow \Delta_5^{a_5} \Delta_6^{a_6} \Delta_7^{a_7} \Delta_{23}^{b} d^*(\eta_0)^f = A(e_1, e_2, e_3)$$

for some $a_i, b, f, e_i = 0, 1$ and $\eta_0 \in \overline{E}_0$ such that

$$\eta_0 = \sqrt{\varepsilon_5 \varepsilon_6 \varepsilon_7} \prod_{i=1}^4 \varepsilon_i^{v_i} \qquad (v_i = 0 \text{ or } 1).$$

(2) In the case that $N(\varepsilon_1) = N(\varepsilon_2) = N(\varepsilon_3) = N(\varepsilon_7) = -1$ and $N(\varepsilon_4) = N(\varepsilon_5) = N(\varepsilon_6) = +1$, we have

$$Q_K = 2 \Leftrightarrow \Delta_4^{a_4} \Delta_5^{a_5} \Delta_6^{a_6} \Delta_{123}^c = A(e_1, e_2, e_3)$$

for some $a_i, c, e_i = 0, 1$.

THEOREM 5. (1) In the case that $N(\varepsilon_1) = N(\varepsilon_2) = N(\varepsilon_3) = -1$ and $N(\varepsilon_4) = N(\varepsilon_5) = N(\varepsilon_6) = N(\varepsilon_7) = +1$, we have

$$Q_K = 2 \Leftrightarrow \prod_{i=4}^{\prime} \Delta_i^{a_i} \cdot d^*(\eta_0)^f \stackrel{f}{=} A(e_1, e_2, e_3)$$

for some a_i , f, $e_i = 0$, 1 and $\eta_0 \in \overline{E}_0$ such that

$$\frac{\eta_0}{\prod_{i=1}^3 \varepsilon_i^{v_i}} = \sqrt{\varepsilon_4 \varepsilon_5 \varepsilon_7}, \ \sqrt{\varepsilon_5 \varepsilon_6 \varepsilon_7} \ or \ \sqrt{\varepsilon_6 \varepsilon_4 \varepsilon_7} \qquad (v_i = 0 \ or \ 1).$$

(2) In the case that $N(\varepsilon_1) = N(\varepsilon_2) = N(\varepsilon_6) = -1$ and the others $N(\varepsilon_i) = +1$, we have

$$Q_K = 2 \Leftrightarrow \prod_{N(e_i)=+1} \Delta_i^{a_i} \cdot \Delta_{12}^b \cdot d^*(\eta_0)^f \stackrel{=}{=} A(e_1, e_2, e_3)$$

for some $a_i, b, f, e_i = 0, 1$ and $\eta_0 \in \overline{E}_0$ such that

$$\frac{\eta_0}{\prod_{N(\varepsilon_i)=-1}\varepsilon_i^{v_i}} = \sqrt{\varepsilon_3\varepsilon_4\varepsilon_5\varepsilon_7}, \sqrt{\varepsilon_3\varepsilon_4\varepsilon_5}, \sqrt{\varepsilon_3\varepsilon_4\varepsilon_7}, \sqrt{\varepsilon_3\varepsilon_5\varepsilon_7}, \sqrt{\varepsilon_3\varepsilon_5\varepsilon_7}, \sqrt{\varepsilon_3\varepsilon_5\varepsilon_7}, (v_i = 0 \text{ or } 1).$$

UNIT INDICES

THEOREM 6. In the case that $N(\varepsilon_3) = N(\varepsilon_4) = \cdots = N(\varepsilon_7) = +1$, we have

$$Q_K = 2 \Leftrightarrow \prod_{N(e_i)=+1} \Delta_i^{a_i} \cdot d^*(\eta_0)^f \stackrel{=}{=} A(e_1, e_2, e_3)$$

for some a_i , f, $e_i = 0$, 1 and $\eta_0 \in \overline{E}_0$ such that

$$\frac{\eta_0}{\sqrt{\prod_{N(\varepsilon_i)=+1} \varepsilon_i^{u_i}}} = \varepsilon_1^{v_1} \varepsilon_2^{v_2}, \, \varepsilon_1^{v_1} \text{ or } 1 \qquad (u_i, \, v_i = 0 \text{ or } 1)$$

according as $N(\varepsilon_1) = N(\varepsilon_2) = -1$; $N(\varepsilon_1) = -1$ and $N(\varepsilon_2) = +1$; or $N(\varepsilon_1) = N(\varepsilon_2) = +1$. The number of *i*'s for which $u_i = 1$ is neither 1 nor 2.

REMARK 1. In Main Theorem η_0 is not represented in the form

$$\eta_0 = \sqrt{\varepsilon_i \varepsilon_j \varepsilon_k} \cdot \prod_{N(\varepsilon_l) = -1} \varepsilon_l^{v_l}$$

where $N(\varepsilon_i) = N(\varepsilon_j) = N(\varepsilon_k) = +1$ and $d_i d_j = d_k$ (cf. proof of Case (2) of Theorem 4).

REMARK 2. For some $\eta_0 \in \overline{E}_0$ we can actually calculate the rational integers $d^*(\eta_0)$ defined by (4). For example, we can obtain the following: Suppose that $N(\varepsilon_1) = N(\varepsilon_2) = N(\varepsilon_3) = +1$ and that $\eta_0 = \sqrt{\varepsilon_1 \varepsilon_2 \varepsilon_3}$ is totally positive. Then $\eta_0 \in \overline{E}_0$ if and only if

(6) $\Delta_1 = d_2 d_3, \quad \Delta_2 = d_3 d_1, \quad \Delta_3 = d_1 d_2.$

If this condition (6) is satisfied, we have

$$d^{*}(\eta_{0}) = m_{1}m_{2}m_{3}\sqrt{\Delta_{1}\Delta_{2}\Delta_{3}} + 2\Delta_{1}^{*}\{(-1)^{s_{1}}n_{2}n_{3} + (-1)^{s_{2}}n_{3}n_{1} + (-1)^{s_{3}}n_{1}n_{2}\} - 8(-1)^{s_{1}+s_{2}+s_{3}} \quad (s_{i} = 0 \text{ or } 1)$$

where Δ_i , Δ_i^* , m_i , n_i and s_i are as in the notation.

2. Properties of \overline{E}_0 and lemmas on (2, 2)-extensions. In this section we give a proposition and some lemmas which will be used in the proofs of theorems.

Let $\langle x, y, \ldots \rangle$ be a group generated by x, y, \ldots . Let E_0^* be the subgroup of E_0 generated by the units of $\mathbb{Q}(\sqrt{d_i})$ for $i = 1, 2, \ldots, 7$. Let $(E_0^*)^+$ be the subgroup of E_0 generated by totally positive units of E_0^* , i.e., $(E_0^*)^+ = E_0^* \cap E_0^+$. PROPOSITION 1. (1) If $N(\varepsilon_1) = \cdots = N(\varepsilon_7) = -1$, then $(E_0^*)^+ = \langle \varepsilon_2 \varepsilon_3 \varepsilon_4, \varepsilon_3 \varepsilon_1 \varepsilon_5, \varepsilon_1 \varepsilon_2 \varepsilon_6, \varepsilon_1 \varepsilon_2 \varepsilon_3 \varepsilon_7 \rangle E_0^{*2}$. (2) If $N(\varepsilon_1) = \cdots = N(\varepsilon_6) = -1$ and $N(\varepsilon_7) = +1$, then $(E_0^*)^+ = \langle \varepsilon_2 \varepsilon_3 \varepsilon_4, \varepsilon_3 \varepsilon_1 \varepsilon_5, \varepsilon_1 \varepsilon_2 \varepsilon_6, \varepsilon_7 \rangle E_0^{*2}$. (3) If $N(\varepsilon_1) = \cdots = N(\varepsilon_5) = -1$ and $N(\varepsilon_6) = N(\varepsilon_7) = +1$, then $(E_0^*)^+ = \langle \varepsilon_2 \varepsilon_3 \varepsilon_4, \varepsilon_3 \varepsilon_1 \varepsilon_5, \varepsilon_6, \varepsilon_7 \rangle E_0^{*2}$.

(4₁) If $N(\varepsilon_1) = \cdots = N(\varepsilon_4) = -1$ and $N(\varepsilon_5) = N(\varepsilon_6) = N(\varepsilon_7) = +1$, then

 $(E_0^*)^+ = \langle \varepsilon_2 \varepsilon_3 \varepsilon_4, \varepsilon_5, \varepsilon_6, \varepsilon_7 \rangle E_0^{*2}.$ $(4_2) If N(\varepsilon_1) = N(\varepsilon_2) = N(\varepsilon_3) = N(\varepsilon_7) = -1 and N(\varepsilon_4) = N(\varepsilon_5) = N(\varepsilon_6) = +1, then$

$$(E_0^*)^+ = \langle \varepsilon_1 \varepsilon_2 \varepsilon_3 \varepsilon_7, \varepsilon_4, \varepsilon_5, \varepsilon_6 \rangle E_0^{*2}.$$

(5₁) If $N(\varepsilon_1) = N(\varepsilon_2) = N(\varepsilon_3) = -1$ and $N(\varepsilon_4) = \cdots = N(\varepsilon_7) = +1$, then

$$(E_0^*)^+ = \langle \varepsilon_4, \varepsilon_5, \varepsilon_6, \varepsilon_7 \rangle E_0^{*2}.$$

$$(E_0)^{+} = \langle \varepsilon_1 \varepsilon_2 \varepsilon_6, \varepsilon_3, \varepsilon_4, \varepsilon_5, \varepsilon_7 \rangle E_0 .$$
(6) If $N(\varepsilon_1) = N(\varepsilon_2) = -1$ and $N(\varepsilon_3) = \cdots = N(\varepsilon_7) = +1$, then

$$(E_0^{*})^{+} = \langle \varepsilon_3, \varepsilon_4, \varepsilon_5, \varepsilon_6, \varepsilon_7 \rangle E_0^{*2}.$$
(7) If $N(\varepsilon_1) = -1$ and $N(\varepsilon_2) = \cdots = N(\varepsilon_7) = +1$, then

$$(E_0^{*})^{+} = \langle \varepsilon_2, \varepsilon_3, \dots, \varepsilon_7 \rangle E_0^{*2}.$$
(8) If $N(\varepsilon_1) = \cdots = N(\varepsilon_7) + 1$, then

$$(E_0^{*})^{+} = \langle \varepsilon_1, \varepsilon_2, \dots, \varepsilon_7 \rangle E_0^{*2}.$$

Proof. We only prove the case (1), because the other cases are proved in the same way.

For an element $\alpha \neq 0$ of K we define $s(\alpha) = 0$ or 1 by $(-1)^{s(\alpha)} = \alpha/|\alpha|$.

For $\eta \in (E_0^*)^+$, putting $\eta = \varepsilon_1^{x_1} \varepsilon_2^{x_2} \cdots \varepsilon_7^{x_7}$ $(x_i \in \mathbb{Z})$, we have a system of simultaneous linear equations

$$\begin{cases} s(\varepsilon_1)x_1 + s(\varepsilon_2)x_2 + \dots + s(\varepsilon_7)x_7 \equiv 0\\ s(\varepsilon_1^{\sigma_1})x_1 + s(\varepsilon_2^{\sigma_1})x_2 + \dots + s(\varepsilon_7^{\sigma_1})x_7 \equiv 0\\ \dots\\ s(\varepsilon_1^{\sigma_7})x_1 + s(\varepsilon_2^{\sigma_7})x_2 + \dots + s(\varepsilon_7^{\sigma_7})x_7 \equiv 0. \end{cases}$$
(mod 2)

UNIT INDICES

By Gauss-Jordan elimination (see, for example, H. Anton, *Elementary Linear Algebra*, John Wiley & Sons (1973), pp. 18–20) we see that this system has the following four linearly independent solutions:

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}.$$

To these solutions correspond units $\varepsilon_2\varepsilon_3\varepsilon_4$, $\varepsilon_3\varepsilon_1\varepsilon_5$, $\varepsilon_1\varepsilon_2\varepsilon_6$, $\varepsilon_1\varepsilon_2\varepsilon_3\varepsilon_7$ respectively. Thus we have

$$(E_0^*)^+ = \langle \varepsilon_2 \varepsilon_3 \varepsilon_4, \varepsilon_3 \varepsilon_1 \varepsilon_5, \varepsilon_1 \varepsilon_2 \varepsilon_6, \varepsilon_1 \varepsilon_2 \varepsilon_3 \varepsilon_7 \rangle E_0^{*2}. \qquad \Box$$

In general, let K/k be a (2, 2)-extension with Galois group $Gal(K/k) = \langle \sigma, \tau \rangle$. Then, as used by H. Wada [6], we have

$$\alpha^2 = \frac{\alpha^{1+\sigma} \alpha^{1+\tau}}{(\alpha^{\sigma})^{1+\sigma\tau}}$$

for $\alpha \in K$, $\alpha \neq 0$. By this simple formula we see that $E_0^4 \subseteq E_0^*$. Moreover, we have $\overline{E}_0^2 \subseteq E_0^*$ by the following

LEMMA 1. Let $\eta \in \overline{E}_0$ and put $\eta^4 = \varepsilon_1^{x_1} \varepsilon_2^{x_2} \cdots \varepsilon_7^{x_7}$ $(x_i \in \mathbb{Z})$. Then, every x_i is even.

Proof. Since $K_0(\sqrt{\eta}) = K_0(\sqrt{d})$ for some $d \in \mathbb{N}$, we can put $\eta = d\alpha_0^2$ ($\alpha_0 \in K_0$). Taking the norm N_{K_0/k_i} of $\varepsilon_1^{x_1} \varepsilon_2^{x_2} \cdots \varepsilon_7^{x_7} = d^4 \alpha_0^8$, we have $\varepsilon_i^{4x_i} = d^{16} N_{K_0/k_i}(\alpha_0)^8$. This implies that x_i is even.

LEMMA 2. Let $\eta \in \overline{E}_0$ and put

(7)
$$\eta^2 = \varepsilon_1^{x_1} \varepsilon_2^{x_2} \cdots \varepsilon_7^{x_7} \qquad (x_i \in \mathbf{Z}).$$

Then, all x_i are even or at least three x_i 's are odd.

Proof. For the simplicity we denote by N_i the norm N_{K_0/K_i} for each *i*.

First, for example, we assume that $x_1 \equiv 1$, $x_i \equiv 0 \pmod{2}$ (i = 2, 3, ..., 7). Taking the norm N_3 of the equation (7), we have $N_3(\eta) = \varepsilon_1^{x_1} \varepsilon_2^{x_2} \varepsilon_6^{x_6} \in K_3$. On the other hand, putting $\eta = d\alpha_0^2$ $(d \in \mathbb{N}, \mathbb{N})$

 $\alpha_0 \in K_0$), we have $N_3(\eta) = d^2 N_3(\alpha_0)^2$. Therefore, $\sqrt{\varepsilon_1}$ is contained in $K_3 = \mathbf{Q}(\sqrt{d_1}, \sqrt{d_2})$. In the same way, taking the norm N_2 of (7), we see that $\sqrt{\varepsilon_1}$ is contained in $K_2 = \mathbf{Q}(\sqrt{d_3}, \sqrt{d_1})$. Thus $\sqrt{\varepsilon_1}$ is contained in $K_2 \cap K_3 = \mathbf{Q}(\sqrt{d_1})$, which is impossible.

Secondly, for example, we assume that $x_1 \equiv x_2 \equiv 1$, $x_i \equiv 0 \pmod{2}$ (i = 3, 4, ..., 7). Taking the norms N_2 , N_4 of (7), we see that $\sqrt{\varepsilon_1}$ is contained in $\mathbb{Q}(\sqrt{d_1})$, which is also impossible.

Thus there is no case that exactly one or two of x_i are odd. \Box

LEMMA 3. Let $\eta \in \overline{E}_0$ and put

(8)
$$\eta^2 = \varepsilon_1^{x_1} \varepsilon_2^{x_2} \cdots \varepsilon_7^{x_7} \qquad (x_i \in \mathbb{Z}).$$

(1) If there exists an even x_i , then $N(\varepsilon_i) = +1$ for each odd x_i .

(2) If there exists "i" for which $x_i \equiv 0 \pmod{2}$ or $N(\varepsilon_i) = +1$, then x_j is even when $N(\varepsilon_j) = -1$.

(3) If $x_1 \equiv x_2 \equiv \cdots \equiv x_7 \equiv 1 \pmod{2}$, then $N(\varepsilon_1) = N(\varepsilon_2) = \cdots = N(\varepsilon_7)$.

Proof. (1) Suppose that $x_1 \equiv 1$, $x_2 \equiv 0 \pmod{2}$. Taking the norm N_3 of (8), we have $N_3(\eta) = \varepsilon_1^{x_1} \varepsilon_2^{x_2} \varepsilon_6^{x_6}$. Again, taking the norms N_1 , N_2 of this equation, we have by $\eta \gg 0$ that

$$N_1(N_3(\eta)) = N(\varepsilon_1)^{x_1} \varepsilon_2^{2x_2} N(\varepsilon_6)^{x_6} > 0,$$

$$N_2(N_3(\eta)) = \varepsilon_1^{2x_1} N(\varepsilon_2)^{x_2} N(\varepsilon_6)^{x_6} > 0.$$

Hence $N(\varepsilon_6)^{x_6} = +1$ and then $N(\varepsilon_1) = +1$.

(2) We suppose that $x_1 \equiv 0 \pmod{2}$ or $N(\varepsilon_1) = +1$ and that $N(\varepsilon_2) = -1$.

Taking the norm N_3 of (8), we have $N_3(\eta) = \varepsilon_1^{x_1} \varepsilon_2^{x_2} \varepsilon_6^{x_6}$. Again, taking the norm N_6 of this equation, we have

$$N_6(N_3(\eta)) = N(\varepsilon_1)^{x_1} N(\varepsilon_2)^{x_2} \varepsilon_6^{2x_6} > 0,$$

and so $x_2 \equiv 0 \pmod{2}$.

(3) Taking the norm N_1 of (8), we have $N_1(\eta) = \varepsilon_2^{x_2} \varepsilon_3^{x_3} \varepsilon_4^{x_4}$. Moreover, taking the norms N_2 , N_3 of this equation, we have

$$\begin{split} N_2(N_1(\eta)) &= N(\varepsilon_2)^{x_2} \varepsilon_3^{2x_3} N(\varepsilon_4)^{x_4} > 0, \\ N_3(N_1(\eta)) &= \varepsilon_2^{2x_2} N(\varepsilon_3)^{x_3} N(\varepsilon_4)^{x_4} > 0. \end{split}$$

Then $N(\varepsilon_2) = N(\varepsilon_3) = N(\varepsilon_4)$.

UNIT INDICES

In the same way, taking the norms N_2 , N_3 , N_6 of (8), we obtain $N(\varepsilon_3) = N(\varepsilon_1) = N(\varepsilon_5)$, $N(\varepsilon_1) = N(\varepsilon_2) = N(\varepsilon_6)$, $N(\varepsilon_3) = N(\varepsilon_6) = N(\varepsilon_7)$.

For a field k we denote by $\stackrel{\text{"=}}{_2}$ in k" the equality except a square of a number of k.

LEMMA 4 (F. Halter-Koch [1, Satz 1]). Let K_1 be a field with $\overline{\text{char}}(K_1) \neq 2$. Let K_0 be a quadratic extension of K_1 and $K_0(\sqrt{\eta_0})$ ($\eta_0 \in K_0$) a biquadratic (quartic) extension of K_1 . Then $K_0(\sqrt{\eta_0})/K_1$ is bicyclic if and only if $N_{K_0/K_1}(\eta_0) = 1$ in K_1 .

By this Lemma 4 we can easily obtain

LEMMA 5. Let K_1 be an algebraic number field and K_0 a quadratic extension of K_1 . Let $K_0(\sqrt{\eta_0})$ ($\eta_0 \in K_0$, $\eta_0 \notin K_1$) be a biquadratic bicyclic extension of K_1 with $\operatorname{Gal}(K_0(\sqrt{\eta_0})/K_1) = \langle \sigma, \tau \rangle$ and $\operatorname{Gal}(K_0(\sqrt{\eta_0})/K_0) = \langle \tau \rangle$. Let F be the intermediate field of $K_0(\sqrt{\eta_0})/K_1$ fixed by σ . Then we have

$$F = K_1(\sqrt{\eta_0} + \sqrt{\eta_0}^{\sigma}).$$

3. Proof of theorems. For the proof of Main Theorem, it is enough to prove Theorems 1-6, because the cases of Proposition 1 cover all the possible cases of the combination of $N(\varepsilon_i) = \pm 1$.

Let K' be the quadratic extension of K generated by a primitive 2^{n+1} th root of unity, $2^n || \# W$, and let K'_0 be the maximal real subfield of K'.

When
$$d_i d_j = d_k$$
 and $N(\varepsilon_i) = N(\varepsilon_j) = N(\varepsilon_k) = -1$, let

$$\eta_{ij} = \varepsilon_i \varepsilon_j \varepsilon_k, \quad \xi_{ij} = \varepsilon_i \varepsilon_j \varepsilon_k - \varepsilon_i - \varepsilon_j - \varepsilon_k.$$

Then it follows from T. Kubota [5, §5] that

(9)
$$\eta_{ij}\operatorname{Sp}(\xi_{ij}) = \xi_{ij}^2.$$

For the multi-quadratic field $K_0 = \mathbf{Q}(\sqrt{d_1}, \sqrt{d_2}, \sqrt{d_3})$, we can prove:

LEMMA 6. Suppose that $N(\varepsilon_1) = N(\varepsilon_2) = N(\varepsilon_3) = N(\varepsilon_7) = -1$. Let

$$\begin{split} \eta &= \eta_{123} = \varepsilon_1 \varepsilon_2 \varepsilon_3 \varepsilon_7, \\ \zeta &= \zeta_{123} = \eta + 1 - (\varepsilon_1 \varepsilon_2 + \varepsilon_2 \varepsilon_3 + \varepsilon_3 \varepsilon_1 + \varepsilon_1 \varepsilon_7 + \varepsilon_2 \varepsilon_7 + \varepsilon_3 \varepsilon_7). \end{split}$$

Then we have

(10)
$$\eta \operatorname{Sp}(\xi) = \xi^2.$$

Proof. Since

$$\xi^{\sigma_1} = \varepsilon_1' \varepsilon_2 \varepsilon_3 \varepsilon_7' + 1 - \varepsilon_1' \varepsilon_2 - \varepsilon_2 \varepsilon_3 - \varepsilon_3 \varepsilon_1' - \varepsilon_1' \varepsilon_7' - \varepsilon_2 \varepsilon_7' - \varepsilon_3 \varepsilon_7',$$

it holds that $\varepsilon_1 \varepsilon_7 \xi^{\sigma_1} = -\xi$, where ε' is the conjugate of ε with respect to **Q**. In the same way we have

$$\varepsilon_2 \varepsilon_7 \xi^{\sigma_2} = \varepsilon_3 \varepsilon_7 \xi^{\sigma_3} = \varepsilon_2 \varepsilon_3 \xi^{\sigma_4} = \varepsilon_3 \varepsilon_1 \xi^{\sigma_5} = \varepsilon_1 \varepsilon_2 \xi^{\sigma_6} = -\xi ,$$

$$\varepsilon_1 \varepsilon_2 \varepsilon_3 \varepsilon_7 \xi^{\sigma_7} = \xi.$$

Therefore

$$\begin{aligned} \mathrm{Sp}_{K_0/\mathbf{Q}}(\xi) &= \xi + \xi^{\sigma_1} + \dots + \xi^{\sigma_7} \\ &= \xi \left(1 - \sum_{i < j} \frac{1}{\varepsilon_i \varepsilon_j} + \frac{1}{\varepsilon_1 \varepsilon_2 \varepsilon_3 \varepsilon_7} \right) \end{aligned}$$

where i, j run through 1, 2, 3 and 7. Thus we have $\eta \operatorname{Sp}_{K_0/\mathbb{Q}}(\xi) = \xi^2$.

LEMMA 7. Suppose that $N(\varepsilon_1) = N(\varepsilon_2) = \cdots = N(\varepsilon_7) = -1$ and that $\sqrt{\Delta_{ij}} \notin \mathbf{Q}(\sqrt{d_i}, \sqrt{d_j})$ for some (i, j). Then we have $\overline{E}_0 = (E_0^*)^+ E_0^2$.

Proof. Let $\eta \in \overline{E}_0$. By Lemma 1 we have (11) $\eta^2 = \varepsilon_1^{x_1} \varepsilon_2^{x_2} \cdots \varepsilon_7^{x_7} \quad (x_i \in \mathbb{Z}).$

Assume that every x_i is odd. Taking the norm N_1 of (11), we have by Lemma 4 that $\varepsilon_2^{x_2}\varepsilon_3^{x_3}\varepsilon_4^{x_4} = 1$ in K_1 , because $K_0(\sqrt{\eta})/K_1$ is a (2, 2)-extension or $\sqrt{\eta}$ is contained in K_0 . Therefore $\sqrt{\varepsilon_2\varepsilon_3\varepsilon_4} \in K_1$, and then by (9) we have $\sqrt{\Delta_{23}} \in K_1 = \mathbf{Q}(\sqrt{d_2}, \sqrt{d_3})$. Similarly, taking the norms N_2 , N_3 , N_4 , N_5 , N_6 and N_7 of (11), we have $\sqrt{\Delta_{ij}} \in \mathbf{Q}(\sqrt{d_i}, \sqrt{d_j})$ for every (i, j). This contradicts the assumption. Hence there is an even integer among x_i 's, and it follows from (2) of Lemma 3 that every x_i is even. Therefore, $\eta \in (E_0^*)^+ E_0^2$. Thus we have $\overline{E}_0 \subseteq (E_0^*)^+ E_0^2$.

The inverse inclusion $(E_0^*)^+ E_0^2 \subseteq \overline{E}_0$ is shown by the equations

(12)
$$\sqrt{\eta}\sqrt{\operatorname{Sp}(\xi)} = \xi$$

96

for $(\eta, \xi) = (\eta_{ij}, \xi_{ij})$ and (η_{ijk}, ξ_{ijk}) , since $(E_0^*)^+ E_0^2 / E_0^2$ is represented by $\eta_{12}, \eta_{23}, \eta_{31}$ and η_{123} .

Proof of Theorem 1. First we assume that $\sqrt{\Delta_{ij}} \notin \mathbf{Q}(\sqrt{d_i}, \sqrt{d_j})$ for some (i, j).

Suppose that $Q_K = 2$. Then there exists a unit $\eta \in \overline{E}_0$ such that $K_0(\sqrt{\eta}) = K'_0$ (Hasse [2, Satz 15]). By Lemma 7 we have $\eta = \varepsilon_1^{a_1} \varepsilon_2^{a_2} \cdots \varepsilon_7^{a_7} \varepsilon_0^2$ $(a_i \in \mathbb{Z}, \varepsilon_0 \in E_0)$ such that $\varepsilon_1^{a_1} \varepsilon_2^{a_2} \cdots \varepsilon_7^{a_7}$ is totally positive, and by (1) of Proposition 1 $\eta = \eta_{12}^{b_1} \eta_{23}^{b_2} \eta_{31}^{b_3} \eta_{123}^{c_2} \varepsilon^2$ $(b_i, c \in \mathbb{Z}, \varepsilon \in E_0)$. Therefore it follows from (12) that

$$K_0(\sqrt{\eta}) = K_0(\sqrt{\Delta_{12}^{b_1}\Delta_{23}^{b_2}\Delta_{31}^{b_3}\Delta_{123}^{c}}).$$

Since $K'_0 = K_0(\sqrt{2})$ or $K_0(\sqrt{d_0})$ according as $d_0 = 1$ or not, we have $K'_0 = K_0(\sqrt{A'})$ for some $A' = A(e'_1, e'_2, e'_3)$. Therefore

$$K_0(\sqrt{\Delta_{12}^{b_1}\Delta_{23}^{b_2}\Delta_{31}^{b_3}\Delta_{123}^{c}}) = K_0(\sqrt{A'}).$$

Thus we have

(13)
$$\Delta_{12}^{b_1} \Delta_{23}^{b_2} \Delta_{31}^{b_3} \Delta_{123}^{c} = A(e_1, e_2, e_3)$$

for some $e_i = 0, 1$. Because, if $K_0(\sqrt{m}) = K_0(\sqrt{A'})$ for a rational integer *m* and $A' = A(e'_1, e'_2, e'_3)$, then $\mathbf{Q}(\sqrt{m/A'})$ is equal to \mathbf{Q} or $\mathbf{Q}(\sqrt{m/A'})$ is a quadratic subfield of K_0 , and so

$$m = A' d_1^{e_1''} d_2^{e_2''} d_3^{e_3''} r^2$$

for some $e_1'', e_2'', e_3'' = 0, 1$ and some $r \in \mathbf{Q}$. Therefore, putting $e_i \equiv e_i' + e_i'' \pmod{2}$ (i = 1, 2, 3), we have

$$m = A(e_1, e_2, e_3).$$

Conversely, if this equation (13) holds, then the square root of $\eta := \eta_{12}^{b_1} \eta_{23}^{b_2} \eta_{31}^{b_3} \eta_{123}^c$ generates K'_0 over K_0 , i.e., $K_0(\sqrt{\eta}) = K'_0$. Thus, by H. Hasse [2, Satz 15] we have $Q_K = 2$.

Secondly, we assume that $\sqrt{\Delta_{ij}} \in \mathbf{Q}(\sqrt{d_i}, \sqrt{d_j})$ for every (i, j). Then it does not hold that

$$\Delta_{12}^{b_1} \Delta_{23}^{b_2} \Delta_{31}^{b_3} \Delta_{123}^{c} \stackrel{=}{=} A(e_1, e_2, e_3)$$

for any b_i , c, $e_i = 0$, 1.

In fact, by the assumption and by $\eta_{123} = \eta_{12}\eta_{36}\varepsilon_6^{-2}$ we have $K_0(\sqrt{\Delta_{ij}}) = K_0$ for every (i, j) and $K_0(\sqrt{\Delta_{123}}) = K_0(\sqrt{\Delta_{12}\Delta_{36}}) = K_0$. Consequently, we have

$$\Delta_{12}^{b_1}\Delta_{23}^{b_2}\Delta_{31}^{b_3}\Delta_{123}^{c} = d_1^{\alpha_1}d_2^{\alpha_2}d_3^{\alpha_3} \neq A(e_1, e_2, e_3),$$

where $\alpha_i = 0$ or 1.

In this case we can show that $Q_K = 1$ as follows:

Assume that $Q_K = 2$. Then there is a unit $\eta \in \overline{E}_0$ such that $K_0(\sqrt{\eta}) = K'_0$. By Lemma 1 we have $\eta^2 = \varepsilon_1^{x_1} \varepsilon_2^{x_2} \cdots \varepsilon_7^{x_7}$ $(x_i \in \mathbb{Z})$. It follows from (2) of Lemma 3 that all x_i are even or odd.

If all x_i are even, then $\eta \in (E_0^*)^+$ and we have $\eta = \eta_{12}^{b_1} \eta_{23}^{b_2} \eta_{31}^{b_1} \eta_{123}^{c_2} \varepsilon_0^2$ for some b_i , $c \in \mathbb{Z}$ and $\varepsilon_0 \in E_0^*$. Since $\eta_{123} = \eta_{12} \eta_{36} \varepsilon_6^{-2}$, we obtain by the assumption that $\sqrt{\eta} \in K_0$, which contradicts that $K_0(\sqrt{\eta})$ is a quadratic extension over K_0 . Therefore, all x_i are odd. Then $\eta = \sqrt{\varepsilon_1 \varepsilon_1 \cdots \varepsilon_7} \prod_{i=1}^7 \varepsilon_i^{y_i}$ for some $y_i \in \mathbb{Z}$. Since $\varepsilon_1 \varepsilon_2 \dots \varepsilon_7 = \eta_{13} \eta_{23} \eta_{36} \varepsilon_3^{-2}$, we have

$$\eta = \sqrt{\eta_{13}} \sqrt{\eta_{23}} \sqrt{\eta_{36}} \varepsilon_3^{-1} \prod_{i=1}^7 \varepsilon_i^{y_i}.$$

By (9) we have $\sqrt{\eta_{13}}r_{13}\sqrt{\Delta_{13}} = \xi_{13}$ for some $r_{13} \in \mathbb{N}$. And by the assumption we have $\Delta_{13} = d_1^{a_1} d_3^{a_3}$ for some $a_1, a_3 = 0, 1$. Hence $\varepsilon_1^{a_1} \varepsilon_3^{a_3} \sqrt{\Delta_{13}}$ is totally positive. Moreover, from $\xi_{13}^{\sigma_1} < 0, \ \xi_{13}^{\sigma_2} > 0, \ \xi_{13}^{\sigma_3} < 0$ it follows that $\varepsilon_1 \varepsilon_3 \xi_{13}$ is totally positive. Therefore

$$\varepsilon_1 \varepsilon_3 \varepsilon_1^{a_1} \varepsilon_3^{a_3} \sqrt{\eta_{13}} = \frac{1}{r_{13}} \cdot \frac{\varepsilon_1^{a_1} \varepsilon_3^{a_3}}{\sqrt{\Delta_{13}}} \cdot \varepsilon_1 \varepsilon_3 \xi_{13}$$

is totally positive, and then this unit is square in $K_2 = \mathbf{Q}(\sqrt{d_1}, \sqrt{d_3})$ (M. Hirabayashi and K. Yoshino [4, Proposition 2, IV]). So we can put

$$\varepsilon_1\varepsilon_3\varepsilon_1^{a_1}\varepsilon_3^{a_3}\sqrt{\eta_{13}}=\varepsilon_{13}^2$$

where ε_{13} is a unit of K_2 . In the same way we obtain

$$\varepsilon_{2}\varepsilon_{3}\varepsilon_{2}^{b_{2}}\varepsilon_{3}^{b_{3}}\sqrt{\eta_{23}} = \varepsilon_{23}^{2}, \quad \varepsilon_{3}\varepsilon_{6}\varepsilon_{3}^{c_{3}}\varepsilon_{6}^{c_{6}}\sqrt{\eta_{36}} = \varepsilon_{36}^{2} \qquad (b_{i}, c_{j} = 0, 1)$$

where ε_{23} and ε_{36} are units of K_1 and K_6 , respectively. Therefore we have

$$\eta = \varepsilon_{13}^2 \varepsilon_{23}^2 \varepsilon_{36}^2 \prod_{i=1}^{7} \varepsilon_i^{z_i} \qquad (z_i \in \mathbf{Z}).$$

Since $\prod_{i=1}^{7} \varepsilon_{i}^{z_{i}}$ is totally positive, we have, as before,

$$\prod_{i=1}^{7} \varepsilon_{i}^{z_{i}} = \eta_{12}^{\alpha_{1}} \eta_{23}^{\alpha_{2}} \eta_{31}^{\alpha_{3}} (\eta_{12} \eta_{36})^{\alpha_{4}} \varepsilon_{0}^{2}$$

for some $\alpha_i \in \mathbb{Z}$ and $\varepsilon_0 \in E_0^*$. By the assumption each η_{ij} is square in $\mathbb{Q}(\sqrt{d_i}, \sqrt{d_j})$ and so is η in K_0 , which is also contradiction. \Box

LEMMA 8. If exactly one or two of $N(\varepsilon_i)$ (i = 1, 2, ..., 7) are +1, then we have $\overline{E}_0 = (E_0^*)^+ E_0^2$.

Proof. It is enough to prove the following two Cases (1) and (2).

Case (1): $N(\varepsilon_1) = \cdots = N(\varepsilon_5) = -1$ and $N(\varepsilon_6) = N(\varepsilon_7) = +1$. Let $\eta \in \overline{E}_0$ and let $\eta^2 = \varepsilon_1^{x_1} \varepsilon_2^{x_2} \cdots \varepsilon_7^{x_7}$ $(x_i \in \mathbb{Z})$. By (2) of Lemma 3 we see that x_1, x_2, \ldots, x_5 are even. Then it follows from Lemma 4 that

$$\eta \eta^{\sigma_4} = \varepsilon_1^{x_1} \varepsilon_4^{x_4} \varepsilon_7^{x_7} = 1 \quad \text{in } K_4 \,,$$

$$\eta \eta^{\sigma_5} = \varepsilon_2^{x_2} \varepsilon_5^{x_5} \varepsilon_7^{x_7} = 1 \quad \text{in } K_5 \,.$$

Now, we assume that x_7 is odd. Then $\varepsilon_7 = 1$ in $K_4 = \mathbf{Q}(\sqrt{d_1}, \sqrt{d_4})$ and in $K_5 = \mathbf{Q}(\sqrt{d_2}, \sqrt{d_5})$. Therefore, $\Delta_7 = d_1^{e_1} d_4^{e_4}, \Delta_7 = d_2^{e_2} d_5^{e_5}$ for some $e_1, e_2, e_4, e_5 = 0, 1$. These equations lead that $\Delta_7 = (d_1 d_2 d_3)^{e_1} = d_7^{e_1}$, which is impossible (Kubota [5, Hilfssatz 9]). Thus x_7 is even. Similarly, by the equations

$$\eta \eta^{\sigma_3} = \varepsilon_1^{x_1} \varepsilon_2^{x_2} \varepsilon_6^{x_6} = 1 \quad \text{in } K_3,$$

$$\eta \eta^{\sigma_6} = \varepsilon_3^{x_3} \varepsilon_6^{x_6} \varepsilon_7^{x_7} = 1 \quad \text{in } K_6,$$

we see that x_6 is even. Therefore all x_i are even and so $\eta \in E_0^*$. Thus $\overline{E}_0 \subseteq (E_0^*)^+ E_0^2$.

The inverse inclusion $(E_0^*)^+ E_0^2 \subseteq \overline{E}_0$ is shown by the equations (1) and (12).

Case (2): $N(\varepsilon_1) = N(\varepsilon_2) = \cdots = N(\varepsilon_6) = -1$ and $N(\varepsilon_7) = +1$. Let $\eta \in \overline{E}_0$ and let $\eta^2 = \varepsilon_1^{x_1} \varepsilon_2^{x_2} \cdots \varepsilon_7^{x_7}$ $(x_i \in \mathbb{Z})$. Then, by (2) of Lemma 3 we see that x_1, x_2, \ldots, x_6 are even. In the same way

of Lemma 3 we see that $x_1, x_2, ..., x_6$ are even. In the same way as in the proof of Case (1) we can show that x_7 is even and that $\overline{E}_0 = (E_0^*)^+ E_0^2$. *Proof of Theorems 2 and 3.* We only prove Theorem 2, because we prove Theorem 3 in a similar way.

Suppose that $Q_K = 2$. Then there exists a unit $\eta \in \overline{E}_0$ such that $K_0(\sqrt{\eta}) = K'_0 = K_0(\sqrt{A})$ where $A = A(e_1, e_2, e_3)$. By Lemma 8 and (2) of Proposition 1 we can put $\eta = \varepsilon_7^a \eta_{12}^{b_1} \eta_{23}^{b_2} \eta_{31}^{b_3} \varepsilon^2$ $(a, b_i \in \mathbb{Z}, \varepsilon \in E_0)$ and we have

$$K_0(\sqrt{\eta}) = K_0(\sqrt{\Delta_7^a \Delta_{12}^{b_1} \Delta_{23}^{b_2} \Delta_{31}^{b_3}}).$$

Consequently,

(14)
$$\Delta_7^a \Delta_{12}^{b_1} \Delta_{23}^{b_2} \Delta_{31}^{b_3} = A(e_1, e_2, e_3).$$

Conversely, if this equation (14) holds, then a square root of $\eta := \epsilon_7^a \eta_{12}^{b_1} \eta_{23}^{b_2} \eta_{31}^{b_3}$ generates K'_0 over K_0 , i.e., $K'_0 = K_0(\sqrt{\eta})$. Therefore we have $Q_K = 2$.

Proof of Theorem 4.

Case (1): $N(\varepsilon_1) = N(\varepsilon_2) = N(\varepsilon_3) = N(\varepsilon_4) = -1$ and $N(\varepsilon_5) = N(\varepsilon_6) = N(\varepsilon_7) = +1$.

Suppose that $Q_K = 2$. Then there is a unit $\eta \in \overline{E}_0$ such that $K_0(\sqrt{\eta}) = K'_0$. By Lemma 1 and (4₁) of Proposition 1 we have

$$\eta^2 = \eta_{23}^{x_2} \varepsilon_5^{x_5} \varepsilon_6^{x_6} \varepsilon_7^{x_7} \prod_{i=1}^7 \varepsilon_i^{2y_i}$$

where $x_i, y_i \in \mathbb{Z}$. From (2) of Lemma 3 it follows that $x_2 \equiv 0 \pmod{2}$. Hence by Lemma 2 we see that $x_5 \equiv x_6 \equiv x_7 \pmod{2}$.

In the case that $x_5 \equiv x_6 \equiv x_7 \equiv 0 \pmod{2}$, we have

$$\eta = \varepsilon_5^{a_5} \varepsilon_6^{a_6} \varepsilon_7^{a_7} \eta_{23}^b \varepsilon_0^2$$

for some a_i , b = 0, 1 and $\varepsilon_0 \in E_0^*$. Therefore,

$$K'_{0} = K_{0}(\sqrt{\eta}) = K_{0}(\sqrt{\Delta_{5}^{a_{5}}\Delta_{6}^{a_{5}}\Delta_{7}^{a_{7}}\Delta_{23}^{b}})$$

and then

(15)
$$\Delta_5^{a_5} \Delta_6^{a_6} \Delta_7^{a_7} \Delta_{23}^b = A(e_1, e_2, e_3)$$

for some $e_i = 0, 1$.

In the case that $x_5 \equiv x_6 \equiv x_7 \equiv 1 \pmod{2}$, let

$$\eta_0 := \sqrt{\varepsilon_5 \varepsilon_6 \varepsilon_7} \prod_{i=1}^4 \varepsilon_i^{v_i} \quad (v_i = 0 \text{ or } 1)$$

and let η_0 be totally positive. Then we have $\eta = \varepsilon_5^{a_5} \varepsilon_6^{a_6} \varepsilon_7^{a_7} \eta_{23}^{b_6} \eta_0 \varepsilon_0^2$ where $a_i, b = 0, 1$ and $\varepsilon_0 \in E_0^*$. Since $\varepsilon_5, \varepsilon_6, \varepsilon_7, \eta_{23}, \eta \in \overline{E}_0$, we see $\eta_0 \in \overline{E}_0$. Then it follows from Lemma 5 that

$$K_0(\sqrt{\eta_0}) = K_0(\sqrt{\xi^*(\eta_0)}) = K_0(\sqrt{\theta^*(\eta_0)}) = K_0(\sqrt{d^*(\eta_0)})$$

where $\xi^*(\eta_0)$, $\theta^*(\eta_0)$ and $d^*(\eta_0)$ is defined by (2), (3) and (4), respectively. Here we take $s_i = 0$ or 1 (i = 1, 2, 3) in accordance with

$$\begin{split} \xi^*(\eta_0) &= (\sqrt{\eta_0} + \sqrt{\eta_0}^{\sigma_1})^2, \quad \theta^*(\eta_0) = (\sqrt{\xi^*(\eta_0)} + \sqrt{\xi^*(\eta_0)}^{\sigma_2})^2, \\ d^*(\eta_0) &= (\sqrt{\theta^*(\eta_0)} + \sqrt{\theta^*(\eta_0)}^{\sigma_3})^2, \end{split}$$

respectively. Therefore

$$K_0' = K_0(\sqrt{\eta}) = K_0(\sqrt{\Delta_5^{a_5} \Delta_6^{a_6} \Delta_7^{a_7} \Delta_{23}^{b_6} d^*(\eta_0)})$$

and then we have

(16)
$$\Delta_5^{a_5} \Delta_6^{a_6} \Delta_7^{a_7} \Delta_{23}^{b} d^*(\eta_0) = A(e_1, e_2, e_3)$$

for some $e_i = 0, 1$.

Conversely, if the equation (15) or (16) holds, the square root of $\eta := \varepsilon_5^{a_5} \varepsilon_6^{a_6} \varepsilon_7^{a_7} \eta_{23}^{b}$ or $\varepsilon_5^{a_5} \varepsilon_6^{a_6} \varepsilon_7^{a_7} \eta_{23}^{b} \eta_0$ generates K'_0 over K_0 , respectively, i.e., $K'_0 = K_0(\sqrt{\eta})$. Then we have $Q_K = 2$.

Case (2): $N(\varepsilon_1) = N(\varepsilon_2) = N(\varepsilon_3) = N(\varepsilon_7) = -1$ and $N(\varepsilon_4) = N(\varepsilon_5) = N(\varepsilon_6) = +1$.

Suppose that $Q_K = 2$. Then by Lemma 1 and (4_2) of Proposition 1 we have

(17)
$$\eta^2 = \varepsilon_4^{x_4} \varepsilon_5^{x_5} \varepsilon_6^{x_6} \eta_{123}^z \prod_{i=1}^{l} \varepsilon_i^{2y_i}$$

where x_i , y_i , $z \in \mathbb{Z}$. Then it follows from (2) of Lemma 3 that $z \equiv 0 \pmod{2}$, and from Lemma 2 that $x_4 \equiv x_5 \equiv x_6 \pmod{2}$.

If $x_4 \equiv x_5 \equiv x_6 \equiv 0 \pmod{2}$, then $\eta \in (E_0^*)^+$. By (4₂) of Proposition 1 we have $\eta = \varepsilon_4^{a_4} \varepsilon_5^{a_5} \varepsilon_6^{a_6} \eta_{123}^c \varepsilon_0^2$ for some a_i , c = 0, 1 and $\varepsilon_0 \in E_0^*$. Therefore,

(18)
$$K_0(\sqrt{\eta}) = K_0(\sqrt{\Delta_4^{a_4} \Delta_5^{b_5} \Delta_6^{b_6} \Delta_{123}^{c_1}}).$$

If $x_4 \equiv x_5 \equiv x_6 \equiv 1 \pmod{2}$, taking norms N_1 and N_4 of the equation (17), we have by Lemma 4 that

$$\eta^{1+\sigma_1} = \varepsilon_4^{x_4} \varepsilon_2^{2y_2} \varepsilon_3^{2y_3} \varepsilon_4^{2y_4} = 1 \quad \text{in } K_1,$$

$$\eta^{1+\sigma_4} = \varepsilon_4^{x_4} \varepsilon_1^{2y_1} \varepsilon_7^{2y_7} \varepsilon_4^{2y_4} = 1 \quad \text{in } K_4.$$

Then $\sqrt{\Delta_4}$ is contained in $K_1 \cap K_4 = \mathbb{Q}(\sqrt{d_2 d_3})$, and then $\Delta_4 = 1$ or $d_2 d_3$, which is impossible (T. Kubota [5, Hilfssatz 9]).

Thus, if $Q_K = 2$ we have the equation (18) and hence

(19)
$$\Delta_4^{a_4} \Delta_5^{a_5} \Delta_6^{a_6} \Delta_{123}^c = A(e_1, e_2, e_3)$$

for some $e_i = 0, 1$.

Conversely, when the equation (19) holds, we can show, as before, that $Q_K = 2$.

Proof of Theorem 5. (1) Suppose that $N(\varepsilon_1) = N(\varepsilon_2) = N(\varepsilon_3) = -1$ and that $N(\varepsilon_4) = \cdots = N(\varepsilon_7) = +1$. By Lemma 1 and (5_1) of Proposition 1 we have

(20)
$$\eta^2 = \varepsilon_4^{x_4} \varepsilon_5^{x_5} \varepsilon_6^{x_6} \varepsilon_7^{x_7} \prod_{i=1}^7 \varepsilon_i^{2y_i}$$

for any $\eta \in \overline{E}_0$ where $x_i, y_i \in \mathbb{Z}$. Then by Lemma 2 we have the following three cases:

- (i) $x_4 \equiv x_5 \equiv x_6 \equiv x_7 \equiv 0 \pmod{2}$;
- (ii) Among x_4 , x_5 , x_6 and x_7 , exactly one x_i is even;
- (iii) $x_4 \equiv x_5 \equiv x_6 \equiv x_7 \equiv 1 \pmod{2}$.

Case (i). We have $\eta \in (E_0^*)^+$ and we may put $\eta = \varepsilon_4^{a_4} \varepsilon_5^{a_5} \varepsilon_6^{a_6} \varepsilon_7^{a_7}$ $(a_i \in \mathbb{Z})$. Then we obtain, as before,

$$K_0(\sqrt{\eta}) = K_0(\sqrt{\Delta_4^{a_4} \Delta_5^{a_5} \Delta_6^{a_6} \Delta_7^{a_7}}).$$

Case (ii). We first consider the case that $x_4 \equiv x_5 \equiv x_6 \equiv 1$, $x_7 \equiv 0 \pmod{2}$. Taking norms N_1 and N_4 of (20), we have

$$\eta^{1+\sigma_1} = \varepsilon_4^{x_4} \varepsilon_2^{2y_2} \varepsilon_3^{2y_3} = 1 \quad \text{in } K_1 = \mathbf{Q}(\sqrt{d_2}, \sqrt{d_3}),$$

$$\eta^{1+\sigma_4} = \varepsilon_4^{x_4} \varepsilon_1^{2y_1} \varepsilon_7^{2y_7} = 1 \quad \text{in } K_4 = \mathbf{Q}(\sqrt{d_1}, \sqrt{d_4}).$$

Then, as before, $\sqrt{\Delta_4}$ is contained in $\mathbf{Q}(\sqrt{d_4})$, which is impossible.

Next we consider the other cases, for example, $x_4 \equiv x_5 \equiv x_7 \equiv 1$, $x_6 \equiv 0 \pmod{2}$. Let

$$\eta_0 := \sqrt{\varepsilon_4 \varepsilon_5 \varepsilon_7} \prod_{i=1}^3 \varepsilon_i^{v_i} \qquad (v_i = 0 \text{ or } 1)$$

and let η_0 be totally positive. Then we can prove the assertion in the same way as in the proof of Case (1) of Theorem 4.

Case (iii). As before, taking norms N_1 , N_2 , N_3 and N_7 of (20), we obtain

$$\Delta_4 \stackrel{=}{_2} d_2 \text{ or } d_3; \quad \Delta_5 \stackrel{=}{_2} d_3 \text{ or } d_1; \quad \Delta_6 \stackrel{=}{_2} d_1 \text{ or } d_2;$$
$$\Delta_4 \Delta_5 \Delta_6 \stackrel{=}{_2} d_2 d_3, d_3 d_1 \text{ or } d_1 d_2,$$

which is impossible.

(2) Suppose that $N(\varepsilon_1) = N(\varepsilon_2) = N(\varepsilon_6) = -1$ and the others $N(\varepsilon_i) = +1$. We have by (5₂) of Proposition 1

$$\eta^2 = \varepsilon_3^{x_3} \varepsilon_4^{x_4} \varepsilon_5^{x_5} \varepsilon_7^{x_7} \eta_{12}^{x_1} \prod_{i=1}^7 \varepsilon_i^{2y_i}$$

for any $\eta \in \overline{E}_0$ where $x_i, y_i \in \mathbb{Z}$. By (2) of Lemma 3 we have $x_1 \equiv 0 \pmod{2}$. Therefore we obtain, as before, the following cases:

- (i) $x_3 \equiv x_4 \equiv x_5 \equiv x_7 \equiv 0 \pmod{2}$;
- (ii) Among x_3 , x_4 , x_5 and x_7 , exactly one x_i is even;
- (iii) $x_3 \equiv x_4 \equiv x_5 \equiv x_7 \equiv 1 \pmod{2}$.

By the same argument in (1) of this proof we can prove the assertion for each case. $\hfill \Box$

Proof of Theorem 6. In the following we only consider the first case: $N(\varepsilon_1) = N(\varepsilon_2) = -1$, since the other cases are proved in the same way.

Let

$$\eta_0 := \sqrt{\prod_{N(\varepsilon_i)=+1} \varepsilon_i^{u_i}} \cdot \prod_{N(\varepsilon_i)=-1} \varepsilon_i^{v_i} \quad (u_i, v_i = 0 \text{ or } 1)$$

and let η_0 be totally positive.

For any $\eta \in \overline{E}_0$ we may put $\eta = \varepsilon_3^{a_3} \cdots \varepsilon_7^{a_7} \cdot \eta_0^f$ where a_i , f = 0 or 1. Then we have, as before,

$$K_0(\sqrt{\eta}) = K_0(\sqrt{\Delta_3^{a_3}\cdots\Delta_7^{a_7}}\,d^*(\eta_0)^f).$$

Thus we obtain that $Q_K = 2$ if and only if

$$\Delta_3^{a_3}\cdots\Delta_7^{a_7}\,d^*(\eta_0)^f = A(e_1\,,\,e_2\,,\,e_3)\,,$$

as desired.

MIKIHITO HIRABAYASHI

References

- [1] F. Halter-Koch, Arithmetische Theorie der Normalkörper von 2-Potenzgrad mit Diedergruppe, J. Number Theory, 3 (1971), 412–443.
- [2] H. Hasse, Über die Klassenzahl abelscher Zahlkörper, Academie Verlag, Berlin, 1952 (reproduction: Springer Verlag, (1985)).
- [3] M. Hirabayashi and K. Yoshino, *Remarks on unit indices of imaginary abelian number fields* II, Manuscripta Math., **64** (1989), 235–251.
- [4] ____, Unit indices of imaginary abelian number fields of type (2, 2, 2), J. Number Theory, **34** (1990), 346–361.
- [5] T. Kubota, Über den Bizyklischen Biquadratischen Zahlkörper, Nagoya Math. J., 10 (1956), 65-85.
- [6] H. Wada, On the class number and the unit group of certain algebraic number fields, J. Fac. Sci. Univ. Tokyo, 13 (1966), 201–209.

Received July 30, 1991.

Kanazawa Institute of Technology Ishikawa 921, Japan

PACIFIC JOURNAL OF MATHEMATICS

Founded by

E. F. Beckenbach (1906–1982) F. Wolf (1904–1989)

EDITORS

SUN-YUNG A. CHANG (Managing Editor) University of California Los Angeles, CA 90024-1555 chang@math.ucla.edu

F. MICHAEL CHRIST University of California Los Angeles, CA 90024-1555 christ@math.ucla.edu

HERBERT CLEMENS University of Utah Salt Lake City, UT 84112 clemens@math.utah.edu THOMAS ENRIGHT University of California, San Diego La Jolla, CA 92093 tenright@ucsd.edu

NICHOLAS ERCOLANI University of Arizona Tucson, AZ 85721 ercolani@math.arizona.edu

R. FINN Stanford University Stanford, CA 94305 finn@gauss.stanford.edu

VAUGHAN F. R. JONES University of California Berkeley, CA 94720 vfr@math.berkeley.edu STEVEN KERCKHOFF Stanford University Stanford, CA 94305 spk@gauss.stanford.edu

MARTIN SCHARLEMANN University of California Santa Barbara, CA 93106 mgscharl@math.ucsb.edu

HAROLD STARK University of California, San Diego La Jolla, CA 92093

V. S. VARADARAJAN University of California Los Angeles, CA 90024-1555 vsv@math.ucla.edu

SUPPORTING INSTITUTIONS

UNIVERSITY OF ARIZONA UNIVERSITY OF BRITISH COLUMBIA CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF CALIFORNIA UNIVERSITY OF MONTANA UNIVERSITY OF NEVADA, RENO NEW MEXICO STATE UNIVERSITY OREGON STATE UNIVERSITY UNIVERSITY OF OREGON UNIVERSITY OF SOUTHERN CALIFORNIA STANFORD UNIVERSITY UNIVERSITY OF HAWAII UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

PACIFIC JOURNAL OF MATHEMATICS

Volume 164 No. 1 May 1994

1	
	15
41	
105	
	129
147	
	179