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Let K be an imaginary abelian number field of type (2, 2, 2, 2)
not containing the 8th cyclotomic field. Using the fundamental units
of real quadratic subfields of K, we give a necessary and sufficient
condition for the unit index Qx of K to be equal to 2.

1. Introduction and results. Let K be an imaginary abelian number
field and K, the maximal real subfield of K. Let £ and E; be the
groups of units of K and Kj, respectively, and let W be the group
of roots of unity in K. Then we call the group index

Qk = [E : WE(]

the unit index of K.

Using the character group of K, H. Hasse [2] gave sufficient con-
ditions for Qg to be equal to 1 or 2, by which we can determine Qg
for some types of fields K. However by his method we cannot always
determine Qg for arbitrary K, even if K is an imaginary composite
quadratic field. (We call a field K a composite quadratic field if K
is a composite of quadratic fields.) K. Yoshino and the author [3, 4]
gave criteria to determine Qg of K with Galois group Gal(K/Q) of
type (2, 2) and (2,2, 2).

In this paper we extend our previous results [3, 4] to the case that K
has Galois group Gal(K/Q) of type (2, 2, 2, 2) and does not contain
the 8th cyclotomic field, and then, we give a necessary and sufficient
condition for the unit index Qg to be equal to 2.

NoTATION. N, Z, Q: the sets of natural numbers, rational integers

and rational numbers, respectively,
: the equality except rational quadratic factors,

do, dy,d>, ..., d;: square-free positive integers such that d, >
dyds, ds = dydi, dg = didy, d7 5 didydy and do # d; (i1 =
1,2, , 1)

K = Q(\/ —dy, \/di, \/d>, \/d3): an imaginary composite qua-

dratic field of degree 16,
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Ky = Q(\/d_ls \/g;a \/611_3),

E{ : the group of totally positive units of K,
Ey: the group of units 5 of Eg such that Ky(,/7) is a composite
quadratic field,

QWdy, Vdy), K»=QWds,Vdy),
(Vdi, Vd),  Ki=Q(di, Vdrd3),
(Vdy, Vdidy), Ks=Q(ds, Vdidy),
K7 =Q(Vdyd3, \/dsdy),

ki=Q(Wd) (i=1,2,...,7),

(0;) = Gal(Kyp/K;) (i=1,2,...,7),

N(x), Sp(x): the absolute norm and the absolute trace of x, re-
spectively,

[

K;
K3
Ks

I
=

A= A ) 20 dydy  ifdy=1,
= A(e;, e, €3) = )
DRI dyddedS otherwise,

¢;: the fundamental unit of Q(\/d;), &;>1(i=1,2,...,7).

When N(g;) = +1, we denote by A;, A7 the square-free parts of
Sp(e;+1), Sp(e;—1), respectively, and by m;, n; the natural numbers
such that Sp(g; + 1) = A;m?, Sp(e; — 1) = Ain?. Then we have

1
(1) VEi = E(mi\/Z;Jf‘ni A}).
When d;d; s dr with N(e;) = N(g;) = N(g) = —1, we denote by
A;; = Aj; the square-free integer such that
A,’j 7 SpQ(ﬁ,\/sz)/Q(gigjek —&—€j— 8k).

(We take (i, j) = (1,2),(1,3),(1,4),(2,3),(2,5),(3,6) and

(4,5).)
When d,'djdk 7 d; with N(g;) = N(Gj) = N(ex) = N(¢g)=-1 and

when Q(v/d;, \/d;, v/dy) = Ky, we denote by A;j; the square-free
integer such that

Aijk ? SpKo/Q (8i8j8k81 +1- Z 8a8ﬁ>

a<p

where «, f run through i, j, k and /.
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For a totally positive unit 7 of K let
(2) &*(m) = n+n% +2(=10nn,
(3) 0%(m) = &*(m) + & (M) + 2(=1)24/E*(m)&*(m) %,
(4) d*(n) = 6*(n) + 0%(n)% + 2(=1)/0*(m)0*(n)% (si=0o0r 1)
under the condition that
(5) Vo eKy, /&(mE(m=eks and /O*(n)6*(n)% € Q.

We remark that for a totally positive unit # of Kj this condition (5)
is satisfied if and only if # is contained in Ey. This remark can be
proved by Lemmas 4 and 5 (cf. proof of Theorem 4).

Throughout this paper we assume that K does not contain the 8th
cyclotomic field Q(v—1, v2). Our result is the following

MAIN THEOREM. Under the above notation and assumption we have
that Qx = 2 if and only if

4 b, o
I1a%-I1a7- 11 A,C]’kk -d* (o)’ = Aler, e, e3)
i iJ i,J.k

for some a;, b;j, cijx, f,ei=0,1 and ng € E, represented in the

form
Mo = H 8?’ * H 8? ’

N(e,)=+1 N(g)=-1
where u;, v; =0 or 1. The number of i’s for which u; = 1 is neither
1 nor 2.

More precisely we have the following Theorems 1-6.

THEOREM 1. In the case that N(g;) = N(&;) = --- = N(g7) = —1,

we have b b b
Ok =2 & ABARALA ), 5 Ae, e, €3)

Jor some b;,c,e; = 0,1. Especially, if \/Ai; is contained in
Q(V/d;, \/d)) for every (i, j), then Qg =1.

THEOREM 2. In the case that N(g;) = N(&3) = --- = N(g) = —1
and N(e;) = +1, we have

b, \b, \b
Qk =2 & AMALARAL = Aley, ey, €3)

fJor some a, b;,e; =0, 1.
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THEOREM 3. In the case that N(e;) = N(&) = --- = N(es) = —1
and N(gg) = N(eg7) = +1, we have

Ok =2 & AGATARAS = Aler, &2, €3)
for some a;, b;,e;=0, 1.
THEOREM 4. (1) In the case that N(e)) = --- = N(g4) = —1 and
N(es) = N(gg) = N(&7) = +1, we have
Ok =2 & AFAFATAS, d* (10)” = A1, e, €3)

for some a;, b, f,e;=0,1 and ny € Ey such that

4
No = \/€5E6€7 Hsf" (vi=0o0rl).
i=1 '

(2) In the case that N(ey) = N(&) = N(e3) = N(¢7) = —1 and
N(e4) = N(es) = N(eg) = +1, we have

a a a
QK =2& A44A55A66A€23 ? A(e] > €2, 33)
for some a;,c,e; =0, 1.

THEOREM 5. (1) In the case that N(&;) = N(&;) = N(&3) = —1 and
N(e4) = N(es5) = N(eg) = N(&7) = +1, we have

.
Ok =2 & [[A7 - d* (o)’ > Aler, ez, e3)
i=4
for some a;, f,e;=0,1 and ng € Ey such that

"o
—3 5 = V€4€587, V/EsEeET OF \JEctat7 (Vi =0or1).

=1
(2) In the case that N(e;) = N(&3) = N(eg) = —1 and the others
N(e;) = +1, we have

Ox=2e [ AF-A%-d*(no) s dler, e2, €3)
N(g)=+1

for some a;, b, f,e;=0,1 and ny € Ey such that

Mo
7 = V€3848587, \/€384E5, \/€38487,
[ne)=—18

\V€3E587 Or \[€4€5€7 (vi=0o0r1).
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THEOREM 6. In the case that N(e3) = N(e4) = -+ = N(&7) = +1,
we have

Ok=2¢ [[ Ap-d*(m) > Aler, e, €3)
N(e)=+1
for some a;, f,e;=0,1 and ny € Ey such that
Mo
Ine)=+1 g
according as N(e;) = N(&3) = —1; N(gy) = -1 and N(&) = +1; or

N(ey) = N(ey) = +1. The number of i’s for which u; = 1 is neither
1 nor 2.

v, v v
=¢g,'ey’, 8 orl (ui,vi=0o0r1)

REMARK 1. In Main Theorem 17, is not represented in the form
v
m=eee- [] &
N(g)=-1

where N(g;) = N(¢gj) = N(g,) =+1 and d;d; > dj. (cf. proof of Case
(2) of Theorem 4).

REMARK 2. For some 1y € E; we can actually calculate the ra-
tional integers d*(7y) defined by (4). For example, we can obtain
the following: Suppose that N(e;) = N(e;) = N(e3) = +1 and that
No = \/€1€283 Is totally positive. Then ng € Eq if and only if

(6) Al?d2d3, Az?dadu A3§d1d2-

If this condition (6) is satisfied, we have

d*(no) = mimamsz/A1AyAs
+ 2AT{(=1)*tnanz + (= 1)%2n3n; + (=1)5n 1y}
— 8(=1)%"%*S  (5; =00r1)

where A;, AY, m;, n; and s; are as in the notation.

2. Properties of E; and lemmas on (2, 2)-extensions. In this sec-
tion we give a proposition and some lemmas which will be used in the
proofs of theorems.

Let (x,y,...) be a group generated by x, y,.... Let Ej be the
subgroup of E, generated by the units of Q(1/d;) for i=1,2,...,7.
Let (Ej)* be the subgroup of E, generated by totally positive units
of Ej,ie., (Ej)t =E;NE].
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ProrosITION 1. (1) If N(g;) =--- = N(&7) = —1, then

(E)T = (26384, €36185, 16286, £1828387) EG>.
(2)If N(¢y) =---= N(g) =—1 and N(e7) =+1, then

(E)* = (626384, 838185, €16286, €7)EG>.
(3) If N(¢y) =---= N(es) = —1 and N(eg) = N(&7) = +1, then
(E3)* = (e28384, €38185 , €6, 87)EG>.
(41) If N(&1) = --- = N(es) = —1 and N(es) = N(gg) = N(&7) =
+1, then

(E6)+ = (828384 » €5, €6, 87>E62'
(42) If N(&1) = N(&2) = N(e3) = N(&7) = —1 and N(ey) =
N(es) = N(gg) = +1, then
(E5)t = (e1828387, €4, &5, €6)EG.
(51) If N(e1) = N(e2) = N(&3) = —1 and N(eq) =--- = N(&7) =
+1, then
(E3)* = (ea, &5, &, e7)EG™.
(5,) If N(ey) = N(&3) = N(gg) = —1 and the others N(g;) = +1,
then
(E5)* = (e18286., €3, €4, &5, €7)EG2.

(6) If N(e1) = N(e) =—1 and N(e3)=---= N(&7) =+1, then
(EZ)* = (e3, 4, &5, &6, &7) EJ>.
(7) If N(¢y) =—1 and N(e)=---= N(e7) =+1, then
(E)* = (2, €3, ..., &7V ES2.
(8) If N(¢1) =--- = N(&7) + 1,then

(E6)+ = <81 y €2, 00ty 87)E62.

Proof. We only prove the case (1), because the other cases are proved
in the same way.
For an element o # 0 of K we define s(a) =0 or 1 by (—1)5®) =

af|af.
/lFolr n e (E3)*, putting n = &,'¢," - - &' (x; € Z), we have a system
of simultaneous linear equations
s(er)x; +s(e)xa+---+s(e7)x7=0
s(e])x1 +s(ey ) x2 + -+ + 5(67)x7 = 0
(mod 2)
s(&])x1 +5(g5)x2 + -+ + s(e7)x7 = 0.
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By Gauss-Jordan elimination (see, for example, H. Anton, Elementary
Linear Algebra, John Wiley & Sons (1973), pp. 18-20) we see that this
system has the following four linearly independent solutions:
X1 0 1 1 1

) (1) (o) (1) (1)
X3 1 1 0 1
X21=111,1011,101},]60
X5 0 1

0 0
X6 0 0 1 0
w) \o) \o/ \o/ \1/
To these solutions correspond units &;€3€4, €3€1€5, €1€28¢, €1€2E3E7
respectively. Thus we have

2
(EQ)T = (€2€384, 38185, €1€26¢, €1628387)EG”. a

In general, let K/k be a (2, 2)-extension with Galois group
Gal(K/k) = (o, 7). Then, as used by H. Wada [6], we have

a1+aa1+‘r

2 _
a = (aa)1+at

for a € K, a # 0. By this simple formula we see that E(‘)1 C Ej.
Moreover, we have F(Z) C E} by the following

LEMMA 1. Let n € Eq and put n* = &,'¢)>---& (x; € Z). Then,
every Xx; 1Is even.

Proof. Since Ko(y/7) = Ko(Vd) for some d € N, we can put 5 =
daf (ag € Ko). Taking the norm Ny ;. of ey'ey?---&77 = d*af, we

have & = d'6 Ny  (ap)®. This implies that x; is even. O
i KO/ 1

LEMMA 2. Let n € Ey and put
(7) n”=el'ey g7 (% €Z).

Then, all x; are even or at least three x;’s are odd.

Proof. For the simplicity we denote by N; the norm Nk sk for
each i.

First, for example, we assume thatx; = 1, x; = 0 (mod 2) (i =
2,3,...,7). Taking the norm Nj; of the equation (7), we have
N;3(n) = ¢,"¢)%¢;* € K3. On the other hand, putting 1 = do? (d €N,
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ag € Kp) , we have N3(n) = d*N3(ag)?. Therefore, /2] is contained
in K3 = Q(\/d;, v/d>). In the same way, taking the norm N, of (7),
we see that |/¢; is contained in K, = Q(\/ds, v/dy). Thus Vel 1s
contained in K, N K3 = Q(1/d}), which is impossible.

Secondly, for example, we assume thatx; = x; =1, x; =0 (mod 2)

(i=3,4,...,7). Taking the norms N,, Ny of (7), we see that /&]
is contained in Q(+/d;), which is also impossible.
Thus there is no case that exactly one or two of x; are odd. O

LEMMA 3. Let n € Ey and put
(8) n=e'er &  (x€L).

(1) If there exists an even x;, then N(gj) = +1 for each odd x;.
(2) If there exists “i” for which x; = 0 (mod 2) or N(g;) = +1,

thenx; is even when N(gj) = —1.
B)If xy=x,=---=x;=1 (mod 2), then N(¢;) = N(&z) =--- =
N(87).

Proof. (1) Suppose that x; = 1, x; = 0 (mod 2). Taking the
norm N; of (8), we have N3(n) = ef‘ 8;28g6 . Again, taking the norms
N;, N, of this equation, we have by 5 > 0 that

2
Ny(N3(n)) = N(e)"185 2 N(ee)*s > 0,
2
Ny(N3()) = &1 ' N(g2)"+N(eg)*s > 0.
Hence N(gg)*s = +1 and then N(g;) = +1.

(2) We suppose that x; = 0 (mod 2) or N(¢;) = +1 and that
N(Ez) =-1.

Taking the norm N; of (8), we have N3(n) = sf‘sgzagﬁ. Again,
taking the norm Ny of this equation, we have

2
Ne(N3(1)) = N(e1) N(e2)e5* >0,

and so x, =0 (mod 2).
(3) Taking the norm N; of (8), we have N;(n) = 8;28§38§4. More-
over, taking the norms N,, N3 of this equation, we have

Na(Ni(1)) = N(e2)2e5 " N(ea)™s > 0,
N3(Ny(n)) = &7 N(e3)>N(e4)™ > 0.
Then N(ey) = N(e3) = N(eq).
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In the same way, taking the norms N,, N3, Ny of (8), we obtain
N(e3) = N(e1) = N(es), N(e1) = N(e2) = N(eg), N(e3) = N(eg) =
N(e7). 0

For a field £ we denote by “? in k” the equality except a square

of a number of k.

LEMMA 4 (F. Halter-Koch [1, Satz 1]). Let K, be a field with
char(K;) # 2. Let Ky be a quadratic extension of K; and
Ko(v/M0) (no € Ko) a biquadratic (quartic) extension of K;. Then
Ko(y/Mo)/ Ky is bicyclic if and only if Nk x (o) = 1 in K.

By this Lemma 4 we can easily obtain

LEMMA 5. Let K; be an algebraic number field and K, a qua-
dratic extension of K. Let Ko(/Mo) (mo € Ko, no ¢ Ki) be a
biquadratic bicyclic extension of K, with Gal(Ko(\/70)/K1) = (0, 1)
and Gal(Ky(y/M0)/Ko) = (t). Let F be the intermediate field of
Ko(\/M0)/K, fixed by o. Then we have

F =K (/o + Vo).

3. Proof of theorems. For the proof of Main Theorem, it is enough
to prove Theorems 1-6, because the cases of Proposition 1 cover all
the possible cases of the combination of N(g;) = £1.

Let K’ be the quadratic extension of K generated by a primitive
2"+1th root of unity, 2"||#W , and let K be the maximal real subfield
of K'.

When d;d; > dy and N(eg;) = N(g;) = N(gg) = —1, let

Nij = €i€jey, &ij = &i€jey — & — & — &k.
Then it follows from T. Kubota [5, §5] that
9) nij Sp(&ij) = &2
For the multi-quadratic field Ky = Q(\/d; , \/d>, v/d3) , we can prove:
LEMMA 6. Suppose that N(e;) = N(&;) = N(e3) = N(g7) = —1. Let

n = N123 = €18283¢87,
&= 6123 =n+1- (8182 + €263 + €381 + €1€7 + €287 + 8387).
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Then we have
(10) nSp(£) = &2

Proof. Since
E% = glerezel + | — €&y — €263 — €38 — €1&5 — €28 — €387,

it holds that &,&;£% = —¢&, where ¢’ is the conjugate of ¢ with respect
to Q. In the same way we have

£2678% = €387E% = £638% = £361E% = £16,8% = ¢,
g16283878% =¢.

Therefore

Spk /(&) =&+ &% + -+ +&%

1 1
é ( g 8,'8]' 81828387)

where i, j run through 1, 2, 3 and 7. Thus we have nSpKo/Q(f) =
&2, O

LEMMA 7. Suppose that N(¢;) = N(&) = --- = N(&) = —1 and

that \/A;; ¢ Q(\/d;, \/d;) for some (i, j). Then we have E; =
(E§)YEG.

Proof. Let n € Ey. By Lemma 1 we have
(11) n?=¢l'ey g5 (x;€Z).
Assume that every Xx; is odd. Taking the norm N; of (11), we have
by Lemma 4 that &)%;’¢,* = 1 in K;, because Ko(y/7)/K1 is a
(2, 2)-extension or /77 is contained in K. Therefore /6384 €

K,, and then by (9) we have \/Ay; € K; = Q(\/d,, \/d3). Simi-
larly, taking the norms N,, N3, N4, N5, Ny and N7 of (11), we have
VAi; € Q(v/d;, \/d;) for every (i, j). This contradicts the assump-
tion. Hence there is an even integer among x;’s, and it follows from
(2) of Lemma 3 that every x; is even. Therefore, n € (E})*E3. Thus
we have Eo C (E})TEZ.

The inverse inclusion (Ej)*E?} C E is shown by the equations

(12) V\/Sp(¢) =¢
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for (n,&) = (nij, &;j) and (Mijx, &jx), since (E)TEZ/E} is repre-
sented by 712, 723, 7131 and 753

Proof of Theorem 1. First we assume that \/A;; ¢ Q(\/d;, \/d,)
for some (7, j).

Suppose that Qx = 2. Then there exists a unit n € Ey such
that Ko(\/) = K (Hasse [2, Satz 15]). By Lemma 7 we have
n= 8‘11’ 8;2 . ~-8;178(2) (a; € Z, ¢y € Ep) such that af‘sgz - -8‘717 is totally
positive, and by (1) of Proposition 1 n = nf‘zn%n;’{ nf2382 (bj, c €
Z, ¢ € Ey). Therefore it follows from (12) that

Ko(vn) = KO \/Ale A A€23)

Since K} = Ko(v2) or Ko(+/dp) according as dy = 1 or not, we have
K} = Ko(vV/A') for some A' = A(e], €}, €}). Therefore

Ko(v/AhAB AR A ) = Ko(Va).
Thus we have
(13) A A A A123—A(el,e2,e3)
for some e¢; = 0, 1. Because, if Ko(\/m) = Ko(v/A') for a rational

integer m and A’ = A(e}, €, €3), then Q(y/m/A’) is equal to Q or
Q(/m/A") is a quadratic subfield of Ky, and so

ell ell ell
m=dA'd d d3r

for some ef,ey,ef = 0,1 and some r € Q. Therefore, putting
e;=e;+e/ (mod2) (i=1,2,3), we have

m= A(er, ez, e3).

Conversely, if this equation (13) holds, then the square root of # :=
’7?‘2’7%’1%’7?23 generates K over Ky, i.e., Ko(\/7) = K. Thus, by
H. Hasse [2, Satz 15] we have Qg = 2.

Secondly, we assume that \/A;; € Q(\/d;, \/d;) for every (i, j).
Then it does not hold that

A A A A123—A(€1,€2,€3)

forany b;,c,e; =0, 1.
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In fact, by the assumption and by 7123 = 2713664 2 we have

Ko(+/Aij) = Ko for every (i, j) and Ko(v/A123) = Ko(v/A12436) =

K. Consequently, we have
b b, \b
ABAZAL Ay 5 d" dy? dy’ 72514(@1 , €, €3),

where a; =0 or 1.

In this case we can show that Qg = 1 as follows:

Assume that Qg = 2. Then there is a unit # € E; such that
Ko(\/7M) = K}. By Lemma 1 we have 7% = ¢;'¢)* - &7 (x; € Z). It
follows from (2) of Lemma 3 that all x; are even or odd.

If all x; are even, then 5 € (E;)" and we have n = ’7?'2’7%’7?31 ﬂf2388‘

for some b;, c€Z and g € Ej. Since 7533 = 1112713686’2 , wWe obtain
by the assumption that /7 € Ky, which contradicts that Ko(,/7) is
a quadratic extension over K. Therefore, all x; are odd. Then 5 =
Ve & 1 & for some y; € Z. Since &1&...&7="113M23M36€3
we have

;
N = vVN3vh3v 7]3683—1 H 8{
i=1

By (9) we have /f13r134/A13 = &3 for some r;3 € N. And by the
assumption we have A3 s df‘ a’g3 for some a;, a3 = 0, 1. Hence

g/'e5’y/A13 is totally positive. Moreover, from &3 < 0, &3 > 0,
éf; < 0 it follows that ¢;&3&;3 is totally positive. Therefore

a, 8[13

a, a | S 3
€838 €5°\/Mi3 = — N/ -€183813
13

13

is totally positive, and then this unit is square in K; = Q(+/d1, v/d3)
(M. Hirabayashi and K. Yoshino [4, Proposition 2, IV]). So we can
put

a, a 2
£183€,'€3°\ /M3 = €3
where €;3 is a unit of K, . In the same way we obtain
b, b 2 ¢ € 2
£2€38,785°\/M23 = €33, €3866764 /M3 = €3¢  (bi, ¢;=0,1)

where &3 and e3¢ are units of K; and Kg, respectively. Therefore
we have

7
2 .2 L2 Z;

i=1
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Since []]_, ¢ is totally positive, we have, as before,
7
11 & = nn33m53 (n12m36) €3
i=1
for some «; € Z and ¢ € Ej. By the assumption each #;; is square

in Q(v/d;, \/d;) and so is 1 in K, which is also contradiction. O

LEMMA 8. If exactly one ortwo of N(g;) (i=1,2,...,7) are +1,
then we have Eq = (E})*E}.

Proof. 1t is enough to prove the following two Cases (1) and (2).

Case (1): N(gy) =---= N(es) =—1 and N(gg) = N(g7) = +1.

Let n € Ey and let n? =¢&]'¢)* -~ &5’ (x; € Z). By (2) of Lemma 3
we see that x;, X, ..., X5 are even. Then it follows from Lemma 4
that

X, X, X .
nn% = g;'e, ey’ > 1 in Ky,
O, _ oo %5 % 1
s = &'es’e;’ = in Ks.

Now, we assume that x; is odd. Then &; = 1 in K4 =Q(\/d1, Vds)
and in K5 = Q(/d2, v/ds). Therefore, A; = di'dj*, A7 = dy ds’
for some e;,e;,e4,e5 = 0, 1. These equations lead that A, >
(dydyds)& > a’f‘ , which is impossible (Kubota [5, Hilfssatz 9]). Thus
x7 1s even. Similarly, by the equations

X, X, X .
% =e'ey’ge =1 in K3,

0|

X, X X .
nn’% = ey’’’ =1 in Kg,

[\S]

we see that xg is even. Therefore all x; are even and so 7 € Ej.
Thus Eo C (E3)TE].

The inverse inclusion (E})*E2 C Ej is shown by the equations (1)
and (12).

Case (2): N(e;) =N(e)=---=N(g)= -1 and N(g7) = +1.
Let n € Eo and let n? = &'¢y?---&)" (x; € Z). Then, by (2)
of Lemma 3 we see that x;, x,, ..., x¢ are even. In the same way

as in the proof of Case (1) we can show that x; is even and that
Eo = (E})*E}. O
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Proof of Theorems 2 and 3. We only prove Theorem 2, because we
prove Theorem 3 in a similar way.

Suppose that Qg = 2. Then there exists a unit # € E( such that
Ko(y/M) = K} = Ko(V/A) where A = A(e;, e, ;). By Lemma 8 and

(2) of Proposition 1 we can put 5 = e;‘nf‘zngngisz (a,b;€Z, €€ Ey)

and we have
b, b, b
Ko(v1) = Ko(\/ A3A505A5).
Consequently,
b, Ab, Ab
(14) AZALARAS S Aley, ez, €3).

Conversely, if this equation (14) holds, then a square root of 7 :=
e‘;nf‘zné’gngi generates K over Ky, i.e., K = Ko(,/7). Therefore we
have Qg =2. O

Proof of Theorem 4.

Case (1): N(ey) = N(e) = N(e3) = N(gg4) = —1 and N(es) =
N(eg) = N(e7) = +1.

Suppose that Qx = 2. Then there is a unit n € E; such that
Ko(y/1) = Kj. By Lemma 1 and (4;) of Proposition 1 we have

7
2 Xy X5 X 1 X 2y,
N~ = My3E578¢ €7 H'Ei
i=1

where x;,y; € Z. From (2) of Lemma 3 it follows that x; = 0
(mod 2). Hence by Lemma 2 we see that x5 = xg = x7 (mod 2).
In the case that x5 = x¢ = x7 =0 (mod 2), we have

_ a. a, a b 2
N = E&5°€6°E7 338

for some a;, b =0, 1 and ¢ € Ej. Therefore,

Kj = Ko(v/7) = Ko (/A AE AT AS,)
and then

(15) ASPAGATAL, = A(er, e, &)

for some ¢; =0, 1.
In the case that x5 = xg = x7 =1 (mod 2), let

4
No := \/€5E6€7 Hsf (vi=0o0r1)
i=1
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and let 7 be totally positive. Then we have n = 8?58268‘7” n§3n085
where a;, b =0, 1 and & € E}. Since s, &, &7, 23, 1 € Eq, we
see 1o € Eg. Then it follows from Lemma 5 that
Ko(v/M0) = ¢*(n0)) = Ko(v/0*(m0)) = Ko(4/d*(no0))

where &*(no), 9*(110) and d*(ng) is defined by (2), (3) and (4), re-
spectively. Here we take s; = 0 or 1 (i = 1,2, 3) in accordance
with

& (o) = (Vo + Vo )?, 67 (no) \/5* (M0) +\/f* o) %)°

d*(10) = (v/0*(n0) + /6*(10) *)?,
respectively. Therefore

Ky = Ko(V/T) = Ko/ AL AN AL, d*(n0))

and then we have
(16) AGAGAT AL d* (o) = Aler, €2, e3)

for some ¢; =0, 1.

Conversely, if the equation (15) or (16) holds, the square root of

e 29,99 b a5 %% % b /
N = &56.°8 153 OF &5°8s°¢,'Ny;mo generates K, over Ky, respec-
tively, i.e., K = Ko(/1). Then we have Qg =2

Case (2): N( 1) = N(&3) = N(e3) = N(g7) = —1 and N(gy) =
N(es) = N(eg) = +1.

Suppose that QOk = 2. Then by Lemma 1 and (4,) of Proposition
1 we have

7
2y,
(17) N’ =epesegnin [ &
i=1
where x;, y;, z € Z. Then it follows from (2) of Lemma 3 that z=0
(mod 2), and from Lemma 2 that x4 = x5 = x4 (mod 2).
If x4 =x5=x6=0 (mod 2), then n € (E})*. By(4,) of Proposi-
tion 1 we have 1 = g‘e5°es 7$,,e3 forsome a;, c =0, 1 and & € Ej.
Therefore,

(18) Ko(y/A) = Ko(\ A AP ALAS).
If x4 = x5 =x6 =1 (mod 2), taking norms N; and N; of the
equation (17), we have by Lemma 4 that

x, 2y, 2y, 2 .
nito = 84482y2£3y384y‘ > 1 in Ky,

2 .
N1t = ge y'e7y’e Vs = =1 inK,
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Then /A4 is contained in K; N Ky = Q(1/d2d3), and then A, > 1

ord, d; , which is impossible (T. Kubota [5, Hilfssatz 9]).
Thus, if Qg =2 we have the equation (18) and hence

(19) AFATAL A123—A(el,e2,e3)

for some ¢; =0, 1.
Conversely, when the equation (19) holds, we can show, as before,
that Qx =2. O

Proof of Theorem 5. (1) Suppose that N(g;) = N(e;) = N(e3) = -1
and that N(e4) = --- = N(¢7) = +1. By Lemma 1 and (5;) of
Proposition 1 we have

(20) n* =g reset ey ngy

for any n € Ey where x;, y; € Z. Then by Lemma 2 we have the
following three cases:
(i) x4=x5=x=x7=0 (mod 2);
(i) Among x4, X5, X¢ and X7, exactly one X; is even;
(i) x4=x5=x6=x7=1 (mod 2).
Case (i). We have n € (E5)* and we may put 7 = g;'€s’ese;” (a; €
Z). Then we obtain, as before,

Ko(v7) = Ko(y/ A AFALAT).

Case (ii). We first consider the case that x4 =xs=x=1,x;=0
(mod 2). Taking norms N; and N4 of (20), we have

o = gfed el =1 ink = QWd,, \/ds),
2 2 .
n'*% = gytey ey 51 inKs=Q(v di, Vdy).

Then, as before, /A4 is contained in Q(+/d4), which is impossible.
Next we consider the other cases, for example, x4 = x5 = x7 =
1, x6=0 (mod 2). Let

3
= VEstser [ [ &)  (vi=0orl)

and let 7y be totally positive. Then we can prove the assertion in the
same way as in the proof of Case (1) of Theorem 4.
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Case (iii). As before, taking norms N;, N,, N3 and N; of (20),
we obtain

A4?d2 ords; A5?d3 ord;; A6§d1 ord;
A4AsAg ?dzdm did, ord; d,,

which is impossible.
(2) Suppose that N(e;) = N(e;) = N(gg) = —1 and the others
N(e;) = +1. We have by (5,) of Proposition 1

7
2 _ X3 Xy X X X 2y,
N~ =E€3€,€578, ’712H8i
i=1

for any n € E, where x;, y; € Z. By (2) of Lemma 3 we have x; =0
(mod 2). Therefore we obtain, as before, the following cases:
(i) x3=x4=x5=x7=0 (mod 2);
(ii) Among x3, x4, X5 and x7, exactly one X; is even;
(111) X3EX4=EX5=X7 = 1 (mod 2) .
By the same argument in (1) of this proof we can prove the assertion
for each case. o

Proof of Theorem 6. In the following we only consider the first case:
N(e1) = N(g) = —1, since the other cases are proved in the same
way.

Let

o := II & I & w,vi=0o0r1)

N(e)=+1 N(e,)=—1

and let 7y be totally positive.
For any 1 € E; we may put 7 =a‘313-~8‘7”-11({ where a;, f =0 or
1. Then we have, as before,

Ko(vA) = Ko(y/AZ --- A% d*(no)).
Thus we obtain that Qg = 2 if and only if

A‘;s .. .A? d*(no)f 5 Aler, ez, e3),

as desired. O
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