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In [1] and [2] we incorrectly state a theorem of Razmyslov from [3].
We quoted Razmyslov as saying:

For all k and /, Mkj satisfies a trace identity of the form

(*) p{x\ ,...,Xn,ά) = c(xχ, . . . , xn)tr(a)

where p(x\, ..., xn, a) and c{x\, ... , xn) are central polynomials.
This statement is true if k φ I and false if k = I. We will indicate

why this is true and what effect it has on the results of [1] and [2].
It turns out that [1] needs only a very minor comment, but that [2]
requires a modification to the main theorem and a longer proof in the
case of k = /.

First, here is a correct version of Razmyslov's theorem:
For all k and /, Mkj satisfies a trace identity of the form

(**) P(x\ ,...,xn,a) = \τ{c'(xx, . . . , xn))tτ{a)

where p{x\, . . . , xn, a) is a central polynomial and cr(xχ, . . . , xn)
does not involve any traces.

If k Φ I, then the trace of the identity matrix equals k - / which
is not zero. So, if we set a = / in (**) we get

tr(c'(xi, . . . , xn)) = (k - l)~ιp(x\ , . . . , * „ , / ) .

Hence, in this case tr(c'(xi, . . . , xn)) equals a central polynomial
modulo the identities for Mkj, and so (*) is true in this case. To
see that (*) is false if k Φ I it is useful to have the following lemma.

LEMMA 1. Let f(x\, . . . , xn) be a pure trace identity for Mkik and
write f(xΪ9 . . . , xn) = fo(xχ, . . . 9xn) + A(xi, . . . >Xn), where each
monomial in fo involves an even number of traces and each monomial
in f\ involves an odd number of traces. Then fo(x\,... , xn) and
fι(x\, . . . , xn) are each trace identities for

Proof. We define an automorphism on Mkk. Let ( £ £ ) be an
element of Mkk, where A, B, C and D are k x k blocks, and
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define (£ j>)* t 0 ^ e ̂ e m a t Γ i χ (B Λ ) Then -* is an automorphism
and tτ(x*) = —tr(x) for any matrix x. Hence Mk^k satisfies the
trace identity f{x\ , . . . , * * ) = fa{x\, . . . , x$ + f\{x{, . . . , xζ) =

, . . . , xn) - fι(x{, . . . , xn). The lemma follows.

COROLLARY. Mkk does not satisfy (*).

Proof. Multiply (*) by a new variable xn+\ and take trace. The
left-hand side becomes a product of two traces which is not an identity,
and the right-hand side becomes a product of three traces, contradict-
ing Lemma 1.

To fix up the proof in [1] in the case k = I all that is required is
this simple remark: Let x\, ... , xn and y\, . . . , yn be In variables.
Then Mkik satisfies the identity

(1) tr(c'(xι,...,xn))tr(c'(yι,...,yn))

= p(xι,... , * Λ , C Ό Ί , ... ,yn))

Hence,

c(xχ ? . . . , xn)c{y\, . . . , yn) = tr(c'(xι, . . . , xn))tr(c\yι, . . . , yn))

is a central polynomial for Mkj even if k = /. This is all that [1]
requires. (We will now resume using the shorthand notation from [2]
and we will write p(x, a), c{x), cf(x), p{y, a), etc.)

DEFINITION. Let R be any ring and let J2 be the ideal of R gen-
erated by all evaluations of p(x\, . . . , xn, c'{y\, . . . , y«)) on i?.

We remark for future reference this easy consequence of (1): Mk^
satisfies the identity

(2) P(x,c'(y))=p(y,c'(x)).

Hence we may denote it as c(x)c(y) to emphasize its symmetric na-
ture.

Here is the main result:

THEOREM 3. Assume that R is p.ί. equivalent to some Mk^k and
that the annihilator of J2 is (0). Then there is an embedding of R
into a Z/2Z-graded ring with trace ~R = Ro + R\, such that R c
i?o, tr(i?0) C Rι and tr(Rx) = (0); such that R is generated by R
and tτ(R) and such that

(a) the trace on R is a non-degenerate,
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(b) there is a faithful R-submodule of R\, J such that for all homo-
geneous r in Λ there exists an integer n such that Jnr c R, and

(c) R satisfies the same trace identities as

Proof. The construction of R will be in two parts, first RQ and
then R\. Much of the construction will be very similar to [2] and so
we will omit a number of details.

For any a, b e R we construct an R-map t(a, b): J2 —• R via
t(a9 b)(c(x)c(y)r) = p(x, a)p(y, b)r. The reader should think of
t(a, b) as Xr{a)Xr(b). The proof that t(a, b) is well-defined is similar
to the corresponding proof in [2]. We note that t(a, b) is symmetric,
bilinear and vanishes if either argument is a commutator. Here are a
few of its other properties:

(3) if ] Γ r/ί(α/, bi) = 0, then for all s, ] Γ r/sί(α, , bj) = 0,

(4) t(a,b)t(c,d) = t(c,b)t(a,d),

(5)

Finally, as in [2], i?0 can be constructed as the subring of
lim hom^((/2)Λ, R) generated by R and all ί(α, b). Note that ί
extends to a map from i?o χ &o to its center.

To define R\ we start with the free i?0-
module on the symbols

tr(α), aeR and then mod out by the relation (&)

if Σ ait(^ai >b) = ° f o r a11 b e R t h e n Σ a M a i ) = 0»

where the α/ are in i?0 and the αz are in R.
This relation has a number of implications for tr. Regarded as a

map from RQ to R\ it is linear over the center of RQ and it vanishes
on commutators. Equations (3)-(5) all have counterparts for tr:

(30 if Σ <*Mai) = ° t h e n f o r a11 s >
i

(4') t(a

(50 tτ(t(a,b)) = 0.

It follows from (3') that we may define a bimodule structure on Rx

via (Σ, αj tr(α, ))ί = Σ, α, ίtr(α, ). Then we define a bilinear pairing
Ri x i?i -» i?0 via (αtr(α))0?tr(δ)) = αy?ί(α, 6). Using (&) it is
straightforward to show that this pairing is well-defined. Finally, we
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construct a multiplicative structure on R = RQ + R\ via

That it is associative follows from (4'). We now prove that R has
the properties (a), (b) and (c) that we claimed in the statement of the
theorem.

It is useful at this point to prove that R satisfies the identity (**),
namely

(**) p(x,a) = tr(c'(x))tτ(a).

In order to prove this it suffices to take x and a in R. Consider
tr(c'(x))tr(α) = t(d(x), a) as a map from J2 to R. This map takes
c(y)c(z) to

p(y,c'(x))p(z,a)= (by (2))

p(x,c'(y))p(z,a) = (by (2) of [2])

p(x,a)p(z,cf(y)) =

p(x, a) times c{y)c{z). This proves (**).
Let / = R\r(d(Rn)) c R\. Note that the square of / equals the

ideal of R we denoted J2 by (**), and so ann(/) = (0). Continuing
the proof of (b), let r e i ? o It follows from the construction of RQ
that (J2)nr = J2nr is contained in R, for some n. And, if r e R\
then we may assume without loss of generality that r = a \r(a) for
some a e i?o, aeR. But then, J2na c R for some n as above, and
/tr(α) c R by (**). Hence J2n+ιr cR.

The proof of (c) follows from (b) as in [2]. Let f(x) = f(x\, . . . , xm)
be a trace polynomial in which either term has an even number of
traces or each term has an odd number of traces. Then it follows
from (b) that M^^ and R satisfy an identity of the form j{y)f{x) =
g(x, y), where x and y are disjoint sets of variables and g(x9 y)
doesn't involve any traces. Since M^ ^ is verbally prime, f(x) is a
trace identity for M^^ if and only if g(x, y) is a p.i. for M^^.
Moreover, since Λ is a central extension of R, they satisfy the same
p.i.'s. Hence, if f(x) is a trace identity for Λ then p{x9y) will be an
identity for R and so for Mkik, and so f(x) will also be an identity
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for Mkik. Conversely, if f(x) is a trace identity for Mkk, then it
follows that j(y)f(x) is a trace identity for R. But this implies that
the evaluations of f(x) would annihilate some power of / and so
f(x) is forced to be an identity.

The proof of (a) is also similar to the corresponding proof in [2]
and we omit it.
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