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Each combinatorial strict inverse semigroup S is determined by
(1) a partially ordered set X which in fact is the partially ordered set
of the .7 -classes of S, (2) pairwise disjoint sets /, indexed by the
elements of X which in fact form the collection of - (equivalently:
¥ -) related idempotents and (3) structure mappings f, 5: I, — I
for a > p satisfying certain compatibility conditions. The multi-
plication on S can be described in terms of the parameters X, I,,
fa,p . Conversely, the system (X ; I, f, s) can be characterized ab-
stractly in order that it defines a uniquely determined combinatorial
strict inverse semigroup. In this paper, the constituting parameters
X, I, f. p of the combinatorial strict inverse free product S of a
collection of combinatorial strict inverse semigroups S; are described
in terms of the parameters of the semigroups S;.

As an application it is shown that the word problem for such a free
product in general is not decidable.

1. Introduction. The (77-)free product of an arbitrary family {S;]
i € I} of algebras of the same type all of them belonging to the class
7 is the coproduct [[*S; in 7. There are homomorphisms ¢;:
S; = [I"Si, i € I, and for any T € 7" and homomorphisms
w;:S; — T, i€l, there is a unique homomorphism y: [[*S; —» T
such that ¢,y = y; forall iel.

From purely universal algebraic considerations it follows that the
free product exists for any variety 7~ of inverse semigroups and is
generated by isomorphic copies of the members of the given family
(see, for instance, Gratzer [5]). Free products have been studied for
several classes of semigroups. Semilattice free products and semilat-
tice of groups free products are considered in the book of Petrich
[14]. Band, completely simple and completely regular free products
have been investigated by Jones [9, 6, 11]. Inverse semigroup free
products have been studied by Jones [7, 8, 10] and Jones, Margolis,
Meakin and Stephen [12]. The aim of this paper is to describe combi-
natorial strict inverse semigroup free products. A combinatorial strict

A part of the results has been presented at the Conference of Semigroup Theory, Oberwolfach,
July 1991.
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inverse semigroup is an inverse subdirect product of combinatorial
Brandt semigroups and/or the trivial group. This class forms an in-
verse semigroup variety and plays an important role in the study of the
lattice of inverse semigroup varieties (see [14]). Each such semigroup
S can be described quite efficiently by

(1) a partially ordered set X (which in fact is the partially ordered
set of all principal ideals of §),

(2) pairwise disjoint sets I, indexed by the elements of X,

(3) structure mappings f, g: I — Ig (for a > B),

(4) a function 0: I xI — X where I =J,cyla-

The function J is determined by the parameters (1)-(3). The semi-
group S is realized as the union of the pairwise disjoint sets I, X I, .
The multiplication in S is described by the structure mappings f, g
and the function J. After having introduced some basic facts about
combinatorial strict inverse semigroups in §2, in §3 we shall outline
heuristically how the free product of two combinatorial strict inverse
semigroups is constructed. In §4, a combinatorial strict inverse semi-
group S will be constituted out of a given family of such semigroups
S;, where i € I, according with the ideas of §3. The structure set X
of S, the corresponding sets I,, o € X and the structure mappings
fa,p will be described in terms of the ingredients of the respective
semigroups S; and by means of equivalence relations on certain sets.
A process which determines the d-function for S will be provided. In
§5 we shall prove that the so constructed semigroup S is the free prod-
uct of the combinatorial strict inverse semigroups S;. This also will
lead to certain triples which can be interpreted as “canonical forms”
for the free product of the semigroups S;. Finally, in §6, we shall
present an example showing that the word problem for free products
of combinatorial strict inverse semigroups in general is not decidable.
Throughout the paper, the term “free product” will stand for “combi-
natorial strict inverse free product”.

2. Combinatorial strict inverse semigroups. For undefined notions
concerning inverse semigroups the reader is referred to the book of
Petrich [14]. Following [14], an inverse semigroup S will be termed
strict if S is a subdirect product of Brandt semigroups and/or groups.
This class forms an inverse semigroup variety. A structure theorem for
such semigroups is provided in [14, Chapter XIV]; a slightly modified
version thereof is in [1]. Free objects in certain varieties of strict in-
verse semigroups have been studied by Reilly [15], Margolis, Meakin,
Stephen [13] and the author [1, 2] using the methods of the present
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paper. In this context, the variety of all combinatorial strict inverse
semigroups plays an important role. This class is the least inverse
semigroup variety which is not Cliffordian (that is, completely reg-
ular). Applying the structure theorems of [14, Chapter XIV] or of
[1] to the special case of combinatorial strict inverse semigroups, the
following description can be obtained (see [1, Corollary 2.6]).

THEOREM 2.1. Let X be a partially ordered set. For each a € X
let 1, be a non-empty set such that I,NIg = @ if a # B. For each
pair a > B let f, g: I, — Ig be a mapping subject to the following
conditions:

(1) fua=idy ,

(2) fo,pfp,y = Ja,y Whenever o > B >y,

(3)forany i€l,, jelg, a, BE X, the set

D(i,j)={y<a,Blifo,y=Jjf3,,}

has a greatest element, to be denoted by 6 = d(i, j).
Let S = Uyex Io % I, and define a multiplication on S by

(& )y 8)=(fa,s0,n> 8,50,n)

where i,j €1,, r,s € Ig. Then the groupoid S, to be denoted by
(X5 I, fy,p) is a combinatorial strict inverse semigroup. Conversely,
every combinatorial strict inverse semigroup can be so constructed.

Given § = (X; I, fy, p) then X is isomorphic to the partially or-
dered set of all principal ideals of S and will be termed the structure
set of S. The D-classes of S then are precisely the sets I, x I,,
a € X. Notice that & = .# in each strict inverse semigroup. The
mappings f, p are the structure mappings of S. Further, each map-
ping f, pxfo,p: lax1y — IgxIg, defined by (i, j) = (ify, 5, ifa,p)
in fact is a partial homomorphism from the Z-class I, x I, to the
Dclass Ig x Ig. The function 6: I x I — X (where I = J,cy o) is
the d-function of S. Notice that J is determined by the parameters
X, I, fo,p- The structure set X of a (combinatorial) strict inverse
semigroup has the following properties (see [1, Proposition 2.7]).

PROPOSITION 2.2. Let X be the structure set of a strict inverse semi-
group. Then

(1) X is (downwards) directed,

(2) for any two elements a, B € X having a common upper bound
y > a, B, the greatest lower bound o A B exists in X .
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From Theorem 2.1 the following can be easily deduced.

LEMMA 2.3. Let S = (X ; 1, /., p) beacombinatorial strict inverse
semigroup. For i =1,...,n let k;,l; € I, for some o; € X. Let
vy € X be such that (k, I})(ky, ) (kn, 1) €I, x1,. Foreach i let
Bi € X be such that o; > B; > y. Then

(kyy ly) - (kns bn) = (ki fo, g s DiSa, ) (knfo g s Infa . p)-

The greatest lower bound of a finite subset {ay,...,a,} of X
will be denoted by inf{a,, ..., a,} provided it exists. For the two
element set {«, f} instead of inf{a, B} also a A f will be written.
In the following we shall deduce some further results which will be
needed in §4.

LEMMA 2.4. Let S = (X; I, f,, p) beacombinatorial strict inverse

semigroup. For k =1, ..., n let oy € X and iy €1, . Then
maX{y .<_ Apy ey anlilfal,y == inf;ln,y}
exists in X . Denoting this maximum by 6{i\, ..., in} then

0{iy, ..., Iny=1nf{d(iy, ir), 0(iz, i3), ..., 6(in_1, in)}-
Proof. Consider the product

w = (i] N il)(iZ, i2)"'(in> in)

and let § € X be such that w € I5 x I;. By induction and the
definition of multiplication in S it follows that § = d{iy, ..., in}
which can be expressed as the mentioned infimum.

Notice that the mentioned element § can be obtained by computing
the product w . For the construction in §4 we shall need the following
concepts.

DEerFINITION 1. Let S = (X; I, f, p) be a combinatorial strict in-

verse semigroup. For k = 1,...,n let i, € I, for some oy € X
and A= {i;,..., in}. Then
JA:maX{ysal,...,anlilfgll’)):"‘zin_/;ln’y}.

For singletons {i;} this means 6{iy} = a; . Further, if &/ = {4|j €
J} is a collection of finite subsets 4; of |J,cy /o then put 6 =
{aliely.



COMBINATORIAL STRICT INVERSE SEMIGROUPS 205

DEFINITION 2. Let X be the structure set of a combinatorial strict
inverse semigroup S. A finite non-empty subset A C X is admissible
if any two distinct elements of 4 do not have a common upper bound
in X.

Let X be the structure set of a combinatorial strict inverse semi-
group and let 4 C X be a finite non-empty subset of X. Con-
sider a finite sequence (7;) of partitions of 4 as follows. Let my =
{{a1}, ..., {an}} if A={ay,...,ay}. If 4 is admissible then let
(m;) consist of my only. Otherwise choose elements «; , a; € 4 which
have a common upper bound in X and put 7y = {{a;, az}, {a3}, ...,
{an}}. Suppose that 7; = {A4;;, ..., Aj } has already been defined.
Put infn; = {inf4;;, ..., ianjkj}- If for any u # v, inf4;, and
inf 4;, do not have a common upper bound then let 7; be the final
partition of the sequence. Otherwise choose 4j,, 4j, € m; such that
infA4;, and infA4;, do have a common upper bound in X and let
mjy1 consist of 4;, U Aj, and the remaining blocks of z;. (In such
a case it may happen thatinf 4;, = inf4;,.) If inf4;, and inf4;,
have a common upper bound then infA;, AinfAj, = inf(A4;, U 4j,)
exists. Hence by induction it is justified to assume the existence of
inf 4j; . Since the number of blocks |z;| is strictly decreasing there
is a least n such that infz, is admissible and |infn,| = |7,]|.

DerFINITION 3. Let X be the structure set of a combinatorial strict
inverse semigroup and 4 C X be a finite non-empty subset of X . The
sequence (7;) of partitions as it is constructed above is an admissible
sequence for A. If m, is the final partition then A = infn, is the
admissible set generated by A.

LEMMA 2.5. The admissible set A generated by A is uniquely de-
termined.

Proof. If |A| = 1 then 4 = A is admissible and there is nothing
to prove. Let |4| = n > 1 and suppose that the assertion be true
for all B with |B| < n—1. If 4 is admissible then 4 = 4 and
there is nothing to prove. Otherwise there are elements a;, a; € 4
which have a common upper bound in X. These elements can be

chosen in order that aj A a, ¢ {a3,..., ay} (for instance, if they
are minimal in A4). Let B = {ajAay, a3, ..., an}; then |B|=n-1.
Let mg, ..., m; be an admissible sequence for 4. For each j let g;

be the partition of 4 which arises from n; by forming the union of
the blocks containing «; and «, provided these blocks are distinct,
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or g; = m; otherwise. In the respective block of g; now replace the
elements «; and a; by a; Aay, for each j, which yields a sequence
(o) of partitions of B. The transition #; — 7;4; is of the form
Ajy, Ajy — Aj,UAj, . Hence the transition o; — g;,1 is of the form
either Aju: Ajv — A}'u UAjv or Aju U ij, Ajv — Aju UAJ'X UAJ'U
or Aj, UAj, — Aj, UAj,, depending on the blocks of a; and a,.
Denoting the blocks in the corresponding partitions aj’- by A}, then
aj’- — aj’-+1 is of the form A}u, Ay — A}uUA}U or (4;,UAjy), A}v —
(AjuUA ) VA, or (4j,UA)y) — (4j,UAj) . The latter case happens
precisely once. In this case, a]’- = aj’- +1 and a]’. +1 may be deleted in

the sequence (og}) so that it is an admissible sequence for B. Now

A = infn, = info, = info_, = B. Each admissible sequence (7;)
for A therefore can be associated with an admissible sequence (o7})
for B and both of them yield the same admissible set B. Since by
hypothesis of induction B is uniquely determined, so is 4.

REMARKS. (1) Let 4 be a finite subset of X. Then each o € 4
has (precisely) one lower bound in 4. Conversely, each o/ € 4 has
(at least) one upper bound in 4.

(2) If for two elements «, f € X a common upper bound y is
known then the meet a A f can be calculated as follows: a A f =
6(ify,a,if,, p) forany i €I, (see [1, Proof of Proposition 2.7]).

(3) The set Z#(X) of all admissible subsets of X forms a A-
semilattice if A is defined by 4A B = AU B. The mapping o — {a}
embeds the partially ordered set X isomorphically into Z(X). How-
ever, meets will not be respected in general by this embedding.

(4) If a partial product on X is defined by a A, B = inf{a, B}
if and only if « and B have a common upper bound in X then
(P(X), A) is the free semilattice generated by the partial semilattice
(X, Ap).

The partial order on the set of all admissible sets Z?(X) which is
defined by the above mentioned semilattice structure is characterized
as follows.

LEMMA 2.6. Let A, B € P(X) be two admissible subsets of X .
Then AANB = B ifand only if each o € A has a (unique) lower bound
B in B.

Proof. First, if some a € X has a lower bound g in the admissi-
ble set B then by admissibility of B, this lower bound is necessarily
unique. If each a € A has a lower bound S € B then an admissible
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sequence for 4 U B can be obtained by successively forming the sets
{a,-1 Qs one s B} where B € B is the lower bound of the elements
@i, i, ...€A. Conversely, suppose that a € 4 has no lower bound
in B. By definition of the algorithm which constructs C = AU B, it
follows that each element of 4 U B has a lower bound in C. Conse-
quently, C # B.

The following result characterizes the admissible set generated by
some set.

LEMMA 2.7. Let X be a structure set of a (combinatorial) strict
inverse semigroup. Let A C X be a finite subset and let B € F(X)
be an admissible set such that each o € A has a lower bound p € B.
Let A be the admissible set generated by A. Then each o/ € A has a
lower bound in B.

Proof. We use induction on |4|. If |4] = 1 then the assertion holds
trivially. Let AC X, |4|=n>1, B € %#(X) and suppose that the
assertion be true for each 4’ C X with |4’| < n. Suppose that each
o € A has a lower bound g in B. If 4 = A then there is nothing
to prove. Otherwise choose elements a, o’ € A as in the proof of
Lemma 2.5 which have a common upper bound in X . Since o and
o' have lower bounds B and f’ in B and since B is admissible,
B = B’'. Hence aAa’ > B . Therefore, each element of 4’ = {aAcd'}U
(A\ {a, &'}) has a lower bound in B. By hypothesis of induction,
each element of A’ has a lower bound in B. As in the proof of
Lemma 2.5, A = A’ so that the assertion follows.

REMARK. Lemma 2.7 in fact states that 4 > B in the natural order
of the semilattice (F#(X), A).

3. A heuristic consideration. In this section we briefly outline the
idea of how the parameters X, I,, f, g of the free product of two
combinatorial strict inverse semigroups S = (Xs; o, j:,s, p,) and
T = (Xt; L, far, p,) can be expressed in terms of the parameters
of the latter semigroups. Let i, j € I, , k, [ € I, and consider the
product (i, j)(k,[l) € S*T. The partially ordered sets Xg, X7 can
be assumed to be disjoint order filters in X. Let a € X correspond
to the Y-class of (i, j)(k, [), that is,

(i’ .])(ka l) = (ifézs,aa l.f;tr,a) el,x1I,.
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Then o ¢ XgU Xr. All we know i1s that ag > o and ar > «.
By the universal property of the free product it seems likely that for
feXsUXy, B> a ifand only if f > ag or f > ar. Considering
the mappings ﬁls,a and faT,a , all we know 1is that ifas,a = kfaT,a.
Again by the universal property of the free product, it is reasonable
that fas,a is injective on Lo, and so is faT,a on I, . Also, ufas,a #
VU fa, o Whenever (u,v) # (j, k). (If the mentioned assertions were
not true then one could construct an example being in contradiction
to the universal property of S 7.) Finally, I, = I, f%,a Ula, fo, .o
since otherwise S x 7' would not be generated by S and 7. We
therefore are motivated to identify the element o with the equivalence
relation on [, U I, identifying j and k and all other equivalence
classes being singletons. The set I, then is an isomorphic copy of
(Ias U Iar) /a. In this way, each o € X can be associated with a
certain equivalence relation on some set I, U---Ul, for a suitable
finite set {a;, ..., an} € XgU X7. The question arises which finite
sets {ay, ..., ay} € XgU X7 and which equivalence relations o on
I, U---UI, appear in this description of the elements of X. We
consider two examples.

Let (i, j) € Iy, %1, (u,v)e Iﬁs xI/;S and (k, /) e Iy, x 1, and
suppose that ag and fg have a common upper bound ys in Xg.
Then by Proposition 2.2, their greatest lower bound dg = ag A Bg
exists in Xg. It can be shown that Jg also is the greatest lower bound
of ag and B¢ in X. Therefore, if (x,y) € S+ T represents any
product containing a factor of Lo X 1o, and of I B, X I B and (x,yp) €
Is x Is then 6 < dg. We therefore have by Lemma 2.3:

(i3 Dy Dy 0) = (Lo g o s )0, DS, 55 ufp, 5)-

The corresponding « is the equivalence relation on I; VI, identify-
ing j j:,s, s, and k aswellas / and u fﬂs’ s, (rather than an equivalence
relation on I, Ulg U, ). Thus two distinct elements of the above
mentioned set {a;, ...a,} belonging to the same structure set cannot
have a common upper bound (within their structure set). Now take
(i,))€la x1o , (u,v)€lp x1Ig and (k, k) €l, xIo .Let a€ X
be such that (7, j)(k, k)(u, v) € l, x I,. Then

j.fas,a = k.f;lr,a = ufﬂs,a'

In particular, a < dg(j, u) where dg(-, -) is the d-function of S and

(i) )k, k), 0) = (ifo, 5. J o s )0, KNS, 55 0S5 5
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where dg = d5(j, u). In this case, the “correct” domain of «a is
I(;S U I, rather than [, U [ g, Ul . This condition implies that
the equivalence relation o cannot identify two distinct elements of
U%E X, Iau for U =S, T. It turns out that these two observations in
fact are sufficient in order to describe the parameters X, I,, f, g of
the free product of a given collection of combinatorial strict inverse
semigroups. The next section gives precise definitions and shows that
indeed a combinatorial strict inverse semigroup is obtained in the out-
lined way. Section 5 then proves that the so constructed semigroup in
fact is the free product of the given semigroups.

4. The construction. Let / be an index set and
{Sl - (Xl; IC!I ) “f(:‘li,ﬂl)li S I}

be a set of pairwise disjoint combinatorial strict inverse semigroups
S; whose structure sets X; are also pairwise disjoint. The upper in-
dices in o’ and f p indicate to which S; the element o' and thus
the mapping jf] g “belong”. This upper index sometimes will be
omitted. The partial order on X; will be denoted by <; and the

o-function of S; by J;.

NoTATION. Put I; = J,yx I, . Forasubset 4 C e, Xi, ANKX;
is the i-component of A, to be denoted by i4. Further, put I, =
Uscsla- Then IyN1; = U,e;qla is the i-component of I, to be
denoted by il4. For any set J, the identical relation on J will be

denoted by ¢;.
Recall the definition of an admissible subset of X;.

DEFINITION 4. A non-empty subset 4 C J;c; X; is admissible if

there are iy, ..., ip € I such that

(1) A=i{jAUIAU---Ui,A4,

(2) foreach Kk =1,..., n the i;-component iz 4 of 4 is admis-
sible in X, -

Thatis, aset 4 C (J;; X; is admissible if and only if it is finite, non-
empty and each non-empty i-component i4 of A4 is an admissible
subset of X;. Denote by #(X;, I) the set of all admissible subsets
of U iel X i

DEFINITION 5. Let 4 C {J,; X; be a finite subset and apply the
process which constructs the admissible set to each non-empty i-
component i4 of 4. The result, to be denoted by 4, will be termed
the admissible set generated by A. Defining the A-operation in
P(Xi,I) by ANB=AUB then #(X;, I) becomes a semilattice.
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The so obtained semilattice (#(X;, I), A) is the free product of
the semilattices (P (X;), A;), i€1.

DEeFINITION 6. Let 4 € £ (X;, I) be an admissible set. An equiv-
alence relation o on I, is admissible if

(1) a]il4 is the identical relation on each nonempty i-component
il A of I As

(2) for any x,y € I4 there exist X1, V1, X2, V2, ---» Xn, Vn € I4
where x; , yi € I, for certain a; € 4 such that

X=X, Y1iaXxXp, ..., Vn-10Xpn, Yn=Y,

(3) at most finitely many «-classes contain more than one element.

For A € #(X;, I) denote by X, the set of all admissible equiva-
lence relations on /4.

Notice that the set X, may be empty for an admissible set 4. Let
A be an admissible subset of some X;. If o is an admissible rela-
tion on I, then « is the identical relation on I, by condition (1)
and il4 = I,. By condition (2) this is only possible if 4 consists of
only one element. Hence X4, = @ if 4 C X; and |4| > 1. Condi-
tion (1) reflects the second example in §3 whereas conditions (2) and
(3) reflect that the free product is constituted by all finite products
(X1, Y1)(x2,¥2) - (Xn, yn) wWhere (x;,y;) € Sij . By condition (1)
it follows that each o« class contains at most finitely many elements.
In the following, we shall call an equivalence class trivial if it is a
singleton.

DEFINITION 7. Put X = Uyemx 1 Xa. For a € Xy, B € Xp
(4, BeP(X;, ) let a> B if and only if

(1) for each o € A there is some B’ € B such that of >; B!
(iel),

(2)if xel,, yel, for o', o/ € A4 such that xay then also
xfy pByfy p- Here ' and B/ denote the (uniquely determined)
lower bounds of o' and o/ in B.

Notice that (1) in fact states that 4 > B in Z#(X;, I).

LeEmMa 4.1. (X, <) is a partially ordered set.

Proof. Obviously, a < a foreach a € X. Let a € X4, f € Xp
for some A, B € #(X;,I) such that « > B and B > a. Then
A>B and B > A. Hence 4 = B. Condition (2) of Definition 7
now implies that « C # and B C o (considered as sets of ordered
pairs). Consequently, « = . Finally, let a € X4, B € Xp, ¥ € X¢
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such that « > # and g > y. Then 4 > B and B > C so that
A>B>C. Let of, o/ € A. Then there are (unique) B°, g/ € B,
¥, 7/ € C such that o' >; i >, 7" and o/ >; B/ >;9/. If xay for
some x €1,, y€l, then xf, 5 Byf, p andthusalso xf, =
xfai’ﬂ,-fﬁi’y,yyfa,’ﬁjfﬂ,,yj =y}f1,,y,- which implies that a > y.

LeEMMA 4.2. For each i € I the mapping ¢;: X; — X, defined by
al — ¢ I, provides an isomorphic embedding of the partially ordered

set X; into X.

We will not use this result so that the straightforward proof is omit-
ted. The partially ordered set X of Definition 7 will be the structure
set of the free product of the semigroups S;. We proceed to define the
respective sets I, and the structure mappings j_”a’ s (here ~ indicates
the difference to the mappings f| ‘ ﬂ,) .

DerFiNiTION 8. For each a € X4, 4 € Z#(X;, I), put I, = I4/a.
Further, let 4, B € #(X;,I), a € X4, f € Xp such that a > .
Let xa € I, and x' € I, for some a' € A such that x’ € xa. By
definition of > there is a unique B’ € B such that of >; . Put

xa_‘a,ﬁ = (X’ ai’ﬂi)ﬂ.

By condition (2) of Definition 7, the value of xa?a, g does not

depend on the special choice of x’ € xa. Therefore, 7(,’ g la — I
is a well defined mapping.

LEMMA 4.3. The mappings 7(1’ p satisfy the following.

(1) fa,o=1id; forall a€X.
(2) fa,pfp.y=Fa,, whenever a > B >7.

Proof. (1) Let xa € I, and x’ € xa for some x’ € I ;. Then
xafy o= X fy )a=x'a=xa.

2QLeta >8>y, ae X, BGXI_;, y€Xc. Let xa€l, gnd
x" € xa, x’ € I ;. There are (unique) f' € B, y' € C such that o >;
Bt >; y’;By d_eﬁnition, xafayy = (x’fai,y,-)y, xaf, p =_(x’fa,»’ﬂ,~)/3
and (xaf, g)fp,,= (x/f(;i,ﬁi)fﬂx,yi) sixlce x’fai,ﬁexafa’ﬂ. Now
j;,-,ﬂ.fﬂ.-’yi =fa,’y,' implies that xaf, pfp , = xaf, ;- O

In the following we shall prove that the system (X ; I,, )_"a, g) de-

fines a combinatorial strict inverse semigroup. We therefore have to
find a d-function J: I, x Ul — X.
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Construction of the d-function for (X ; 1, 7(1, ﬂ). Let a, f € X,
xa €l,, yp €l;. Suppose that a € X, f € Xp. Let C; = AUB
be the admissible set generated by 4 U B (as described in Definition
5). For each of € A, B/ € B there are (unique) o!, ﬂ{ € C; such
that o' >; o} and B/ >; ﬂ{. Define binary relations U;, V;, W; on
Ic as follows:

Ulz{(uA/;l’ a"U~f(;Jj a/)|u€Ia., Ue[a” uav, al’ajeA}’
N >
Vl={(“fﬂ',/3," ,Ufﬂf,ﬂf)luEIﬁ’a vel,, Uﬁ’U, ﬂl’ﬁleB},
I’Vl:{(X’f;:’ai,y,fﬂf’ﬁ{)lxléxaﬂla,,
yveypnl, , ofed, p/eB}.

Now let n; be the equivalence relation on Ic which is generated
by U; U Vi U W;. Admissibility of « and S ensures that this lat-
ter relation contains only a finite number of pairs with distinct en-
tries. Next suppose that for £k = 1,..., n — 1, admissible sets Cj
and equivalence relations 7, on I have already been defined and
N 1s generated by a relation U, U V), U W, which has only finitely
many pairs with distinct entries. For each i € I such that the i-
component ilc  of Ic_is not empty put n,_, = f,_ylilc_
Then ilc _ / n._, is a collection of finite (pairwise disjoint) subsets
of I; = U(l,-E X I, and only a finite number of them contains more
than one element. Let J;(ilc_ / n._,) be as it is described by Def-
inition 1 in §2 where J; denotes the J-function of S;. The so ob-
tained set is finite. Let C; = d;(ilc_ /n._,) be the admissible set
generated by 5i(iICn_,/'7£l—1)- Put C, = (JC} where the union is
taken over all i € I for which the i-component ilc _ is not empty.
Each y. , € C,_; has a unique lower bound 7} in C,. That is,
C,_1 > C, and by induction, 4,B > C; > --- > C,_; > C,. For
each of € A, p/ € B let al, B} € C, be the uniquely determined
elements such that of >; of,, B/ >; ). Define binary relations U,,
V., W, , respectively, on IC,, as follows:

Un={(ufaz,a;,vfaj,ai)|uela,, vel,, uav, ai,ajeA},
Va=A{(ufy g 0fp pllucly, vely,, upv, p', p/ € B},
Wo ={(X"Sy 0 V' g p)IX €xanld,,

yeyBnly, o' €4, p/€B},
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and let 7, be the equivalence relation on /¢ which is generated by
U, UV, uWw,.

LEMMA 4.4. For each n € N, the equivalence relation n, on Ic
satisfies the conditions (2) and (3) of Definition 6.

Proof. By construction of C,, each y), € C, has an upper bound
yfl_l € C,—1 and, by induction, has an upper bound y{ € C;. Each
! € C; has an upper bound either o’ € 4 or B’ € B. Consequently,
each y, € C, has an upper bound either in 4 or in B. For the mo-
ment, the element of C, will be denoted by 7’ rather than by yf, . Let
s,t€lc,sel;, tel,. Weassume that 7/ has an upper bound o'
in A and 7/ has an upper bound 8’/ in B. The cases of both upper
bounds a!, B/ being contained either in 4 or in B are proved anal-
ogously but more easily. Let v € xa; then v € Ia,/ for some o' € A.
By Definition 6 (2), there'exist Uy, Up, U2,y .uu, Up—1s Un—1, Un Where
Uy, Uy € Ia;} for some a;j € A (and we omit the upper indices in the
following) such that

vlela,-zlal, ViU, oo, Upo| Uy, veIanzla,f.

Further, let w € yB; then w € I o for some B/ € B. Again there

exist zy, Wy, ..., Zym_1, Wy Where z;, wy € Ig for some B, € B
such that
’LUEIBJ-'=IB1, zlﬂwz,...,zm_lﬂwm, meIﬁm= g+

Each of the elements «; , f§; has a (unique) lower bound in C,, say
ar > 7, and B; > 1; (and > denotes the partial order in the respec-
tive set X;). We now may apply the mappings f, . respectively
J3,,« and obtain a finite sequence

/

! / / !/ /
vUoy, ..., vy Uhty, VEL ,w eIT;,

/ / !/ !
2y Vawy, oo,z Vawy,

such that u) , v; € I , zy, Wy € IT; . By construction we also have
sel, =1, te€ IT:n =1, and (v, w') € W,. Consequently, 7,
satisfies condition (2) of Definition 6. It has been already mentioned
that the generating relation U, UV, UW,, contains only a finite number

of pairs with distinct entries and this implies (3).
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Lemma 4.5. If n, is admissible then C, = C, .1 = -+ and n, =
Nns1 = -+ . Conversely, if n, is not admissible then C, > C,,, and
Nn 7 Mntt -

Proof. If n, is admissible then all #-classes are trivial. There-
fore, 5i(ilcn/n;) = {di{x}|x € ilc} = iC,, the i-component of
C,. Consequently, C, | = |JiC, = C,,. By definition, U, = Uy,
Vi =Vyi1, Wp = W,y and thus n, = 1,41 . On the other hand, if
f1n is not admissible then there is i € I such that n) has a non-trivial
equivalence class. The construction of C,,; now implies C, > C, 1 -

LEMMA 4.6. Let e, denote the number of non-trivial ny-classes.
Then e, > e, for all n € N. If n,.1 is not admissible then
€n > iy -

Proof. Each y} € C, has a unique lower bound y,’; 41 10 Cpyy . Let
Hh=U fy L where the union is taken over all y, € C,. That is,
for x € Ic let xf, = )cfyn’y+l € I¢, provided x € L, . Then Jn is
a well deﬁned mapping from Ic to IC . Take a € IC such that
an,y1 1is not trivial. By definition of Un+1 » Vasts W,,+1 and U,,
V., W,, respectively, it follows that there are u, v € Ic such that
u#v, un,v and uf,,vf, € an,.1. On the other hand, if un,v
for u,v e Ic then also ufy fpy1 v fn . From this it follows that each
non-trivial #,-class contains the f,-image of a non-trivial #,-class.
Thus e, > e,,;. Now suppose that 7, 1s not admissible. There are
two distinct elements a, b belonging to the same i- component ic
satisfying an,, 1 b. Takeany u, v € Ic suchthat a = ufy, b=vf,.
(By definition of #,,; and 7, such elements exist.) Then u and v
belong to the same i-component ilc . It follows that (u,v) ¢ n,
since otherwise, by construction of Cn+1 , Ufy = vf,. By definition
of Npyy there are ay, ..., ax, b1, ..., b € Ic  such that a = ay,
by = b, by =aj1, aj # b; and (a;, b)) € (Upy1 U Vayy U W)™
for all j. For each j there are u;,v; € ICn such that a; = u; f,,
bj =wvjfy and (u;, v;) € (Uy UV, UW)EL . Put u=u; and v =v;.
Then, since u; # v; and u; # v, un, and vn, are non-trivial
na-classes. Since (u, v) ¢ 1, these n,-classes are distinct. Since
Ufp =a iy b=vf,, un,f, and vy, f, are contained in the same
Nn+1-class amn,,;. As mentioned above, each non-trivial #,,;-class
contains the f,-image of a non-trivial #,-class. Therefore e, > e, .

Combining Lemmas 4.4, 4.5 and 4.6 we have the following
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CoROLLARY 4.7. There is a unique least n € N such that n, is
admissible. In this case, Ny = Npy1 = - and Cp, = Cyy =

DEeFINITION 9. Let 7 = 7(x, a, B,)y) = n, be the (uniquely de-
termined) admissible relation for x, y and «, B in the sequence
m,n,....

In the following, the admissible set C,, where 17(x, a, B, y) = 1
will be denoted by D, its elements will be denoted by 7! rather than

by yi.

LEMMA 4.8. The admissible equivalence relation 1 =1t(x, a, B, y)
as constructed above is the greatest element of

D(x,a,B,y)={r<a, leaTa,y =yﬁ7ﬂ,y}'

Proof. First, D < A, B. If uav then ufa.’r,- U, 'Ufa,’T,- and the
analogous assertion is true for f. Thatis, T < «a, . Let X’ € xanl,,
y' € yB € I and denote by ! and 7/ the respective lower bounds of
o’ and B/ in D. Then xaf, .= (X'f; )1 = ' fp o)t =yBSp.-
since 7 contains W, . In particular, 7 € D(x, a, f, y). On the other
hand, let y < a, B be such that xaf, , = yBfs ,. Let G be the
admissible set such that y € X;. Since y < «, £, so by Definition
7 it follows that each element 7' € C; = AU B has a unique lower
bound v! in G. Next apply the appropriate functions f i to the
relations Uy, V;, W;, respectively, which have been deﬁned for the
construction of 7. We obtain the relations U’, V', W', to be defined
as follows:

U= {(ufai’y., 'Ufaj’yj)luEIai, v EIaj, Uuav, ai, ajEA},
Vi={(ufp i, vfp Iuely, vely, upuv, B, B/ € B},
= {xlf;x."yi s fﬂ;’yf)Ix’ € Xa ﬂIai s
y'eyBnly, oled, B/ eB}.
Since y < @, B and xaf, , = yBfy, , it follows that U’ U V' U
W' C y. Let the equivalence relation n; on Ic, be defined as in
the construction of 7 and let a, b be distinct 7;-equivalent ele-
ments contained in the same i-component ilc , that is, a n{ b. No-

tice that (a, b) is contained in the symmetric-transitive closure of
Luhnuw. Letuel;, v eIﬂ, be such that a = uf; " and

b = vfﬂ.-,y;- for appropriate o', B’ € i(AUB) and y', yi € iCy.
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Then af, , = ufa.’y,yvfﬂ,’y: = bfy;,,j: (for appropriate v! <; !
and v{ <; y}) since the pair (uf, ., Ufﬁ"'/f) is contained in the
symmetric-transitive closure of U’ U V' U W’ . These elements be-
long to the same i-component il; of I;. Since y is admissible,
ufyi o= Ufﬂ's'/l' and in particular v/ = v{. Consequently, d;(a, b) =
S(ufy s Vg y) Zi v' =vl. Also, if bnic then for the same reason
8:(b, ¢) >; vi. In particular, 6;(a, b) Ad;(b, c) >; v'. Using Lemma
2.4 it can be seen that the elements of J;(ilc / n{) are of the form

(- (6i(x1, X2) ANBi(x2, X3)) A+ ) NOi(X1-15 X7)

if {x;, ..., x;} is a non-trivial ni-class and J;{x} = yeiCy if {x}
is a trivial ni-class. By this description it follows that each element
of 6;(ilc / n!) has alower bound in G. By Lemma 2.7, each element

of Cj = d;(il¢,/n}) has a lower bound in G. This is true for each
non-empty i-component Czi of C, so that each element of C, has
a lower bound in G, that is, C, > G. Repeating this procedure
n — 1 times it can be seen that C, = D > G. Now consider distinct
elements u, v € Ip such that utv. Then (u, v) is contained in the
equivalence relation which is generated by U,UV,UW, . Applying the
appropriate mappings fT ,+ yields the relation U'UV'U W' which is
contained in y. In particular uf, ,yu ffj,l,f ,thatis, y<7. O

We have thus shown that the system (X ; I, _fa _p) satisfies the con-
ditions (1)-(3) of Theorem 2.1 and thus defines a combinatorial strict
inverse semigroup. However, the sets I, are not necessarily pairwise
disjoint for distinct «, f € X . In order to ensure disjointness for dis-
tinct Z-classes they actually will be realized by the sets I, x {a} x I,
rather than by I, x I,. In fact we have shown the following.

THEOREM 4.9. Let I be an index set and {S; = (Xi; 1, foi g)li €
I} be a collection of pairwise disjoint combinatorial strict inverse semi-
groups S; (having pairwise disjoint structure sets X;). For the admissi-
bleset A € P(X;, I) (Definition 4) let X 4 denote the set of all admissi-
ble relations on 1, (Definition 6) and let X =J sep(x )Xa. For each
a € Xy put I, = 14/a and for a > B (Definition 7) let f, p: 1o — Ig
be as in Definition 8. Let S = Sisjiery = Ugex o x{a} X I, endowed
with the multiplication

(xa, a, ya)up, B, vp) = (xaf ., 1, vBfp )
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where the §-function T = 1(y, a, B, u) (Definition 9) is constructed as
above. Then S is a combinatorial strict inverse semigroup. Its inverse
operation is given by

(xe, a, ya)~! = (v, o, xa).

Notice that the structure of S is uniquely determined by the struc-
ture of the semigroups S;, ie€I.

5. The main theorem. Now we show that the semigroup (X ; I,,
70, g)» as it is presented in Theorem 4.9, is the free product of the
combinatorial strict inverse semigroups (X;; I, f, ;| ﬂ.-) within the
class of all combinatorial strict inverse semigroups. First we need the
following result.

ProposITION 5.1. Let {S; = (X;; 1, f;. ﬂ,)|i € I} be a collection
of pairwise disjoint combinatorial strict inverse semigroups S; having
also pairwise disjoint structure sets X;. For of € X; let By = I, -

Then the mapping y;. S; — S, defined by
wit(k, ) (ke e, le,) (k,lely,ad €X)

embeds S; isomorphically into S. The semigroups S;y; are pairwise
disjoint.

Proof. It is clear that y;: S; — S is injective and that the sets S;y;
are pairwise disjoint. It suffices to show that y; is a homomorphism.
L_et k,lel,, s, te Iﬂ,. Then (k, [)(s,t) = (kfai,ax, tfﬂ.’(s.-) for.
o' = 6;(/, s). In the following we shall omit the upper index in o'
etc. On the other hand,

(k, Dyi(s, y; = (kda, &, l8a)(sEp, &5, teg).

To find v = t(/, &4, €4, 5) as it is described in §4, we first have to
find the admissible set generated by {a} U{f} = {a, B}. Two cases
are possible.

Case (1). The elements o and B do not have a common upper
bound in X;. Then C = {a, B} itself is admissible. Now consider
the relation n on I~ which is generated by the binary relation U; U
Viu W, asit is defined in §4. Since &, and &g are identical relations
it follows that 7 is the equivalence relation on /- generated by the
pair (/,s). Consequently, = 5’ is the equivalence relation on
Ic = I,Ulg which identifies / and s and all other equivalence classes
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are singletons. Let 6;(iI-/n') (Definition 1) be shortly denoted by
oin. Then

om=A{i(l,5), di(x, x)lx e lc, x & {l,s}}.

That is, J;n consists of the element J;(/, s) to which perhaps «
and/or B are/is adjoined (depending on whether I, respectively I
contain elements distinct from / respectively s). In any case, the ad-
missible set generated by d,;n consists entirely of the element J;(/, s).
The procedure for obtaining 7 therefore has to be applied only once.
The domain of 7= 1(/, &, €4, 5) then is the set I51.9) shortly de-
noted by Is. From this, 7 = g/ , shortly denoted by 05 , and therefore

(k, Dwi(s, Yy = (kda, &a, l8a)(sEp, €5, tEg)

(ko
(keafs REIRE tgl)’fs r)

(kgafs ) €5 > €55 tg/?fa a)

= (kfa, 685, Lfp 585)

= (kfa,s, tfp.e)¥i =k, D(s, D)]y.

Case (2). If a« and f have a common upper bound then the meet
a A f exists. The admissible set C generated by {«a, B} consists
entirely of the element v = aAf . Now consider again the equivalence
relation = 5’ on I- = I, which is generated by U; UV; UW; . Since
¢, and g are identical relations we only have to consider the set W) .
Since W = {({fa,v, Sfp )}, similarly as in case (1),

0in = {6i(l fa,vs Sfp,0), 0i(x, x)|Ix €lc, x & {{fa,v,S/p v}}-

That is, 6;n consists of the element 6;(/fs ., Sfp ) to which per-
haps v is adjoined. Since v =a A f wehave v > 6;(Ifa,v,5/p,0) =
0i(l,s) = &. Consequently, the admissible set generated by d;n
is given by &;n = {6;(I,s)} = {6}. Again, the domain of 7 =
7(l, €4, €p,5) is I5. By construction and similarly as in case (1)
it follows that 7(/, &4, €4, 5) is the identical relation on I;, shortly
denoted by ¢5. As in case (1) we now observe that (k, l)yi(s, t)y; =

[(ks l)(Sa t)]Wi .

Next we show that S = (X; I,, ?a, p) 1s generated by its subsemi-
groups S;y; = (X5 L, o g0).

THEOREM 5.2. The semigroup S = (X; I, 7a’ ﬂ) as it is construct-
ed in Theorem 4.9 is generated by the set | J;c; Siv; .
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Proof. Let A € #(X;,I), a € X4, x,y € I,. We have to show
that (xa, o, ya) € (U;c; Siwi) - Denote the latter semigroup by T .
Notice that T is closed under inversion. If [4| = 1 then 4 = {a’} for
some o' € X; and i€ I. Then a = er,,, and (xa, a, ya) € S;y;.
Let A€ X, |A| = n > 1 and suppose that the assertion be true for
all p € Xp where B € #(X;,I) and |B| < n. Assume first that o
is maximal in X,. That is, if f € X, such that f > a then f = a.
For a, f € X, we have o > f if and only if o C B (regarded as sets
of ordered pairs). Now there exists o/ € A such that for B = 4\ {o/}
the relation B = a|lp is admissible on I, that is, f € Xp. This
can be seen as follows. First notice that B is an admissible set since
each non-empty subset of an admissible set is admissible. Further, it
is clear that the restriction of S to any non-empty i-component is
the identical relation since f C a and « is admissible. For the same
reason also condition (3) of Definition 6 holds for f. Now consider
the graph g(a) defined as follows. Let

V(gla))=4
be the set of vertices of g(a) and
E(g(a))={{a', &/}’ #a/, uav forsomeuecl,,vel,}

be the set of edges of g(a). Condition (2) of Definition 6 holds for
the relation « if and only if the graph g(a) is connected. By a well-
known graph theoretic result (see, for instance, Behzad and Chartrand
[3]) there exists a vertex o € V(g(a)) which is not a cut-vertex. That
is, removing the vertex o/ from g(a) (and also the edges containing
a') yields a connected graph g. Since g = g(f) (defined in the same
way as g(a) for B = a|lp) is connected, also the second condition
for admissibility of # holds. In particular, § € Xp. By admissibility
of o there exist u € I;, v € Ip such that uav. Next define an
equivalence relation o’ on I, as follows:

wao =w}p ifwelg, wp#vp,
va =vpuU{u} =ud,
wa' = {w} ifwel;,, w#u.

That is, o/ arises from f (and ¢;,) by adjoining u to vf and
leaving the remaining equivalence classes of 8 and &7, unchanged.
Since o > a and o is admissible on I, it follows ‘that o = o .
By hypothesis of induction, (xf, f,vp) € T and (ue,e,we) €T
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where ¢ = ¢l ; forany x € Iy and w € I ;. Then also

(xﬂa ﬂa 'UB)(ME, €, ’LU8) = (-xﬂ7ﬂ,§a [ 1U878,f) eT

for a certain & € X4. By definition of multiplication in S, & is the
equivalence relation on I, which is generated by S Uv g x {u}, that
is, £ = a. Further, it can be seen easily that xﬂ?ﬂ’a = xa and
wef, , =wa. Forany x € Iy and w € I; therefore (xa, a, wa) €
T . Since T is closed under inversion, also (wa, a, xa) € T . Taking
both alternatives for either different x, y € Ip or different w, z €
I ; and multiplying the so obtained to elements appropriately yields
(xa,a,ya) € T for any x,y € Ig and (wa, a, za) € T for any
w, z € I ;. Summarizing these four cases, (sa, a, ta) € T for any
s,tel,. Nowlet a € X, and assume that the assertion be true for
all g€ X, for which f > a. Let x,y € I,. If a is not maximal
in X, then by conditions (1) and (3) of Definition 6 there is f € X4
which covers . Thatis, f > a and B >y > a for y € X, imply
y = . Now there are u, v € I, such that uav but (u,v) ¢ f. By
our assumption, (x8, B, uf), (vB, B,yB)€ T. Now

(Xﬂ, ﬂa uﬂ)(vﬂ’ ﬂ’ yﬂ) = (xﬁ_.fﬂ,f: 6’ yﬂ?ﬁ,f) eT.

Similarly as above it can be seen that £ = o, X85 , =xa, YBfp o=
ya. Consequently (xa, a, ya) € T. Again, by conditions (1) and (3)
of Definition 6, for each o € X4 thereis f# € X4 suchthat f > a,
is maximal in X4 and the interval [a, f] = {y € X|a < y < B}
is finite. In fact we have obtained that (xa, a,ya) € T for all
a € Xy, x,y € Ij. Therefore, S = T, that is, S is generated

by Uiel Siyi . a
LEMMA 5.3. Let S = (X; 1, Ta’ﬁ) be as in Theorem 4.9 and let
(li,e1,r1), . (In, &nytn) € Uiy Sivi; each & being the identical

relation on some I, and I, r; standing for their own respective &-
t

classes. (We shall omit the upper index in a;' in the sequel.) Let
Cy={Y11,.-., Pn1} be the admissible set generated by {a,, ..., an}
where «; > y,1 (and several of the elements y,;, may coincide). Let
I'=1 ﬁ,,,yﬂ and r! =r, Ja,,y, - Nowlet k > 1 and suppose that the el-

ements {IF, rk, ... 15, rk} have already been defined. Let ;. be the
equivalence relation on {If, rk, ..., I¥, rk} which is generated by the
pairs {(rf, %), ..., (rk_,, IK)}. For each i €1 let n. be the restric-

tion of my to the i-component {IF,rk ... 15 rkyn Uwex Toi- Let
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8in.. be the set described in Definition 1 by applying &; to each nl.-class.
Let ony =\J0im;, andlet Cy., be the admissible set generated by oy .
Let yy k+15 -+ Vn k+1 be the (unique) lower bounds of ay, ..., a,
in Cyy. Finally, let IFt! = lifay, ,, and rk+l = rifo.y, .., - Then

there is a least q € N such that for D = C, the equivalence relation
y="ngUer Iis admissible on Ip and

(*) (11381,rl)"'(ln,gn,rn)z(lfy,yargY)~

Proof. Let jeN. If forsome i€ I, nj. is not the identical relation
then . - . . . .
U A0S T T ALY AL AR |

since at least two distinct 7} i.related elements of {l’ ..., I, ri}
are mapped onto the same element of {{*', r/*', ... It pth}
when the J;-function is applied. Consequently, there is a (unique)
least ¢ € N such that 175 is the identical relation for all involved
i € I. It follows that C; = Cyyy = --- and 1y = Mgy = -+~
Denoting D = C; then y = 5, Ugy is an admissible equivalence
relation on Ip. By definition of the mappings 7a, g (Definition 8)
and the multiplication in S (as defined in the statement of Theorem
4.9), the product on the left-hand side of (x) is given by

(l], €1, rl)'“(lns &n, "n) = (ll.fal,lll’cs 7, rnf;xn,unt)-

Here 7 is the uniquely determined greatest element of the set

A={{eX|f<e,...,¢&n, "z8t7el,§ = lt+1£t+1?st+l,§
fort=1,...,n-1},

v, is the unique lower bound of «; in D’ and D’ is the uniquely
determined admissible set such that I, is the domain of 7. Since
each element o, has the lower bound y;; = y; in D and

—_— pdy19
rtf(‘l,yy, - rt ylt-l—l - lt+1f;’1+1 ’yt+1 4

by definition of the mappings 78”7, it follows that y is contained in
A. Conversely, let £ € A4 with & € X;. Denote by & the (unique)
lower bound of a; in G. By Lemma 2.7 it follows that y;; > &
for all ¢. Since "t817s,,§ =rf, ¢¢ and l,etfgl,g = If, ,c& we have
xf, &€y, ¢, foral x,ye {ih,rl, ..., 1}, rl} for which x#niy
for some i € I. Since ¢ is admissible, it follows that x f?’,pé =
y f,,l,1 & (and in particular ¢ = ¢,) and thus d;(x, y) >; & whenever
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xniy. If zn! x then for the same reason J;(x, z) >; & and thus also
0i{x,y, z} =6i(x,y)Ndi(x, z) 2; &. By induction it follows that
for each ni-class, 5,-(x11{) > &, (similarly as in the proof of Lemma
4.8). This can be done for each i-component so that each element of
on = Udin{ has a lower bound in G. Since C, is the admissible
set generated by d#;, by Lemma 2.7 each y;, € C, has the (unique)
lower bound & in G. Thatis, G < C,. By induction it can be seen
that C; > G for all j. In particular, C; = D < G. By definition of
y and since & € A4 it follows that u fyﬂélé v fV,' & whenever uywv.
Consequently, £ <y and thus y = 7, as required.

We now are ready to prove the main result.

THEOREM 5.4. Let {S; = (X;, I, f,, p)li € I} be a collection of
pairwise disjoint combinatorial strict inverse semigroups S; (with pair-
wise disjoint structure sets X;). Define admissible sets A € P (X;, 1),

admissible relations o € Xy, Io = L4/a, X = Ugeopx 1) X4, the

partial order > on X and mappings )—‘a’ﬂ: I, — Ig as in §4. For any
xa€l,, ypelg, a,peX let t=1(x,a, B,y) bethe d-function
as it is defined by the process described in §4. Let S = Jycx Iax{a}x1,
and define a multiplication on S by

(xa, o, ya)up, B, vB) = (xaf, ., 7,85 ;)

where T =1(y, a, B, u). Then S is the free product of the combinato-
rial strict inverse semigroups S; within the variety of all combinatorial
strict inverse semigroups. The embeddings y;: S; — S are given by

wii (k, D) (key, e, le,) (k,lel,, o €X;)
where ¢ = ¢r,. The inverse operation in S is given by

(xa, a,ya)"l = (ya, a, xa).

Proof. Let T = (Y ; Ja, &, p) be the free product of the (pairwise
disjoint) combinatorial strict inverse subsemigroups S; = (X;; I,
fa.«’ ﬂ.) and assume that X; C Y for all i in the appropriate way. For
each i € I let y;: S; — S be the embedding (j, k) — (je, ¢, ké)
as described by Proposition 5.1 where j,k € I, and ¢ = er, for
o' € X;. Let y: T — S denote the unique extension of the mappings
w;. By Proposition 5.2, S is generated by |J;; Siw;. Hence y is
surjective. For j=1,...,n, k=1,...,mlet [, r; € Iaj where
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aj € Xij and si, tx € Ig where B € X; (again we omit the upper
indices of the elements «;, fy). Assume that

(%) [, ), )y =101, 1) (Sm s t) 1Y

Let (I, rj)y = (lj, €;, rj) for ¢; = e, and (si, &)¥ = (Sk» > k)
for 1, = er, - The condition (%) states that
k

(llaglarl)'”(lnaan’rn)z(slallatl)'”(SM7lmatm)

holds in §. Let L; = {411, ..., An1} be the admissible set gen-
erated by {a;,...,a,} where 1 < ;. Let I} = /8,1, and
rj = rj8qs, and define s}, tl by analogy. Let i; be the equiva-
lence relation on the set {/},r{,..., 1}, rl} generated by the pairs
{ri, 1), ..., () =t INH}. By analogy, let p; denote the equivalence
relationon {s}, ¢, ..., s}, ¢},} whichis generated by {(¢}, s}), ...,
(¢}, sk)}. For each i-component A} and p! consider the sets J;A}
and J;p! (defined as in Lemma 5.3). Let 64, = JdiA} and dp; =
Ud;p} , the union being taken over the non-empty i-components. Let
L, = 64; and R, = dp; be the admissible sets generated by d,
and Jdp;, respectively. For j =1,...,n and k =1,...,m let
Aj2 denote the lower bound of a; in L, and pi, the lower bound
of B in Ry. Let [ = 18a,,2,, ry = 7i8a,,h, > St = Sk&B,.p,,:
t,2c = k8, .p,, - Notice that the involved structure mappings in fact
are structure mappings of the semigroups S;. Now repeat the same
procedure sufficiently often, say u— 1 (respectively v — 1) times until
each i-component of A, (respectively p,) has only trivial equivalence
classes. Let L =L, =04, and R =R, = dp,_; be the admissible
sets generated by Jd4,_;, respectively dp,_; (defined in the same way
as for the first step). For each «; let 7; = A;, denote the (unique)
lower bound of a; in L. Dually let g, = py, be the lower bound of
Br in R. For each j, k let l} = l}‘ = lj8a, .1, 5 r} =rf= ri8a,,t,>
Sy =SE =Sk& 0> L =1} = 8, 0, - By Lemma 2.3,

(llsrl) (narn)—(i’r,l)"'(l;’riz)

and
(S],tl)"'(Sm,tm) (sl’tl) (m’ m)

Next let ¢ denote the equivalence relation on Iy which is generated
by the pairs

A={, L), ..., (r_, ID}.
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Thatis, & = 4, Ugs . By Lemma 5.3 and (*x) and taking into account
that the mappings &a, .1, and g o which have been used for the
definition of the elements l}, r} and s;, f. in fact are structure
mappings faj,rj and f/gk’ak of the involved semigroups S; it follows
that A, U e, = py Uer, . In particular, L = R. Further, ¢ is also
generated (as an equivalence relation on Iy = Ix) by the pairs

B={(t},85): - (tp_1>5m)}-

That is,
E=(Aue ua ) =(BuUg UB™Y

(! denoting the transitive closure). Let § denote the J-function of
T and let
u=1nf{6(r{, ), ..., 6(r_;, 1)}

and
v =inf{8(£), $5), .- s Oty S}

Taking into account that d(y, x) = d(x, y) < d(x, x) it follows that
é(t;c,s,’cﬂ) > u and (5( lj/+l) >y forall k=1,...,m—1 and
j=1,...,n—1. We obtam that u = v . Further, (++) and Lemma
5.3 imply that /{¢s] and r, 1), . Again, since ¢ is generated by 4
it follows that /{g: , = S8 ,x and 7,8 .4 = 0;,8 ,u- We obtain
that

(ll’r1>"'(ln:rﬂ):({’ri)"'(lrlzﬁr;z)
= (ligfl,/l’ r;gr,,,/t) = (Siga,,u: t;ngam,/z)
:(Si,t’l)"'(S;n,t;n)z(S1,t1)"'(Sm,tm).

Consequently, v is injective and thus is an isomorphism between T
and §.

Lemma 5.3 and Theorem 5.4 provide the following criterion for
equality of two words in the free product of the combinatorial strict
inverse semigroups S; = (X;, I, £, ﬁ,) (this generalizes Theorem
4.1 in [1]).

THEOREM 5.5. Let {S; = (X;; Ia,,fa,’ﬁ.)li € I} be a collection
of pairwise disjoint combinatorial strict inverse semigroups S; hav-
ing pairwise disjoint structure sets X;. For k =1,...,n and q =
b, ....,m let o, By € U;c; Xi (omitting the upper indices) and let
besre €1y, 5q, 15 € Iﬂq. Construct y and D for (i, ry), ..., (ln, 1)
as in Lemma 5.3 and analogously, y' and D' for (si,t1), ..., (Smstm) -
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For each k and q let y, and y, be the respective (unique) lower
bounds of ay in D and By in D'. Let a= (ly,r) - (ln, rm) and
b={(st,t1) - (Sm,tm). Then a =b holds in the (combinatorial strict
inverse) free product of the semigroups S; if and only if

(1) y =9y" (which implies that D = D').

(2) llﬁx ylyslfﬂ 7.

(3) rnf;v .7, ytmfﬁ e

Furthermore adb zf and only if (1) holds, a £ b if and only if
(1) and (3) hold and a # b if and only if (1) and (2) hold.

The assertions about the Green’s relations hold since for S = (X ;
Lo, fo,p)s (i, ]) €lax 1y, (k,I)€lp xIg we have (i, j)Z (k, 1)
if and only if @ = B, (i, j)Z (k,![) if and only if j = [ (which
includes o = #) and (i, j)# (k,!) if and only if i = k.

The triple (/1fa,,5,7, 7 'nfa .y ?) can be interpreted as a “canon-
ical form” of the product (/;, r;)---(l,, r,). However, the process
described in Lemma 5.3 for obtaining such a “canonical form” in
general is not “effective” or “computable”. It is not expressed purely
in terms of the algebraic operation of the inverse semigroups S;. If
all involved semigroups S; are finite then the procedure can be ef-
fectively computed. This follows from the fact that for a given (that
is, the elements and the multiplication are completely known) finite
combinatorial strict inverse semigroup S, the partial order X = S/.7,
the sets I, and all mappings f, s can be effectively computed. Also,
for two given elements it is decidable whether or not the respective
# -classes have a common upper bound. In particular, Theorem 5.5
provides a solution to the word problem for the free product of finite
combinatorial strict inverse semigroups. The next section shows that
this is not true for the general case.

6. A counterexample. The following example is obviously influ-
enced by the example of Jones-Olin in [9]. A function f: N — N is
computable if there is an algorithm (a computer program) which for
any given n € N as input computes 7 f . For a precise definition and a
characterization of computable functions see, for instance, Cohen [4,
Chapters 2-4]. An important theorem on computable functions says
that there is such a function f: N — N whose range is not recursive.
That is, there is no algorithm which for given n € N decides whether
or not n € Nf. Now take such a function f and define a semilattice
S asfollows. For i=1,2 let N; = {n;ln € N} and S = {0}UN;UN,,
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endowed with the following multiplication:

nomy =min{n, I’n}z,
nomy=my; ffme{lf,2f,...,nf},
nm;=n, iffn=m

and let all other products be defined to be 0. For n,m € N it is
decidable whether or not m € {1f, ..., nf}. So the multiplication
in S can be effectively computed. On the other hand, for given n € N
the elements n; and (1f);, n # 1f, have a common upper bound
in S if and only if n; has an upper bound among the elements N, .
The latter holds if and only if n € {1f, ..., mf} for some me N,
that is, if and only if n € Nf . This is undecidable by construction. If
a semilattice S is considered as a combinatorial strict inverse semi-
group S = (X;1,, f,,p) then § =X and I, = {a} forall a € X.
According to Theorem 2.1, S is realized by the pairs {(a, a)la € S}.
Now let T be any combinatorial strict inverse semigroup not being
a semilattice, for instance, 7" = B,, the combinatorial Brandt semi-
group with two non zero idempotents. Let a € T, a # a%. Ina
representation of T according to Theorem 2.1, a can be identified
with the pair (aa~', a~'a) where aa~! # a—'a. Consider the two
words p, q € S x T, defined as follows:

p=(0,0)(aa"!, a'a)0, 0)

and

g=(ny, m)(aa"", a”'a)((1N)1, (1))
where (0, 0) is the zero of S and n; # (1f);. Applying Theorem
5.5 to the products p and g one obtains that ¢ = p if and only if n,;
and (1f); have a common upper bound in X (= S). However, this
is undecidable by construction.
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