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The goal of this paper is to obtain information on the set of periods
for a transversal self-map of a compact manifold from the associated
Lefschetz zeta function in the case when all its zeros and poles are
roots of unity.

1. Introduction and statement of the results. One of the most useful
theorems for proving the existence of fixed points or, more generally,
periodic points of a transversal self-map f of a compact manifold is
the Lefschetz fixed point theorem. When studying the periodic points
of f,i.e., the set

Per(f) = {m € N: f has a periodic orbit of minimal period m },

it is convenient to use the Lefschetz zeta function of f, Z,(¢), which
is a generating function for the Lefschetz numbers of all iterates of
f. The function Z,(t) is rational in ¢ and can be computed from
the homological invariants of f (see §3).

We shall study C! self-maps f of a compact manifold which have
only transversal periodic points, so called because the graph of f™
is transverse to the diagonal for all m > 0. The main contribution
of this paper is the study of the periodic orbits of f when its Lef-
schetz zeta function has a finite factorization into terms of the form
(1£¢")*1. A key point is the introduction of the notion of irreducible
factor (see §3 for a precise definition). Our main result is the follow-
ing.

THEOREM A. Let f: M — M be a transversal map of a compact
manifold. Suppose that all the zeros and poles of its Lefschetz zeta
Sunction Z(t) are roots of unity, and that Z ¢(t) has an irreducible
factor of the form (1 +¢")*!,

(a) If n is odd then n € Per(f).

(b) If n is even then {5, n}NPer(f) # @.

The proof of this theorem will be given in §3. From Theorem A
it follows that each irreducible factor of the form (1 % #*)*! of the
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Lefschetz zeta function forces at least one period (n if »n is odd, n/2
or n if n is even).

The set of periods obtained in this way will be called the forced set
of periods of f and will be denoted by FSP(f).

As an application of Theorem A and the algebraic results derived in
§2, we obtain an upper bound for the cardinal and for the maximum
period of the forced set of periods (see Corollaries 3.3 and 3.4).

Our main basic assumption throughout this work is that all the zeros
and poles of the Lefschetz zeta function associated to [ M — M
are roots of unity (for different results under similar assumptions see
Franks [F1], [F3], Fried [Fr], Matsuoka [Mt] and [CLN]). There are
three interesting classes of transversal maps which satisfy our basic
assumption. First, the set of maps whose set of periods Per(f) is
finite (see Theorem 6 of [Fr]). Second, the self-maps of compact
connected surfaces with Per(f) finite or A(f) = 0, see Corollaries
4.3 and 4.4. Finally, the self-maps of the n-dimensional torus with
Per(f) finite or A(f) = 0, see Corollaries 5.1 and 5.2.

2. Cyclotomic polynomials. As usual, we shall use the notation c¢,(¢)
for the nth cyclotomic polynomial given by
1-¢
Hd!n ,d<n cq(t)
for n e N\{1} and ¢(t) =1-1¢.
Notice that all the zeros of c¢,(¢) are roots of unity.
A proof of the next proposition may be found in [L].

cn(t) =

PROPOSITION 2.1. Let & be a primitive nth root of unity and P(t)
a polynomial with rational coefficients. If P(&) =0 then c,(t)|P(t).

Clearly, the degree ¢(n) of c,(t) verifies
n=>Y o)
din
and so ¢(n) is the Euler function, which may be computed through

o(n)=n [] (1—%).

pin
D prime

Hence, if n = p;" e p,cc"‘ is the prime decomposition of n, then

k
(2.1) p(n)=T]pi " 0i - 1).
i=1
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TABLE 1

1-8

al)=1-t  aB=1+t alt)=73—

1-7 148

_ 2 _ B

() =1+t cs(t) = =7 ce(t) = T3

1 - t7 1 — t9

1+ 1 ¢l 146

al)=17 =77 al)=1mp
i 1+0 (1= 11501~ 1
) =3=r =37 asO=G-mas

1t 1+2

ast) =1+16%  c3(t) = =7 =17
g L+ 110 (L=2)(1-1)
alt) =7 =17 al)=gma7)

141 1 — 23 14112

1—¢% 14113 1 — 427

=15 aW=777 ab=1—p
1+t14 1—t29 (1+t15)(1+t)
ult) =7 )= )= (1+83)A+8)

In Table 1 we present a list of the first 30 cyclotomic polynomials and
their degrees. The following rules follow easily from the definition of
cyclotomic polynomials and their properties (see [L]).

. 1— ¢
(2.2) D prime = ¢,(¢) = 1=

(2.3) p=2"=c(t) =1+,

(2.4) p =2r,rodd = ¢,(¢t) = ¢ (—-1),

(2.5) p=2"r,rodd, n> 1= cy(t) = (2" ),

) C (tpl) Cp (tp‘)
26) p= = =
(2.6) p=pp2, 1, P2 prime = ¢p(?) o (D) )’

. - 1— 70
(2.7) p =p?’ p1 prime = Cp(t) = cpl(tpl ) = 1 tpa-l ]
— th
nl—l' ap —1

(2.8) cp;’l...pl‘:k(t) = Cpl...pk(tpl Pt ),
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p
(2.9) p prime, ptr= cpr(t) = L)
cr(t)

LEMMA 2.2. Let n = pf“ e pZ" be the prime decomposition of n €
N. Then

(2.10)
ap —1 k1
Cprn_ g (1) = G (7))

k-1
ioeDy Np T pk T ()
3 | B § O (GO R D e

J=1 1<i <<i <k—1
Proof. Using property (2.8), it is enough to show that

(2.11)  ¢pp (1) = ¢, (D
' k-1 .
I I a@ e,
Jj=1 lgi,<--~<i}§k—l

and we shall prove (2.11) by induction with respect to k € N. For
k =1 it holds trivially. Suppose k = 2. By property (2.6) we have

Cp,p,(8) = sz(t)_lcpz(tp‘) >

and so (2.11) holds for k£ = 2. Suppose now that (2.11) holds for
some k € N, k > 2, and consider ¢p,..0,,,(8) with p; < -+ < pr4r -
Then, applying successively (2.9) and the induction hypothesis,

Cpy-py, (tpl )
oy (8
tpl )(_l)k—l

(212) ¢p.p,, () =

— cpk+l(
YT
cpk+l (t)(—l)

k-1
I 11
j=1 2<i<-<i<k

(,)(~1>kcpk“ (P D*

_qyk=1-j
cpk+] (tpil mpij )

-1

pk+l

k-1 Kjmt
: H H cpk+x (tplpil mpij )(— l)

Jj=1 2<i,<<i<k

e (PP
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Now it is easy to check that (2.12) is equal to

k-1
. D N (—1)
o,V I I e, @)V

Jj=1 15i1<---<ij§k

Hence, (2.11) holds for k£ + 1 and the lemma is proved. O

PROPOSITION 2.3. Let c,(t) be of degree p(n) > 2. Then cy(t) can

be written as

m
(2.13) en(t) = [J(1 = a1 (i)29)=,

i=1
where m < ¢(n)/2, q; € N and o1(i), 02(i) € {-1,1} for i =
1, ..., m. Moreover, q = max;q; is smaller than or equal to n/2 if
n iseven or n if n is odd.

Proof. Let n = p}*---p.* be the prime decomposition of n. The
case kK =1 is obvious from (2.7) and (2.3). Suppose first that k > 2
and that none of the p; is 2. From Lemma 2.2 and (2.2), c,(?)
factorizes in the form (2.13) with

k-1
k-1
m=2z( . )=2k.
=0 N J
From (2.1)

k
p(n)= Hp?‘_l(pi —1)>2.4.2k"2 = okt
i=1

and the result follows with o;(i) =+1 for i=1,..., m.

Suppose now that k > 2 and that one of the p; is 2. Applying
Lemma 2.2 with p; = 2 and (2.3), c,(¢) factorizes in the form (2.13)
with gy(i)=—-1 for i=1,..., m and

k-1
k-1
m= ) =2k
(")

Jj=0
But for k>3

k
¢(n) = Hp?"_l(p,- —1)>2.8.2k"3 = ok+1,
i=1
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TABLE 2

d m(d) d nmd) d no(d) d nod) d np(d)
1 2 2 6 3 9 4 12 5 15
6 18 7 21 8 30 9 33 10 37
11 41 12 45 13 48 14 52 15 56
16 60 17 63 18 67 19 71 20 75
21 78 22 82 23 86 24 90 25 93
26 97 27 101 28 105 29 108 30 112
31 116 32 120 33 123 34 127 35 131
36 135 37 138 38 142 39 146 40 150
41 153 42 157 43 161 44 165 45 168
46 172 47 176 48 210 49 214 50 218
51 223 52 227 53 231 54 236 55 240
56 245 57 249 58 253 59 258 60 262
61 266 62 271 63 275 64 280 65 284
66 288 67 293 68 297 69 301 70 306
71 310 72 315 73 319 74 323 75 328
76 332 77 336 78 341 79 345 80 350
81 354 82 358 83 363 84 367 85 371
86 376 87 380 88 385 89 389 90 393
91 398 92 402 93 406 94 411 95 415
96 420 97 424 98 428 99 433 100 437

and the result follows as before. If k =2, m = 2. But ¢(n) is even
and hence by hypothesis ¢(n) > 4. So, again, m < ¢(n)/2.
From the definition of c¢,(¢) it is clear that ¢ < n, and from (2.4)

and (2.5) it follows that ¢ < n/2 if n is even. 0
Given d € N, let ny(d) be defined by
k D
(2.14) no(d) = [d [ —
i Pi— 1
where [-] denotes the integer part function and k& € N is the great-
est number of consecutive primes p; such that py = 2 and

(p1—1)---(pr — 1) < d. See Table 2 for the first one hundred values
of ny(d).

PROPOSITION 2.4. Given d € N, there exists ng € N such that for
n > ng, ¢(n) >d. Moreover, no(d) is the best possible lower bound

for ng.
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Proof. For d = 8 we obtain ny(d) = 30 and ¢(30) = 8. So, (2.14)
gives the best possible lower bound.

Let d € N and ng € N be given by (2.14). Let n be greater than
ng so that

k k
Di
n> [dgpi_ 1} > []»:

=1

and let n = pf" e p?’ be the prime decomposition of z. In order to
prove that ¢(n) > d we shall consider two cases. Suppose first that
Jj > k. Then, from (2.1)

J J k+1
n)=[]pn —I)ZH —IZH
i=1 i=1 i=1

Suppose now that j < k. Then

J J
-1 Dn, — 1
p(m)=[Ipn" (on, - 1) 2 n ][ =
o T Dn
=1 i=1 '
p; pn - 1
>d : >d,
because the p; are consecutive primes and so, for i=1, ..., J
- -1
Pi P75 O

pi-1  pn

3. Periods forced by the Lefschetz zeta function. Let M be a com-
pact manifold. A map f: M — M is called transversal if

(1) f is of class C!,

(2) f(M) CInt(M),

(3) for every periodic orbit y of period p(y), x€y and meN

det(Df™P)(x) — I) # 0.

Let f: M — M be a transversal map. Denote by PO the set of
periodic orbits of f and, given y € PO, by p(y) the minimal period
of y. Following the notation introduced in [CLN] we define u.(y)
(resp. u_(y)) as the number of real eigenvalues of Df?(")(x), x €y,
which are strictly greater than one (resp. strictly smaller than one).
We also define the following subsets of PO:
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EE = {y € PO: u,(y) and u_(y) are even},

EO = {y € PO: u,(y) is even and u_(y) is odd},
OE = {y € PO: u,(y) is odd and u_(y) is even},
00O = {y € PO: u,(y) and u_(y) are odd}.

Also, for each odd r > 1 and n > 0 let PO(2"r) be the set
PO(2"r) = {y € PO: p(y) = 2"r},

and denote by EE,», (resp. EOj,, OEy»,, OO,n,) the cardinal of
EENPO(2"r) (resp. EONPO(2"r), OENPO(2"r), OONPO(2"r)).

Denote by u: N — {-1,0, 1} the Mébius function defined by
u(1) = 1 and by the following rule: if n = p{c‘ e pf" is the prime
decomposition of n, u(n) =0 if k; > 1 forsome i€ {1,..., j},
and u(n) = (—1)/ otherwise. Denote by {a,},en the sequence of
nonnegative integers defined by

(3.1) =2 u(}),

k|n

and, for each positive odd r and each nonnegative m, let
m
(3.2) By = oy,
k=0

Given a continuous self-map of a compact manifold M of dimen-
sion n, its Lefschetz number is defined as

n

L(f) = (- tr(fix)
k=0
where f,;: Hi (M ; Q) — H (M ; Q) is the endomorphism induced by
f on the kth rational homology group of A . The Lefschetz fixed
point theorem says that if L(f) # 0 then f has a fixed point. For
the purpose of studying the set Per(f), it is useful to consider the
Lebschetz zeta function

Z(t) = exp (Z E—%m—)tm) ,
m=1

which is a generating function for the Lefschetz numbers of all iterates
of f and can be computed from the homological endomorphisms f,;
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of f as follows:

n
(3.3) Zs(r) = [] derdt;, — tf) V™",
k=0
where j, = dimg Hy (M ; Q), see [F2].

If f: M — M is transversal, then the Lefschetz numbers of the
iterates of f are related in a simple way to the periodic points of f,
see [F1] for more details.

With this notation, we have the following theorem, which will be
used in subsequent proofs.

THEOREM 3.1 ([CLN)). Let f: M — M be a transversal map such
that its Lefschetz zeta function is of the form

Nﬂ
(3.4) Zs(t) = [I TIQ - (i, py2y=t-p,
DEP i=1

where P is a finite subset of N, the N, are natural numbers and
a\(i,p), oo(i, p) € {—1, 1}. Then, for each odd integer r > 1 and
m=0,1,2,... wehave

m m
(3.5) > EE,, +EOym, +y(r, m) = OO, + > OEy,,

k=0 k=0
where
(3.6)
yir,my= Y Zaz , 2™ Q)01 (i, 2™q) By

qlr i=1
2"geP
oy(i, 2/ q) -1
+ Z Z 20'2 ('BZ"‘ ’r/q+ 2 ﬂ’/q)
j=0 gq|r i=1
2qep

and we take the second summand equal zero when m = Q.

Consider a product of the form

N
(3.7) I1 It - oG, py»)7toP,

pGP i=1
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where P is a finite subset of N, N, is a natural number for each
p € P, and oy(i, p), on(i,p) € {—1, 1}. A factor in (3.7) of the
form (1-o0,(i, p)t?)%-P) will be called irreducible if it remains after
performing the following reductions:

(R1) A+2)(1+2) =1,

(R2) (1-m(-)=1,

(R3) A+2)1-2)=1-1¢%,

(R4) A+ 11 =) =1 - )]

(RS) A+ Y1 -P)=1-17,

(R6) (1+2)(1-22) = (1-)!

(R7) (L+2) (1 +122) = (1 = 7)~}1(1 = 1%7),
(R8) 1+ 11+ = (1 -P)(1 - 7)1,

We remark that the reductions (R1) to (R8) should be performed in
correlative order and consequently the whole process of reduction is
finite.

THEOREM 3.2. Let f: M — M be a transversal map of a compact
manifold. Suppose that all the zeros and poles of its Lefschetz zeta
function Z(t) are roots of unity, and that Z(t) has an irreducible
factor of the form (1 £ ")*!.

(a) If n is odd then n € Per(f).

(b) If n is even then {§, n}NPer(f) # @.

Proof. From (3.3) and Proposition 2.1, the Lefschetz zeta function
of f is of the form

Zf(t) = 1ij=1"~n\"/ lcn (Z)
Hz 1%, )
Moreover, applying Proposition 2.3 to each c,,’(t) , cqi(t) , f is in
the hypothesis of Theorem 3.1 and so, given r odd, equation (3.5)
holds for m = 0. Now, if we have an irreducible factor of the form
(1 — a1t")%, then all the other possible irreducible factors associated
to the same power of ¢ are (1—a,¢")% or (1+0,¢")~% (see reduction
rules (R1) to (R4)). Hence,

Nr
> oy, oy (i, r)| #0
i=1
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because all the terms in the above sum are equal. So, r € Per(f) and
statement (a) is proved.

Now we shall prove statement (b). From the definition (3.6) of
y(r,m) for m=1,2,... we have

y(r, m)—y(r, m—l)—Zaz , 2™n)ay (i, 2™r)

1-0y(i, 2" 'r)
ml 1 >
+Z"2 rtn ().

and subtracting (3.5) for m and m — 1 we obtain

(3.8) EEyn, +EO;mn, —EO,m-1, +9(r, m) —y(r, m —1)
= OE2mr + OOzmr — OOzm_xr .

Suppose n = 2™r, m > 1,r odd. Consider an irreducible factor of
the form 1—¢2"". The proof for the other possible irreducible factors
(1 -1, 1+ "7 and (1+2"")~! is analogous. For this factor
we have o;(-, 2™r)o,(-, 2™r) = 1 and so all the factors of the form

(1- O'l(i, 2mr)t2'"r)02(i,2”‘r)

that persist after reductions of the type (R1)-(R4) verify o,(i, 2™r)
o,(i, 2™r) = 1. Moreover, the factors of the form

(1-— o (i, 2m—lr)z2'"'lr)az(i,2"'_lr)

that can coexist with 1 — ¢2"" satisfy

oali, 27 1p) (1 —al(iz, 2m—1r)) €0, 1}

due to the reduction (RS). Then |y(r, m) — y(r, m — 1)| > 0 and
equation (3.8) implies that if 2”7~ !r ¢ Per(f) then 2"r € Per(f).
We remark that the proof for the irreducible factors (1 — 2"7)~!,
1427 and (1+ ¢¥"7)~! uses the reductions (R6), (R7) and (RS),
respectively, and of course also (R1) to (R4).
Let P(t)/Q(t) be a rational function. We define the order of
P(t)/Q(t), denoted by order(P(¢)/Q(t)), as the number

degree P(?) + degree Q(t)
2

+ 1.
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COROLLARY 3.3. Let f: M — M be a transversal map of a compact
manifold. Suppose that all the zeros and poles of Z(t) are roots of
unity. Then

Card(FSP(/)) < order(Z(1)).

Proof. Since the Lefschetz zeta function of f, Z,(#), is rational,
we may write Z(f) = P(t)/Q(t) with P(¢) and Q(f) polynomials.

By Proposition 2.1, P(t) and Q(¢) factorize as the product of cy-
clotomic polynomials. We shall split P(¢) (resp. Q(t)) as a prod-
uct P(2) = P(1)Py(1) (resp. Q(1) = Q1(1)Qa(?)), where Py(z) (resp.
Q1(t)) factorizes as a product of cyclotomic polynomials of degree
strictly greater than 2 and c4(¢), and Py(t) (resp. (>(¢)) contains
the remaining factors, i.e. all the ¢;(¢) for i € {1, 2, 3, 6}. Since
the reduction process given by rules (R1)-(R8) does not increase the
number of factors of the form (1 & ¢*)*!, from Proposition 2.3 and
Theorem 3.2 it follows that the cardinal of the forced set of periods
associated to the factors P;(f) and Q,(¢) is smaller than or equal to
(degree Pj(t) + degree Q;(t))/2. Notice that this upper bound is an
integer number.

To conclude the proof, it is enough to show that the contribution of
the remaining factors (P,(¢) and Q,(t)) to the cardinal of the forced
set of periods is smaller than or equal to

C = [degree Py(1) -{2- degree Q> (?) L1

Notice that P,(¢)/Q,(t) is a rational function of the form c¢,(#)%
- Ca(t)%c3(t)%ce(t)% , where the a; € Z. The forced set of periods F
associated to a product of this form is contained in {1, 3}. To prove
that Card(F) < C it is enough to consider the case Card(F) = 2
because C > 1. Butif 3 € F then |a3| + |ag| # 0, and hence C > 2
(see Table 1). O

Let n € N. We denote by S(n) the set {1,2,..., n}.

COROLLARY 3.4. Assume that we are in the hypotheses of Corollary
3.3. Let d be the maximum of the degrees of P(t) and Q(t), where
P(t)/]Q(t) = Zy(t). Then

(a) FSP(f) N {n € N: n is odd}
S(no(d)) lfno(d) is odd,
{ S(no(d) — 1) if ny(d) is even.
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(b) FSP(f)N{n € N: n is even}
S(2np(d)) if no(d) is odd,
{ S(2ny(d) — 2) if no(d) is even.

Proof. By Proposition 2.1, P(¢) and Q(¢) factorize as products of
cyclotomic polynomials. From Proposition 2.4 it follows that if the
cyclotomic polynomial c,(¢) appears in the factorization of P(¢) or
Q(t), then n < ng(d). Now, the maximum power of ¢ in the de-
composition (2.13) of ¢,(¢) is smaller than or equal to n/2 (resp. n)
if n is even (resp. odd). Consequently, before applying the reduc-
tion procedure given by rules (R1) to (R8), the maximum power of ¢
which appears in the factors (1 +#/)%! of P(t)/Q(¢) is no(d) (resp.
no(d) — 1) if n is odd (resp. even). Hence, taking into account the
reduction rules, the corollary follows. a

4. Transversal surface maps. Throughout this section, M will be a
compact connected surface of genus g and f: M — M a transversal
map.

Recall that Hy(M ; Q) ~ Q and that H;(M; Q) Q%8 , Hy(M; Q)
~Q if M is onentable and H;{(M; Q) ~ Q81 Hi(M; Q) ~ {0} if
M is non-orientable.

ProOPOSITION 4.1. If h(f) = O then all the eigenvalues of f.o, fa
and f,, are either O or roots of unity.

Proof. Since f,o =1id, 1 is the only eigenvalue of f.g.

Let us consider now f,,. If M is non-orientable, then O is the
only eigenvalue of f,,. If M is orientable, f,,(1) is the degree D of
f. From [MP] we know that if |D|> 1 then A(f) > log|D|. Hence,
if A(f) =0, |D| <1 and so the only possible eigenvalues for f,, are
—1,0 and 1.

Finally, consider f,;. By Theorem 2 of [Mn], if A(f) =0 then all
the eigenvalues A of f,; satisfy |A| < 1. We claim that every nonzero
eigenvalue A of f,; has modulus 1. Let 4;, ..., A, be the nonzero
eigenvalues of f,;. Then

(4.1)  det( — tf,)) =det(—t(f,, — 1)) = )kl‘[ it—1).

Moreover (4.1) must be a polynomial with integer coefficients, be-
cause f,; is an integral matrix. Hence, in particular, Hf-‘:ll,- must
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belong to Z. Therefore, [T*_, |4;| > 1, and the claim follows because
4] < 1.

So (4.1) is a polynomial with integer coefficients, constant term 1
and all its roots have modulus 1. By a standard result in algebra (see
Lemma 1.6 of [W]) the proposition follows. a

COROLLARY 4.2. If h(f) = 0 or Per(f) is finite, then Z;(t) is of
the form N
s cn,.(t)
20 =100
where 6(t) is either 1, 1 —t or 1+t and c, (t) is the n;-cyclotomic
polynomial.

Proof. The case h(f) = 0 follows directly from the definition of
the Lefschetz zeta function, Proposition 4.1 and Proposition 2.1. If
Per(f) is finite, the corollary follows from Theorem 6 of [Fr]. O

The following results improve slightly the statements of Corollaries
3.3 and 3.4 for transversal surface maps.

COROLLARY 4.3. If h(f) = 0 or Per(f) is finite, then

g+1 if M is orientable,

< —
Card(FSP(f)) < { [g 5 _1] + 1 if M is non-orientable.

Proof. From Corollary 4.2, repeating the arguments of the proof of
Corollary 3.3 and taking into account that the contribution of Q(f) =
0,(t) to FSP(f) is at most period 1, the result follows. O

The following result is just a restatement of Corollary 3.4.

COROLLARY 4.4. If h(f) = 0 or Per(f) is finite, then
(a) FSP(f)n{n € N: n is odd}
S(no(d)) if no(d) is odd,
{ S(no(d) — 1) if ny(d) is even.
(b) FSP(f)n{n € N: n is even}
S(2ny(d)) if no(d) is odd,
{ S(2no(d) —2) if no(d) is even,
where d = 2g if M isorientable and d = g—1 if M is non-orientable.

5. Transversal N-torus-maps. In this section we shall derive conse-
quences of the results obtained in Section 3 for transversal self-maps



PERIODS AND LEFSCHETZ ZETA FUNCTIONS 65

f on n-dimensional manifolds such that for kK = 2, ..., n all the
eigenvalues of f,;, can be obtained as products of the eigenvalues
of f.1. We remark that these conditions hold for continuous maps
of the n-torus 7" and also for continuous maps of many Eilenberg-
Mac Lane spaces.

The following corollary is easily obtained from Theorem 3.2 and
Corollaries 3.3 and 3.4 repeating the arguments of the proof of Propo-
sition 4.1.

COROLLARY 5.1. Let f: M — M be a transversal map on a compact
manifold M of dimension m with h(f) = 0. Suppose that for k =
2, ..., m all the eigenvalues of f,, can be obtained as products of the
eigenvalues of f,; .

(@) If Z((t) has an irreducible factor of the form (1 £ t")*! with n
odd, then n € Per(f).

(b) If Z;(t) has an irreducible factor of the form (1 £ t")*! with n
even, then {n/2,n}NPer(f) # .

(c) Card(FSP(f)) < order(Z(?)).

(d)

FSP(f)n{n € N: n is odd}
S(no(d)) if no(d) is odd,
{ S(no(d) — 1) if no(d) is even.

FSP(f)N{n € N: n is even}
{ S(2np(d)) if no(d) is odd,
S(2no(d) —2) if no(d) is even.

Similarly, using Theorem 3.2, Corollaries 3.3 and 3.4 and Theorem
4.1 of [ABLSS] we have the following result.

COROLLARY 5.2. Let f: T™ — T™ be a transversal map and sup-
pose that Per(f) is finite. Then, (a) to (e) of Corollary 5.1 hold.
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