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We determine the reducibility and number of components of any
representation of SL,(F) which is parabolically induced from a dis-
crete series representation. The R-groups are computed in terms of
restriction from GL,(F), extending the results of Gelbart and Knapp.
This yields an explicit description of the elliptic tempered represen-
tations of SL,(F). We also describe those tempered representations
which are not irreducibly induced from elliptic representations.

Introduction. We continue our investigation of those representa-
tions of classical p-adic groups which are parabolically induced from
the discrete series. We now consider the group G = SL,(F). We
will describe explicit criteria for reducibility of induced representa-
tions, determine the number of constituents of such representations,
and develop criteria for the constituents to be elliptic. Moreover, we
can describe those irreducible tempered restrictions of G which are
not elliptic, and are also not irreducibly induced from an elliptic rep-
resentation. B

We use the technique of restriction from G = GL,(F). This tech-
nique has been used by several authors to describe various aspects of
the representation theory of G [4, §, 6, 7, 14, 19, 20, 21, 22, 24, 30].
Our purpose here is to use some of these results to obtain information
on the structure of the generalized principal series for G.

Let P = MN be a parabolic group of . Suppose that ¢ is an
irreducible discrete series representation of A7 . We wish to determine
when the unitarily induced representation i, a(g) is reducible, and
if so, what is the structure of its components. We use the theory of
R-groups, as developed by Knapp and Stein [18], and Silberger [28].
This, along with the multiplicity one result of Howe and Silberger [14],
determines the structure of the commuting algebra C(o).

The R-group is a quotient of the subgroup W (o) of Weyl group
elements which fix o. If A’ is the collection of reduced roots for
which the Plancherel measure of ¢ vanishes, then R ~ W(o)/W',
where W’ is the group generated by reflections in the roots in A’. For
the groups Sp,,(F), SO,(F), and U,(F), we were able to explicitly
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describe the group W (o), and use the properties of Plancherel mea-
sures to determine which groups could possibly arise as R-groups [9,
10]. However, what precise R-groups can arise has yet to be deter-
mined, since the explicit computation of Plancherel measures is not
completed in these cases. The R-groups for certain parabolics are
understood completely [8, 27]. In the case of SL,, the Plancherel
measures are well understood [24, 25]. Moreover, there is already a
necessary condition, in terms of restriction, for a Weyl group element
w to bein W (o) [24]. We show that this condition is sufficient, and
thus we obtain an explicit description for the R-group, where all the
pieces are understood.

Let P MN bea parabolic subgroup of G with P=PNG, and
M = MNG. Then there is a discrete series representation, 7, , of M
so that m,|j)s contains ¢ as a constituent. The components of 7|3,
are said to be L-indistinguishable. Since ig, (o) — z~ 77(7s) , the
Plancherel measures for o are the same as those for 7:0 [24] The
reducibility of induced representations for GL, are well understood
[3, 23], and we know the Plancherel measures for n, explicitly [25].
Therefore, we know the zeros of the Plancherel measures for o by
restriction. We then show that w € W (o) if and only if wn, ~
T, ® nodet, for some n € F* (cf. Lemma 2.3). A lemma of Shahidi
[24] shows that W’ is the set of w with the property that wn,; ~ n, .
This gives an explicit description of R, as a group of characters, and
generalizes the results of [7]. For a fixed 7, we construct a unique
element, w, , with w, € R, and w,n, >~ ny;®ndet (cf. Theorem 2.6).
We use this explicit description of the elements of R, and a theorem of
Arthur [1], to describe the elliptic tempered representations of G (cf.
Theorem 3.4). We also give an explicit description of those irreducible
tempered representations of G which are not of the form i; ;. (7)
for some Levi subgroup M’, and some elliptic representation 7 of
M’ (cf. Theorem 3.8). This is based on a result of Herb [13].

Many results on reduciblity and number of components are also
obtainable by the method of Hecke algebra isomorphisms. Thus, our
reducibility results should match those in forthcoming work of Bush-
nell and Kutzko [5].

1. Preliminaries. Let F be a locally compact, non-discrete, non-
archimedean field of characteristic zero. Let g be the residual char-
acteristic of F. Let G be a connected reductive quasi-split algebraic
group defined over F. Let G be the F-rational points of G. We
say that an element x of G is elliptic if its centralizer is compact,
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modulo the center of G. We let G¢ denote the set of regular elliptic
elements of G [12].

Let &(G) denote the collection of equivalence classes of irreducible
discrete series representations of G, and denote by &;(G) the equiv-
alence classes of irreducible tempered representations of G. Then
&(G) c &(G). If n € &(G), then we denote its character by 0.
Since O, can be viewed as a locally integrable function [11], we can
consider its restriction to G¢, which we denote by ©¢%. We say that
n is elliptic if 6% # 0. In general, we would like to describe &(G),
and explicitly determine which classes are elliptic.

We say that M C G is a Levi subgroup of G if there is a parabolic
subgroup P of G with M as its Levi component. Let N be the
unipotent radical of P. If A4, is a maximal F-split torus of G, then
we let @(G, Ay) be the set of roots of Ay in G. Let A be a collection
of simple roots. Then the conjugacy classes of parabolic subgroups of
G are in one-to-one correspondence with subsets of A. If 6§ C A, then
we let 4y be the subtorus of A4 corresponding to 6. Let B =TU
be the Borel subgroup associated to 4, = 4p. Then a Levi subgroup
M is called standard if there is a parabolic P = M N, with P D B.
In this case, P is also called standard.

If M is a Levi subgroup with split component A, then we de-
note the Weyl group Ng(A4)/Zg(A) by W(G/A) or W(A). Let w €
W(A), and choose a representative w for @ in Ng(4). If (o, V)
is an irreducible tempered representation of A , then we let Wo be
the representation defined by the formula wao(m) = o(w~!mw). The
class of wao is independent of the choice of w. We say that o is
ramified if there is some non-trivial W € W(A4) with Wo ~ g. We de-
note by Indg(a) the representation unitarily induced by o . Since its
class depends only on M , not P, we may also denote it by ig (o).

We denote by X(M)r the collection of F-rational characters of
M . Welet a = Hom(X(M)F, Z), be the real Lie algebra of 4, and let
a¢. be the complexified dual of a [12]. Then there is a homomorphism
Hp: M — a which satisfies

g = |y (m)|p, Vx € X(M)r, meM.
For any v € af and o € & (M), we let

I(v, o) =Ind$(c ® g H( D)y,
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The space V(v, o) of I(v, g) is given by
V(v,0)={f: G- V|f(mng) =6, (m)a(m)q” %) f(g),
VgeG,meM,ne N}.
Here Jp is the modular function of P. If w € W(A4), then we let

Ny = Unw~'Nw, where N is the unipotent radical opposed to N.
We formally define an operator on V (v, g) by

A, o, w)f(g) = /N faw'ng)dn.

If the integral converges for every choice of f and g, then we say
that A(v, o, w) converges. If A(v, g, w) converges then it defines
an intertwining operator between I(v, o) and I(wv, wo).

THEOREM 1.1 (Harish-Chandra). Let w € W(A) and o € &(M).
Let P’ be the standard parabolic subgroup with Levi component
w—Mw. Then A(v, o, w) converges for v in the positive Weyl cham-
ber, and can be extended to a meromorphic function of v on af.. More-
over, there is a complex number u(v, o, w) so that

A(v, o, w)A(wr,we, w N =u, o, w)“lyw(G/P)yw-l(G/P’) ,

where the constant yy(G/P) is defined in [12]. Moreover, v —
u(v, a,w) is meromorphic on af , and holomorphic on ia*. O

The factor u(v, o, w) is called the Plancherel measure associated
to v, 0 and Ww. When w is the longest element of the Weyl group,
we write u(v, o) = u(v, o, w), and write u(o) = u(0,0). If M
is a maximal proper Levi subgroup, then ig (o) is reducible if and
only if ¢ is ramified and u(o) # 0 [29]. One can normalize the
intertwining operators A(v, o, w) by a meromorphic (in ») scalar
factor to obtain a family of intertwining operators % (v, o, w) with
the following property [16, 26]. If we let & (0, w) = & (0,0, W),
then these operators satisfy the cocycle condition

K (0, wwy) = (W0, wy)H (0, wy),
for all @, W, € W(4). One consequence of this normalization is
that the operators &/ (v, o, w) are holomorphic on the unitary axis
ia* [29]. Shahidi [26] has shown that the Plancherel measures and
normalizing factors are related to conjectural Langlands L-functions.

Suppose Wo ~ g. Choose an intertwining operator 7(w) with
T(w)(wo) = 6¢T(w). Then &'(o,w) = T(w)¥ (o, w) is a self-
intertwining operator for Indg(a). Let W(o) = {w € W(A)|wo ~
o}. Denote by C(o) the commuting algebra of ig (o).
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THEOREM 1.2 (Harish-Chandra [29, Theorem 5.5.4.3]). The collec-
tion {'(o, w)|w € W(o)} spans the commuting algebra C(c). 0O

The theory of the Knapp-Stein R-group tells us how to determine
a basis for C(o) from among the &/'(o, w). Let ®(P, A) be the
reduced roots of P with respect to 4, and let f € ®(P, 4). Let
Ap be the torus (ker g N A)%. Let My denote the centralizer of Ag
in G. Then M is a maximal proper Levi subgroup of Mp. Let
ug(a) be the Plancherel measure attached to i Mﬁ,M(a). Since M is
a maximal proper Levi subgroup of My, we know ug(g) =0 if and
only if wWo ~ o, for some W # 1 in W(Mpg/A), and iMp,M(J) is
irreducible. We denote by A’ the collection of f € ®(P, A) such
that ug(a) =0. We let

R=R(0)={weW(o)lwp >0, VBeA'}.

Let W’ be the subgroup of W(o) generated by the reflections in the
roots of A’.

THEOREM 1.3 (Knapp-Stein, Silberger (18, 28]). Forany o € &(M)
we have W (o) = Rx W'. Furthermore, W' = {w € W(a)|/ (o, w
is scalar}.

o< <

Thus, {&'(w, g)lw € R} is a basis for C(g). The number of
irreducible constituents of ig (o) is the number of irreducible rep-
resentations of R, and the representation corresponding to p € R
appears with multiplicity dim p. Moreover, if W, W, € R, then

M'(O’, w, 'LU2) = n(wl > wZ)M/(G ’ wl)ﬂl(a > ’UJ2) >
where the 2-cocycle #: R x R — C* satisfies
T(wiwy) = n(wy, w)T(wy)T(wy).

It is known that C(o) ~ C[R],, where C[R], is the complex group
algebra, twisted by the cocycle n. The multiplicity of each constituent
of ig am(o) is equal to one if and only if R is abelian and # splits
[16, 17]. The isotypic components of ig ar(d) can be parametized by
the irreducible representations of R [17].

We now assume that R is abelian and C(o) ~ C[R]. For each
w e R,welet ay = {H € alw-H = H}. Let Z be the split component
of G, and let 3 be the real Lie algebra of Z . Let ag =();cg 0w -
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THEOREM 1.4 (Arthur [1], Proposition 2.1). Suppose R is abelian
and C(o) ~ C[R]. Then the following are equivalent:

(a) ig,m(0) has an elliptic constituent.

(b) All the constituents of ig m (o) are elliptic.

(c) There is a W € R with ay =3. o

THEOREM 1.5 (Herb [13]). Suppose R is abelian and C(o) ~ C[R].
Let © be an irreducible constituent of i yp(0). Then m = ig 5, (1)
Jor a proper Levi subgroup M' and some t € &(M') if and only if
ag # 3. Moreover, M’ and 1 can be chosen with t elliptic if and only
if there is a Wo € R with agr = ay, . O

We will use these last two theorems to describe the irreducible tem-
pered representations of SL,(F) which are elliptic, and those which
are not irreducibly induced from elliptic representations.

One of our main tools is the use of restriction theorems. We state
those we need below. Tadic [30] has extended these results to the
case where the quotient is not necessarily finite, but H is of the form
G,Z(G), with G, the derived group of G.

THEOREM 1.6 (Gelbart-Knapp [7]). Let G be a totally disconnected
group, and suppose that H is an open normal subgroup of G, with
G/H a finite abelian group.

(a) If = is an irreducible admissible representation of G, then 7|y
is the finite direct sum of irreducible admissible representations. Each
component of n|y appears with the same multiplicity

(b) If o is an irreducible constituent of n|y, and G, = {g € G|
g-0~a}, then G/G, permutes the inequivalent components of 7|y
simply and transitively. (Here g -o(x) =o(g 'xg).)

(c) If o is an irreducible admissible representation of H , then there
is an irreducible admissible representation n, of G so that ngs|g con-
tains o.

(d) Suppose n and =’ are irreducible admissible representations
of G such that both n|y and n'|y decompose with multiplicity one.
Suppose o is a constituent of both n|y and n'|y. Then n|g ~ 7’|y,
and n' ~ @ n, where n is a character of G, which is trivial on H .

2. The group SL,. Let F be as in §1. Let G, = SL, and én =
GL,, as defined over F. We let G, = G,(F) and G, = G,(F). If
the dimension is clear we may just write G or G. Let Z = Z, be
the center of G.
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Let A~0 C G be the subgroup of diagonal matrices, and let Ay =
GnAo Let U be the subgroup of unipotent upper triangular matrices.
Then U C G, and B = AOU is a Borel subgroup of G, while B =
AoU 1s one of G. Let ®(G, Ag) = (G Ag) be the roots of Ay in
G.Let A={e;— e,-ﬂ}"'1 be the collection of simple roots given by B .
Let 6 C A, and let Py = MgNo be the associated standard parabolic
subgroup of G. Then Py = PN G = MyNy, with M, = Mg nG,
is a standard parabolic subgroup of G, and every standard parabolic
arises in this way. Suppose M = Mj,. Then there is a partition
my + my +---+ m, = n, such that

B o Gy, X Gy, X+ X Go, .
Specifically,
81 0
M = .. & € 6’",
0 &r
Then

N &1
M=MnG= .
8r

Let A = A~0 be the split component of M ,and A = ANG that of
M . Then

gl EGm,,
detg;-detg,---detg, =11~

Ay
~ A
A= 2 .. ).,'GFX s

A
where by A; we really mean Aily, . Thus,

A2
A={( )Aj”lxg"z-.-xi"rzl}.
Ar

The Weyl group W = W(G/A) ~ W(G/Z) is isomorphic to a sub-
group of S,. More precisely, W is generated by the transpositions
(ij) for which m; = m;. If (ij) isin W, then

() Atseens A ooy Ay A) = (At eee s Aj s Ay ey M)
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Let M, be the derived group of M,

()

Note that Mj is also the derived group of M . Let
p: M — F*x---x F*

—

r—1 times

r

gieGm‘}f_\_'Gmlx"’xGm .

be given by

(D(gl s 825 ocns gr) = (detgl s detgz: ey detgr—l)-
We note that we have the following exact sequences.

(2.1) 1 = GuZp — Gp S F*)(F)" = 1,
(22) 1> MA— M S F*[(FXY"(FX)" - (F*)") - 1,
(2.3)

1 — Mod — M L FX [(FX)™ x X [(FX)Max - x F* [(F¥)™-1 - 1 .

We will choose specific splittings in order to simplify our later argu-
ments. For each m > 1 let {a,, 1, am 2, ..., am,: } be a collection
of representatives for F*/(F>*)™. For each (m, i), let

—_ am’l
Am,i = ( I 1) .
m—

Then a, ; — a, ; splits (2.1).
Similarly, if y is a representative for
FXJ((FX)™(FX)™ - (FX)™),
then we let = (*; ). Then y — J splits (2.2). Now let

r—1
a=(am,,i,> am,,i,>--- > m,_,.i_) € [[ F*/(F*)™.
j=1

Let A(a) = am, i *@m,,i,"""am_i_ - Then we let

r—1%r

a .
ml’lx

y(a) =
mr—lir——l
1
AMa)
Clearly, y splits (2.3).
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Note that if © € &(G,), and we write nlc =D, p), then [24, 30]
each p; appears with multiplicity one. Theorem 1.6(b) implies that
the @, ; permute the constituents p; transitively. The representa-
tions p; are said to form an L-packet for G,. We also say that the
p; are L-indistinguishable.

Let 0 € &(M). Then, by Theorem 1.6(c), there is some 7n, €
gz(ﬂ ) with 7;|) D 0. Moreover, if n/, is another such representa-
tion, then 7/, = n, ® n - det, for some character n of F* (Theorem
1.6(d)). We denote 7, ®n-det by n,®n. Let 7, =1, ®72®- - Q 7y,
with each 7; € &(Gm, ). Let 75|y = D, 0;, with o) = g. We again
say that the representations o; are L-indistinguishable, and say that
{o;} forms an L-packet of M . The reason for this terminology is
discussed in [7]. If w € W(G/A), and we realize w as a permutation
on r letters, then wn, ~ ﬂwu) ® Myy(2) @+ @ My (r) -

Note that if 7;l¢ = @; 1 Pij, then 7gly, = @U}@, 1 Pij, 18

multiplicity free. Thus for i # k, Homy, (oy , 0;) = {0}. Note that
this (redundantly) implies that 74|y is mult1p11c1ty free.

LEMMA 2.1 (Shahidi [24]). Let o € (M) and choose ny € &(M)
which contains ¢ upon restriction to M. Let o € ®(P, A). Then

(@) ig,m(0) = iz 1 (70);

(b) i M(U)‘_*ZM 31(7a)s

(C) ﬂa(d) ﬂa(na) a

For 1<i<r,let =Y} mj. For 1<i<j<r,let oajj=e —
€, +1- Then {a;;|]1 < i< j<r} is a complete set of representatives
for the reduced roots, ®(P, A4).

COROLLARY 2.2. Let ¢ and n, be as in Lemma 2.1. Suppose
Mo ="y ® - ®n,. Then o;; €A ifand only if m; ~n;.

Proof. Let o = a;j. Recall that o € A’ if and only if pu,(g) =0.
By Lemma 2.1, y,(g) =0 if and only if u,(7,;) = 0. By [3, 25] this
is equivalent to 7; >~ 7;. o

We now describe the group W (o) in terms of the representation

g .

LEMMA 2.3. Let 0 € & (M), and suppose n; € %(H) With gly O
o. Then
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W(o)={weW|wn, ~n,®1n, forsomeneF*}.

REMARK. That wo ~ ¢ implies wn, ~ 7, ® n for some n was
proved by Shahidi in [24].

Proof. If wo ~ o, then wo — @s{y . Since wo C wag|y, we
know that 7n,|3 and wns|) have a common constituent. Thus, since
7oy and wmg|p, are multiplicity free, Theorem 1.6(d) implies that
Wy >~ Ty ® 1, for some neﬁx.

Now suppose that wn, ~ 7, ® . Then we know that wo ~ g;
for some i. Note that wns|y, = D Gy Q=1 Puwii) Ju Suppose py =
Q' pi j. 1s an irreducible constituent of oy, . Since wn, ~ 7, @7,
we know that 7,;) ~ zn; ® n for each . Thus, Pw(i)y, and p;; are
L-indistinguishable. By Theorem 1.6(b) there is a choice of k; so that
Am, k" Pij, = Pu(i)j,, - SUPPOSE 5 = (iw(D)w?(i)---w'~1(i)) is a cycle
appearing in w . Without loss of generality, assume s = (12---/). Let
m be the common value of m;, m,, ..., m;. Foreach 1 <i</[-1,

we choose b; = a,, ; with the property that b; - p;; = Pi+1)j,, - Let

by = (byby---b;_y)~ . Then, since the b; commute,
by-pr=(by---bi_1) pij, = puj, -

That is, we can take Ak, = b; . Therefore, we can choose am k SO

that their product over any cycle s of w 1is 1, and thus the product

of all a,, 4 is1.
Let

am .k,
Then we have just shown that b € M. Thus, by Theorem 1.6(b),
b - pp is a constituent of o| M, - On the other hand,

r r
b-po=Qam i - Pij, = Q) Putii,, = WPo-
i=1 =1

Thus, wpy C 0 and wpy C wo implies Homy (o, wo) # {0}.
Therefore, by multiplicity one, 0 ~ wag. a
Let

L(ng) ={ne FX|n, ® n ~wn,, for some w € W}.
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Let X(ns) ={n€ F*|n, ® n~n,}. Note that if 5, y € L(n,), and
Ty @M1 ~ 7Ty ® ), then ny~! € X(n,). Thus, there is a well-defined
homomorphism ¢: W (o) — L(n;)/X(n,) given by ¢(w) = nX(n,),
where wn, ~n,®1.

THEOREM 2.4. The R-group of a is given by
R(0) ~ Z(”a)/X(”a) .

Proof. It is enough to show that kerg = W’, where W’ is the
group generated by reflections in the roots of A’. If a;; € A’, then
m; >~ mj, so (ij):7ms =~ ms, and thus, W’ C kergp. On the other
hand suppose w = s15y---5; isin kerg . Let s; = (i;i---i;). Since
W = Mg, Mj, = T, for 1 <! < j—1. Thus, by Corollary 2.2,
i, € A’, foreach /. Let TSI Then

ki
W= HHwaii1+1 ew'.
i=li=1
Thus, kerg = W', s0 L(n,)/X(ns) ~ W(a)/W' ~R. o
ReMARK. The fact that W' = {w|wn, ~ ns} was first shown, with
a slightly different proof, by Shahidi [24, Proposition 1.8].
REMARK. If P is the minimal parabolic, then Gelbart and Knapp
[7] showed that L(n,;) ~ R(ag). Thus, our result generalizes theirs, as
well as those of Keys [16].

COROLLARY 2.5. If 0 and o' are L-indistinguishable discrete series
representations of M, then R(c) = R(d’). O

o~

While Theorem 2.4 describes R as a subgroup of (F*/(F*)")
we desire a more explicit description of R. Let n € L(n,). Let
Qn,i)={jln;~n,®n}. Let wy(1)=minQ(n, 1). For 2<i<r,
let I'(n, i) = {wy(j)|j < i}. Then we let

wy(i) = min(Q(n, )N (T(n, ))°).

Clearly wy, e W.

THEOREM 2.6. Let n € L(n,). Then w, is the unique element of
R(o) associated with n.

Proof. Since, for each i, Tw (i) = T ® 1, We have wyns ~ 7, @ 1.
Thus, w, € W(o). Suppose «a;; € A'. Then n; ~7n;, s0 Q(n, i) =
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Q(n, j). Since i < j, we have wy(i) < wy(j), by construction. Thus,
Wyeij = Oy (iyw, (j) > 0. Therefore, for each o € A’, wya > 0, and
thus w, € R(0). O

3. Elliptic representations. We now use our description of the R-
groups of G to explicitly describe the elliptic tempered spectrum of
G . We also describe those tempered representations which are not el-
liptic, and are not irreducibly induced from an elliptic representation.
We begin with the multiplicity one result of Howe and Silberger. This
result has been extended to an arbitrary irreducible admissible unitary
representation of M [30].

THEOREM 3.1 (Howe-Silberger [14]). Let G = SL,(F), and let P =
MN be an arbitrary parabolic subgroup of G. Suppose o € &(M).
Then each constituent of ig,m(c) appears with multiplicity one. O

COROLLARY 3.2. For any ¢ € &(M), C(o) ~ C[R]. 0

LEMMA 3.3. Let P = MN be a standard parabolic subgroup of
G. Let M be the Levi subgroup of G with M = MNG. Suppose
M ~ Gm xGm X - xGmr If, for some i and j, m; # m;, then
i, m(0) can never contain an elliptic constituent.

Proof. By Theorem 1.4 and Corollary 3.2, i¢ (o) has an elliptic
constituent if and only if there is a w € R so that a,, = 3. Since
m; # m;, W(G/A) does not permute the blocks of M transitively.
Thus, there is no w € W(G/A) with a, = 3 = {0}. Therefore, for
any o € &(M), ig m(0) cannot contain an elliptic constituent. O

THEOREM 3.4. Suppose m; =my=---=m,. Let 6 € &(M), and
choose n; € %(ﬂ ) With ms|pr O 0. Then the following are equivalent:

(a) ig, p(0) has an elliptic constituent,

(b) every constituent of ig (o) is elliptic,

(¢) R(o) ~Z,

Proof. Since R is abelian and C(o) ~ C[R], (1) and (2) are equiv-
alent, and both are equivalent to a,, = {0} for some w € R(o).
Since m; = --- = m,, W(G/A) = S,, and a,, = {0} if and only if
W is an r-cycle. Up to conjugation by an element of W (G/A4yp), we
can assume that w = (12---r). Let ny = 711 ® --- ® m,, with each
;€ gz(ém) . From Theorem 2.6, w € R(o) if and only if there is an
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n € F* such that 5" € X(m;), and #/ ¢ X(m;) for 1 <j<r—1,
with n; = my ® '~!. That is,

Te =T ®(MON®(MOn)e--(men ™).
Now it is clear that L(n,)/X(ns) = (), so R(6) ~Z,. O

REMARK. It is not the case that every irreducible tempered repre-
sentation of G either is elliptic, or is irreducibly induced from an
elliptic representation. This was already known for G = SL4, with
P = B, the Borel subgroup [13]. We will give a description of all
representations of G of this form. We begin with an example which
illustrates the ideas involved. This example is a generalization of the
example given in [13] for SL,.

_ExAMPLE 3.5. Let m > 1, and let G = SLy4,,. Let M ~ (N?m X

Gm X Gy X Gy, . Let m € &(M). Suppose that 1 and x are distinct
characters with 7, y and ny ¢ X(n), but 2, x> € X(n). Let
M=nQ (xRN (TANY).

Let 0 C my|pr. Then A’ = @. Note that n corresponds to the per-
mutation (12)(34), x to (13)(24), and 5y to (14) (32). These are
the non-trivial elements of R(g). Note that ag = {0}, but for each
w € R(0), ay 2 {0}. Therefore, by Theorem 1.5, no constituent of
ig,m(0) is irreducibly induced from an elliptic representation. o

DEFINITION 3.6. Let @ € c%(ém). Let my,1m2,...,M,1>2,bea
collection of characters of F*. Let o(7;) be the order of 7; modulo
X(m). Suppose that '

(1) '7;”1;2'--71;’ ¢ X(m) unless 77;." € X(n) for each j;

(2) ged(o(m))i, > 1.

Let
i | 0<ij<o(n),
Qs m) = {m@nimsonf] 957 <20 L
We call the collection Q(z, 0y, 12, ..., n;) a multiple character seg-
ment for =.

DEFINITION 3.7. Let G = Gy. Suppose P = MN is a standard
parabolic of G. A discrete series representation p of M is said to
contain a multiple character segment Q for 7 if, up to permutation -

of the blocks of A,
p = (® r) ®/p,

T€Q
for some p’.
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THEOREM 3.8. Let 0 € &(M), and choose n, € &(M) with
Tglm O 0. Then any constituent of i, s (o) is non-elliptic, and is
not irreducibly induced from an elliptic representation if and only if n,

contains a multiple character segment Q(m, ny, ..., n;), with each
ni € L(ng) -

Proof. Suppose n; ~n; ®--- Q@ 7y, and {my, ..., M} is a multi-
ple character segment Q(z;, 1, ..., 1;) . Further suppose that 7; €
L(n;) for each 7;. Then wy, # 1, since for 1 < j <k, n;®n #7;.
For 1 < j <k there are iy, i, ..., i; so that

i i i
T NNy E ;).

Thus, there is a w € R(g), with w(l)=j,for j=1,2,..., k. Let
m denote the common value of m,, ..., m; . Then,

r(dd \ )

ar C < d mdk+Zdimi=O
dk+1 k+1

L\ d,/ )

We denote the subalgebra on the right by o’ . Since gcd(o(n;)) > 2,
there is no character n so that, for each 2 < j < k, w,‘,(l) =j
for some ¢. Thus, there is no w € R with ay C o, and thus it is
impossible for a,, = ag for some w € R. Therefore, by Theorem 1.5,
every component of i (o) is non-elliptic, and cannot be irreducibly
induced from an elliptic representation.

Now suppose that 7, does not contain a multiple character segment
with the described compatibility condition. Suppose that w(i) # i
for some w € R. Since there is no compatible multiple character
segment, we know there is a character, y; = n; for some k, so that
() = T ® y} for some j. That is, we choose y; € L(X(ns)) so
that the order of p; modulo X(7,) is maximal with the property
that 7; ® y; # m;. Let s(i) be the cycle of wy, which contains i.
Note that if w € R, and w(i) # i, then some power of s(i) appears
in W . (This follows from the construction of the elements w, of
R.) Suppose that y, # y{ mod(X(n,)) for any 1 < j < o(y;) —
1. Then w, (i) =i,and so n; @y, ~ ;. Let »; ,v;,...,7; be
the distinct classes, modulo X(7,), among the characters {y;}. Let

'
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Wo = Wy, Wy, - . By construction, the elements Wy, are disjoint

permutatlons and wo € R. Moreover, if there is a w € R with

w(i) = k, then wo(z) =k for some j. Thus, a, = ag. Therefore,
by Theorem 1.5, if ig p(0) has no elliptic constituents, then each
constituent of i; p(c) can be irreducibly induced from an elliptic
representation of some proper Levi subgroup M’ of G. o

REMARK. Suppose 0 € & (M) and all the constituents of 7 =
i, (o) are elliptic. We can parametrize the constituents by the

characters R of R. Let m, be the constituent which corresponds
to k € R. Then 8% =0,s0 ), 05 =0. We would like to explicitly
know this relation between the characters ©¢ . In [13] Herb gives
an explicit description of this character relation when G = Sp,, or
SO, . In [10] we used the same techniques to carry out this program
when G = U, . Assem [2] uses his global character expansions and
a result of Kazhdan [15] to describe this relation when G = G, and

n is prime. Shahidi [24] showed that R(g) ~ (l~ i7(Te)) /X (7s) .
Thus, L(n,) = (15 i7(Ma)) - Therefore, by extendmg the results of
Kazhdan, one hopes to describe this relation.
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