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Let G be a group. A Borel G-space 27 with a o-finite quasi-
invariant measure « is called strongly approximately transitive (SAT)
if there exists an absolutely continuous probability measure v such
that the closed convex hull co(Gr) of the orbit Gv coincides with
the space of absolutely continuous probability measures on 2. Call a
G-space (#, o) purely atomic if o is purely atomic. Boundaries of
stationary random walks on countable G are always SAT and provide
many examples of nonatomic SAT actions. The class of nonatomic
SAT G-spaces also includes certain homogeneous spaces of locally
compact groups. Every countable nonamenable group and also some
amenable groups admit nonatomic SAT actions. However, if G con-
tains a countable nilpotent subgroup of finite index then every SAT
G-space is necessarily purely atomic. This implies the Choquet-Deny
theorem for such groups. Existence of nonatomic SAT actions is re-
lated to growth conditions. A finitely generated solvable group has
polynomial growth if and only if it does not admit nonatomic SAT
actions.

1. Introduction. Let G be a group and 2 a Borel G-space with
a o-finite quasi-invariant measure o . We shall denote by L!(Z, o)
the space of complex measures absolutely continuous with respect to
a and by LU#, «) C L1Y(Z, a) the subspace of probability mea-
sures. For ¢ € G and p € LI(#, o) we shall write gu for the
measure (gu)(A4) = u(g~'4). The action of G on (£, a) is called
approximately transitive (AT) if for every pair vy, 1, € LI(Z, o) and
every ¢ > 0 there exists v € L{(#, «) such that the total variation
norm distances between v;, i = 1,2, and the convex hull co(Gv)
of the orbit Gr are both less than ¢. The concept of approximate
transitivity was introduced by Connes and Woods [1] to provide a
necessary and sufficient condition for an approximately finite dimen-
sional von Neumann factor to be ITPFI (AT characterizes the flow
of weights of ITPFI factors). Connes and Woods also observed [2]
that the group action on the Poisson boundary of a (not necessarily
stationary) random walk on a locally compact second countable group
is approximately transitive. They showed that in the case G = R
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or G = Z every AT standard Borel G-space can be represented as
a Poisson boundary. This characterization of AT actions can be ex-
tended to countable amenable groups [4] (for countable nonamenable
G, amenable approximately transitive actions can be represented as
Poisson boundaries [4]). Elementary examples of AT actions are ho-
mogeneous spaces of locally compact second countable groups and
ergodic rotations on second countable compact abelian groups; cer-
tain diffeomorphisms of the circle are also known to be AT [7]. For
actions of Z preserving a finite invariant measure AT implies zero
entropy [1]. Every AT action is ergodic.

The present paper is concerned with the following strong version
of approximate transitivity. We shall say that a Borel G-space with a
o-finite quasi-invariant measure o is strongly approximately transitive
(SAT) if there exists a probability measure v € L{(% , &) such that
the convex hull co(Gv) is dense in L}(2, o) with respect to the total
variation norm. A measure v with such property will be called a SAT
measure. It is obvious that strong approximate transitivity implies
approximate transitivity. Ergodic rotations on uncountable compact
abelian groups are elementary examples of approximately transitive
actions that are not strongly approximately transitive.

A SAT measure v will be called trivial if for every Borel set A4,
v(A) is either O or 1. Obviously, every countable transitive (G-space
admits trivial SAT measures and it is easy to see that it does not ad-
mit nontrivial ones. However, some uncountable transitive G-spaces
admit nontrivial SAT measures. E.g., for the transitive action of the
ax + b group on R every absolutely continuous probability measure
is SAT. The transitive action of SL(2, R) on the circle S also ad-
mits nontrivial absolutely continuous SAT measures. It turns out that
nontrivial SAT measures cannot exist in the presence of a o-finite
invariant measure. We show that if G acts with a o-finite invariant
measure a then (27, a) is SAT if and only if « is purely atomic;
ie., (£, a) is, essentially, a countable transitive G-space. Hence-
forth, G-spaces (£, ) where « is purely atomic will be referred to
as purely atomic.

As mentioned above, approximate transitivity is a property of
boundaries of (not necessarily stationary) random walks on G. Strong
approximate transitivity turns out to be a property of boundaries of
stationary random walks. We demonstrate the significance of this
property by showing that the Choquet-Deny theorem is a direct con-
sequence of the fact that certain groups do not admit nonatomic SAT
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actions. The boundaries also provide many examples of nonatomic
SAT actions.

Let u be a probability measure on a countable group G. An ele-
ment 2 € L*°(G) is called a p-harmonic function if

h(g) = /G h(gehu(dg), ge€G.

It is well known that every u-harmonic functions can be represented
as a bounded Borel function on a certain boundary space [9, 10].
More precisely, there exists a Borel G-space 2 with a o-finite quasi-
invariant measure o and an equivariant isometric isomorphism @ of
L>(Z, a) onto the space # of u-harmonic functions. It is easy to
see that @ is necessarily given by

(L1) (@)(g)=(gp, f) = /% flex)pldx),  feL™Z, a),

where p € L}(Z, ) is a probability measure such that uxp = p.
The fact that @ is an isometry implies (via Proposition 2.2) that p is
a SAT measure. The basic well-known realization of the u-boundary
(Z, a, p) is obtained as follows. Consider the right random walk of
law 4 on G. Let 2 =[],;>, G be the space of paths with the Borel
structure given by the invariant (stationary) g-algebra of the random
walk and let « denote the Markov measure on 2 defined by u and
a starting probability measure equivalent to the counting measure on
G . Equip 2 with the G-action g{w,}5>, = {gwn};>y. & becomes
then a Borel G-space and « is a quasi-invariant measure. By the basic
theory of Markov chains, L>®°(#’, a) is isometrically G-isomorphic
to the space # of u-harmonic functions [9, Proposition V.2.4, p.
175}, [10, Proposition 3.2, p. 82]. The measure p of equation (1.1)
turns out to be the Markov measure of the random walk started from
the identity element e € G. Furthermore, p is trivial if and only
if every wu-harmonic function is constant on the left cosets of the
smallest subgroup H C G such that u(H) = 1. In particular, when u
is adapted, i.e., H = G, then p is trivial if and only if every harmonic
function is constant.

LeEMMA 1.1. Let u be a probability measure on a countable group
G and (Z, a, p) the associated u-boundary. Then

(a) the action of G on (£, a) is SAT and p is a SAT measure,

(b) p is trivial if and only if every u-harmonic function is constant
on the left cosets of the smallest subgroup H C G such that u(H) =1,
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(c) when u is adapted, p is trivial if and only if every u-harmonic
function is constant.

A probability measure 4 on G is called a Choquet-Deny measure if
every u-harmonic function is constant. A Choquet-Deny measure is
necessarily adapted. Consequently, if u is adapted but not Choquet-
Deny then p is a nontrivial SAT measure and (2, «) is a nonatomic
SAT G-space. Choquet-Deny measures can exist only on amenable
groups [S, 8]. However, certain amenable groups admit adapted mea-
sures u that are not Choquet-Deny [8]. Thus nonatomic SAT actions
exist for every nonamenable G and also for some amenable G .

By the classical Choquet-Deny theorem, for abelian G the boundary
measure p is trivial for every u. The most general class of count-
able groups for which the Choquet-Deny theorem is known to remain
true (without any restriction on u) is the class of almost nilpotent
groups ( G is almost nilpotent if it contains a nilpotent subgroup of
finite index). We show that for these groups a result stronger than
the Choquet-Deny theorem holds, namely, countable almost nilpotent
groups do not admit nonatomic SAT actions.

Finally, we point out a connection between existence of nonatomic
SAT actions and the growth of G. Recall that G is said to have
polynomial growth if for every finite set F C G there exists a pos-
itive integer r such that the sequence |F"|/n", n =1,2,..., is
bounded, where |F"| denotes the cardinality of F”. By a theorem
of Gromov [6], every finitely generated group of polynomial growth
is almost nilpotent. Thus groups of polynomial growth do not admit
nonatomic SAT actions. This result can be sharpened in the solvable
case. Using a result of Rosenblatt [11] we show that a finitely gener-
ated solvable group has polynomial growth if and only if it does not
admit nonatomic SAT actions.

2. Strong approximate transitivity: elementary properties. Through-
out the sequel we shall consider actions of a discrete group G. Thus
L>(G) = L*(G, A), where A is the counting measure, is the space of
bounded complex valued functions on G equipped with the sup norm,
and L!(G) = L'(G, A) the space of discrete complex measures. For a
general measure space (2, a), by the weak* topology on L>®°(Z) =
L>*(Z, o) we shall mean the ¢(L>®, L!) topology. When 2 and %
are Borel G-spaces with o-finite quasi-invariant measures « and S,
we shall say that (2, a) and (%, B) are isomorphic if there exists
an equivariant isomorphism of the x-algebra L>*(Z’) = L®(Z, a)
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onto L®(%) = L>(¥ , B). We shall say that (%', B) is a factor of
(Z, a) if there exists an equivariant isomorphism of L>*(%’) onto a
unital weakly* closed *-subalgebra of L>°(Z).

REMARK 2.1. It is clear that properties AT and SAT are invariant
with respect to isomorphisms and factors.

PROPOSITION 2.2. Let & be a Borel G-space with a o-finite quasi-
invariant measure o and let p € LY(Z’). The following conditions are
equivalent:

(a) p is a SAT measure,

(b) for every Borel set A with a(A) > 0 and for every ¢ > 0 there
exists g € G such that (gp)(A) = p(g714)>1-¢,

(c) the map F: L>(Z) — L>(G) given by (£ f)(g) =(gp, f) =
[o f d(gp) is an isometry.

Proof. (a) = (b): Since a is o-finite we can assume without loss of
generality that it is finite. Suppose that p is a SAT measure. Define
B e Li(Z) by %g = a(A)'x,4. There is a sequence {g;}"_; C G and
a sequence {p;}7_, C [0, 1] such that

“ﬂ - pi(gw)
i=1

n
<e and » pi=1.
i=1
Hence,

n n
1= pi(gw)(4) = IB(A) - pi(gv)(4)| <e.
i=1 i=1
This implies that (gv)(4) >1—¢ for some g€ G.

(b) = (c): It is clear that (b) implies that ||#Z f|| = ||f]| for every
simple function f € L>*(Z’). Since simple functions are uniformly
dense in L>*(Z’) and % is a contraction, (c) follows.

(c) = (a): Note that % is a positive weakly* continuous contrac-
tion whose dual contraction Z*: L1(G) — LY (Z) reads FZ*¢p = p+p.
Since #1 = 1, we have Z*L}(G) € L}(Z). It suffices to prove
that Z*L1(G) is dense in L](2°). Let M denote the closure of
Z*LY(G). Suppose there exists v € L}(Z) — M. Since M is con-
vex we can use the Hahn-Banach theorem to find a positive element
f€L>®(Z) and € > 0 such that (n, Zf)=(#*n, f) < (v, fl—-¢e<
| fll—€ forall n € L}(G). But this would imply that || % f|| < || f]|—e¢,
in contradiction with (c). 0
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CoROLLARY 2.3. Strongly approximately transitive actions are er-
godic.

Proof. The isometry #: L>*(Z’) — L*°(G) of Proposition 2.2(c)
is equivariant and maps constants to constants. Hence, ergodicity
follows from ergodicity of the action of G on G. (Since SAT = AT
one can also use the fact that AT actions are ergodic [1].)

COROLLARY 2.4. Let u be a probability measure on a countable
group G. The u-boundary (as defined in §1) is SAT.

As explained in §1, the pu-boundaries provide many examples of
nonatomic SAT actions. However, these examples are usually compli-
cated to analyse and, with a few exceptions, defy a complete explicit
description. Below we show that certain homogeneous spaces of lo-
cally compact second countable (Icsc) groups admit nonatomic SAT
measures. Let G be a lcsc group and 27 its homogeneous space. We
shall say that a nonempty open set U C &2 is contractible if for every
nonempty open V' C 2 there exists g € G with gU C V. If &
admits open contractible sets it will be called contractive. It is easy to
see that R is a contractive homogeneous space of the ax + b groups
and the circle S is a contractive homogeneous space of SL(2, R). In
the former case every nonempty open set with compact closure is con-
tractible. Recall that every homogeneous space of a Icsc group admits
a unique G-invariant measure class.

COROLLARY 2.5. A contractive homogeneous space & of a lcsc group
G is SAT with respect to the action of any dense subgroup of G. If
every nonempty open set with compact closure is contractible then every
absolutely continuous probability measure on Z is a SAT measure for
the action of any dense subgroup of G. In particular, the transitive
action of the ax+ b group on R and the transitive action of SL(2, R)
on S are SAT.

Proof. Recall that when 2 is a homogeneous space of G, then G
acts continuously on L!(Z), i.e., for every ¢ € L1(Z°) the function
G>g— gp € L (Z) is continuous. Hence, it suffices to prove that
the action of G on 2 is SAT.

Let p € L1(2). We shall say that p is contractible if for every
x € Z there exists a sequence {gn}5>; € G such that

lim [ f(gx)p(dx) = /(x)
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for every bounded continuous f: 2 — C. It is clear that if p is
carried on a contractible set, then it is contractible. If every nonempty
open set with compact closure is contractible, then every p € LI(Z)
is contractible. This easily follows from the regularity of p: for every
¢ > 0 there exists a compact K C 2 with p(K) > 1—¢. Our corollary
will be proven when we show that every contractible p € LI(Z) is a
SAT measure.

Let p € LI(2) be contractible. Define #: L®(Z) — L>*(G) by
(Zf)(g) ={gp, f). Contractibility of p implies that | Z f]| = || f]|
for every continuous f € L*°(Z°). By Proposition 2.2(c) we must
prove that || Z f|| = || f]| for all f € L*(Z). Let {U,}2, be a
neighbourhood base at e € G, and let ¢, be an absolutely continuous
probability measure on G such that ¢,(U,) = 1. For every f €
L>(Z) the functions

fulx) = /G flex)en(dg), xe,

and

Fulh) = /G (#f)(gh)en(dg).  heG,

are continuous, || full < [IfIl, I/l < £ f]l, and fu = Z f». Hence,
Wl = Il £ Z f]]. But f, converges weakly* to f. Since the
ball {F € L>°(Z); |[F| < | #Zf|} is weakly* closed, it follows that
Il < Z fl. Since # is a contraction we have || f|| =||Zf||. O

We shall say that an ergodic G-space 2 with a o-finite quasi-
invariant measure a is purely atomic if « is purely atomic (i.e., every
Borel set of nonzero measure contains an atom of «). When the
Borel structure of 2 is countably separated, purely atomic actions
are, of course, those with countable conull orbits. It is easy to see that
(Z , @) is purely atomic if and only if L!(2°) contains a trivial (0-1)
SAT measure. When (27, a) is purely atomic it admits only trivial
SAT measures (carried on single atoms of «).

PROPOSITION 2.6. Every SAT action with a o-finite G-invariant mea-
sure « is purely atomic.

Proof. Let p be a SAT measure. By the absolute continuity of p
there is ¢ > 0 such that p(E) < 1/2 whenever «(E) < ¢. Suppose
that « is not purely atomic. Then there exists a Borel set E with
0 < a(E) < &. Since a is G-invariant we have that (gp)(E) =
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p(g~'E) < 1/2 for all g € G. This clearly contradicts Proposition
2.2(b). O

CoROLLARY 2.7. There exist approximately transitive actions that
are not strongly approximately transitive.

Proof. An ergodic rotation on an uncountable second countable
compact abelian group is an approximately transitive Z-action with
a nonatomic invariant measure. |

3. Strong approximate transitivity and polynomial growth.

ProrosiTioN 3.1 (0-2 law). Let 2 be a Borel G-space with a o-
finite quasi-invariant measure . If p € LI(Z) is a SAT measure
then for every g € G the number

a(g) =sup|lh~'ghp - p|
heG
is either O or 2.

Proof. Consider the action of G on L>*(Z’). For a given g € G
either gf = f for all f € L®(Z) or there exists f € L>®(Z) with
gf # f. In the first case, for every # € G and f € L>®(Z) we
have (ghp, f) = (hp, g~ f) = (hp, f), ie., ghp = hp and, con-
sequently, ||h~'ghp — p|| = ||ghp — hp|| = 0 and a(g) = 0. Con-
sider the second case. Since simple functions are dense in L*°(Z)
there must exist a Borel set 4 such that gx4 # x4 (mod a). Conse-
quently, a(4 A gA) # 0 where A denotes the symmetric difference.
Thus either a(gd — A) # 0 or a(4 — gA4) # 0. In the first case
put C = g4 — A, and in the second put C = A — gA. In either case
a(C) #0 and CNgC = 2. Define ¢ € L(Z) by 92 = o(C)~ ! xc(x)
(we can assume that o(C) < oo). Then ||gg —¢|| = 2. But p isa
SAT measure. Therefore, by Proposition 2.2(b) for a given ¢ > 0 we
can find 4 € G with (hp)(C) = p(h~1C) > 1-¢/4. Since C and gC
are disjoint, (hp)(gC) < ¢/4. But C and g~'C are also disjoint;
therefore (ghp)(C) = (hp)(g~1C) < ¢/4. Consequently, from the
definition of the total variation norm,

|k~ ghp — pll = ghp — hp| > |(ghp)(gC) — (hp)(gC)|
+1(ghp)(C) — (hp)(C)]
> (ghp)(gC) + (hp)(C) — (hp)(gC) — (ghp)(C)
=2(hp)(C) — (hp)(gC) — (8hp)(C) > 2 —e.
Since ¢ is arbitrary, the proof is complete. O
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COROLLARY 3.2. If g is in the center of G, then ||gp— p| is either
0 or2.

THEOREM 3.3. Abelian groups do not admit nonatomic SAT actions.

Proof. Let p be a SAT measure on (£, o). Since G is abelian,
by Corollary 3.2 for every g € G either gp = p or ||gp —p| = 2.
Let H = {g € G, gp = p} and let {g;}ic; be a transversal for
G/H . Clearly, the measures {g;p}ic; C L}(#) are pairwise mutually
singular. Since a is o-finite, / is countable. Consequently, f =
> icz &ip is o-finite and B < a. Note also that if f(4) = 0 then
p(A) = 0 for every u € co(Gp). Since co(Gp) is dense in LI(Z)
it follows that a(A4) = 0. Therefore f ~ «. It is clear that g is
G-invariant. Thus our claim follows now directly from Proposition
2.6. O

REMARK 3.4. For a general (nonabelian) group the proof shows that
a G-space (£, ) is purely atomic whenever there exists a SAT mea-
sure with the 0-2 property: ||gp — p|| = O or 2 for every g € G.
(Consequently, a SAT measure with the 0-2 property is trivial.)

Our next goal is to extend Theorem 3.3 to countable nilpotent and
almost nilpotent groups.

Let G and H be countable groups and £ a Borel G-space. Recall
that an H-valued cocycle is a Borel map y: G x 2 — H such that
7(8182, x) = 7(81, &x)7(&2, x) forall x € 2, g, g& € G. When
% is a Borel H-space, the formula g(x, y) = (gx, y(g, x)y) defines
a Borel action of G on 2 x % . The resulting G-space is denoted
by & x, % and called the skew product of the G-space 2 and the
H-space % [12, p. 75]. If a is a o-finite quasi-invariant measure on
& and f a o-finite quasi-invariant measure on % then a x f is a
quasi-invariant measure on &2 X, % .

Let H be a subgroup of G. Choose a cross section x: G/H — G of
the canonical map n: G — G/H and define y(g, x) = k(gx)" ' gr(x),
g€ G, x e G/H. y is then an H-valued cocycle. When % is
an H-space, the skew product G/H x, % 1is usually called the G-
space induced from the H-space % [12, Definition 4.2.21, p. 75].
With o denoting the counting measure on G/H and B a o-finite
quasi-invariant measure on %, the measure ax f is a o-finite quasi-
invariant measure on G/H x, % . In the next lemma Jy denotes the
point measure on G/H concentrated in the coset H .
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LEMMA 3.5. For every v € LI(¥%) the measure p = oy X v is a
SAT measure on G/H x, % if and only if v is a SAT measure on

v .

Proof. Suppose v is a SAT measure, and let 4 be a Borel set with
(ax B)(A4) > 0. Then

(gp)(d) = /:y v(dy)xa(gH , k(gH)™ g (H)y)

= (k(gH) ™' gre(H)v)(457),

where 487 = {y € % ; (gH, y) € A} denotes the section. Note that
for a fixed g € G the map H > h — k(ghH) 'ghk(H) € H is
surjective. Choose g so that B(44H) # 0. Then for a given & > 0
choose 4 € H with (k(ghH) ! ghx(H)v)(A8") = (ghp)(A) > 1 —¢.
By Proposition 2.2(b), p is SAT. A similar argument shows that if p
is SAT then so is v. O

CoROLLARY 3.6. If G is countable and admits only purely atomic
SAT actions then every subgroup H C G also admits only purely atomic
SAT actions.

LEmMMA 3.7. Let & be a Borel G-space with a o-finite quasi-
invariant measure a (G countable). Let H and K, K C H, be sub-
groups of the centre of G. Assume that there exists a partition of &
into disjoint Borel sets {2%}ecy/x such that hiZ; = 25 for £ € H/K
and h € H. Moreover, let K act trivially on & (i.e, kx = x for
k€ K, x € ). Then (£, a) is isomorphic to a skew product
Y x, (H/K), where ¥ is a G-space with a o-finite quasi-invariant
measure B, H acts triviallyon % , and y is an (H/K)-valued cocycle.

Proof. Let p: 2 — H/K be given by p(x) = £ when x € Z%.
Let k: H/K — H be a cross section of the canonical homomorphism
n: H — H/K, such that x(K) = e. Note that x(p(x))"x € Z%
for all x € 2, and p(hx) = hp(x) for h € H and x € & . Set
Y = Z%, B = the restriction of a to % . Define F: 2 — % by
F(x) = k(p(x))~!x. As G is countable, it follows that F is a Borel
map of 2 onto % . Furthermore, F(x) = x for x € 2x =% , and
F(hx)=x for x e Z and h € H. Moreover, Fa~ .

Let g, g€ G, x €% . Since H is central, we have F(g'gx) =
F(g'r(p(gx))F(gx)) = F(k(p(gx))g'F(gx)) = F(g'F(gx)). It fol-
lows that the formula g -y = F(gy) defines a G-action on % such
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that h-y=y for he H, ye % ,and F(gx)=g F(x) for ge G
and x € 2. The measure f is quasi-invariant under this action. Set
vig,y)=plgy), g€G, ye % . y is then a (H/K)-valued cocycle.

Define ¢: & — % x, (H/K) by ¢(x) = (F(x), p(x)). It eas-
ily follows that ¢ is an equivariant Borel isomorphism (with in-
verse ¢~y , &) = k(&)y). Moreover, pa ~ B x u where u is the
counting measure on H/K. Thus 2 and % x, (H/K) are indeed
isomorphic. O

LEMMA 3.8. Let G be countable and let C be its centre. If (Z, a)
isa SAT G-space, then Z is isomorphic to a skew product % x, (C/K)
where % is a SAT G-space, C acts trivially on %', K is a subgroup
of G, and y is a (C/K)-valued cocycle.

Proof. Let p be a SAT measure on 2 andlet K={geC; gp=
p}. Since co(Gp) is dense in L!(Z2’) it follows that K acts trivially
on LY(#) and, consequently, also on L™(Z’). Let 2’ = #/K be
the orbit space and p: & — Z” the canonical map. Give &£’ the
quotient Borel structure and the quotient G-action. Set o/ = pa and
p' = pp. Itis clear that (27, o) and (2, ') are isomorphic G-
spaces, K acts trivially on Z”, and p’ is a SAT measure on 2.
Thus without loss of generality we may assume that K acts trivially
on 2.

We will now show that there exists a family of disjoint Borel sets
{Z%}ecc/x suchthat hZp = 25 for h € C, and o2 —Ugec/x 28) =
0. Let {cs}eec/x be a transversal for C/K . We will first prove that
for every Borel set 4 € 27 with a(4) # 0 there exists a Borel set
A C % suchthat A C A, the sets {céA}éec )k are pairwise disjoint,
and a(A4 ) #0.

If a(4) # 0, then by the SAT property, (gp)(4) # 0 for some
g € G. By Corollary 3.2 for every & € C the measures hgp and
gp are either equal or mutually singular. Set vy = e lgp, EeC/K.
Thus from the definition of K the measures v and vk are mutually
singular when & # K. lLe., for every £ # K there exists a Borel set
D with vg(Dg) =1 and vg(Dg) =1 (where Dg =2 — D). Put

D= ()] (Den(ceDf)).
¢eC/K
E#K

Then vg(D) =1 and the sets {czD}c H/K are pairwise disjoint. Set
A=AND. Then VK(A) # 0 and {CCA}éeH/K are pairwise disjoint.
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Consider now the family & C L*(Z°) of nonzero projections of
L>(Z), i.e., the family of elements of L*°(Z) given by character-
istic functions x4 of Borel sets with a(4) # 0. Note that gy, =
Xga (mod ). Let

& = {p € &; the projections {c;p}scp/x are pairwise orthogonal}.

By the preceding part of the proof &, is nonempty. Note also that if
F C & isalinearly ordered subset, then \/ % € &) . Hence, by Zorn’s
lemma, & has a maximal element y . We claim that Veec /K CEY =
1. Indeed, if 1-V,cc /k ey # 0, then (again by the preceding part of
the proof) one can find a projection ¢ € & with ¢ <1-V;: ¢ K CEV -
But this would contradict the maximality. Thus V.cc/ gy = 1.
Choosing a representative g of y and setting B = ENscc 1k Ce(E€)
and 2% = ¢:B, { € C/K, we obtain a family of disjoint Borel sets
with hZs =23, h€ C, and o(Z — Usec/x 2¢) =0.

Let 27 = Ngeq 8(Ueec/x 26), and let 27 =2'n2z, € C/K.
Since G is countable, 2 is a G-invariant conull Borel subset of 2,
2" = Ugec/x # > the 27 ’s are pairwise disjoint, and hZy = Zj;,
h € C. The G-space (£, a) is obviously isomorphic to (£, a).
Thus our proof is complete by Lemma 3.7 and Remark 2.1. m]

THEOREM 3.9. Countable nilpotent groups do not admit nonatomic
SAT actions.

Proof. Using Theorem 3.3, Lemma 3.8 and Remark 2.1, the proof
is an obvious induction with respect to the class of G. O

LemMA 3.10. Let vy, vy, ..., v € LI(Z) where & is a Borel
G-space with a o-finite quasi-invariant measure «. Assume that the
convex hull co(Gvy, ..., Gvy) isdensein LI(Z) andthat G is count-
able. Then there exists i € {1, 2, ..., k} and a G-invariant Borel set
20 C &£ such that vi(23) = 1 and v; is a SAT measure on (23, ag)
where aq is the restriction of a to Z.

Proof. Let % denote the collection of Borel sets 4 C 2 such that
a(A) # 0 and for every ¢ > 0 and every Borel B C 4 with a(B) #0
there exists g € G with (gv;)(B) > 1—¢. We claim that % # @ for at
leastone i =1, 2, ..., k. Indeed, it is easy to see that if ¥, = @ for
ali=1, 2, ..., k, then there would exist a sequence &;, ..., &, >0
and a sequence of Borel sets B; 2 B, O --- 2 By with a(B;) # 0 and
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(gvi))(B;) < 1—¢; forall g € G and i =1,2,...,k. Set ¢ =
min{e; , ..., &}, and define ¢ € L}(#) by % = a(By)"'xp, (we
can assume that a is ﬁnite) According to our assumption there exists
a convex combination Z, 1 Pj(&vi)) with llp — Z] 1D givi, ) <e.
Hence, (gv;)(B;) > (gvi)(By) > 1—¢>1—¢; for some g € G and
some i =1,2,...,k. This would clearly contradict the definition
of the sequences B;,..., By and &, ..., &.

Let % # @ and let & be the corresponding family of projections
of L®(Z),i.e., p €& if and only if ¢ = x4 (mod a) and 4 € 7.
It is clear that & is a G-invariant family. Therefore \/ & is a G-
invariant projection. Since G is countable, it is easy to see that y =
X2 (mode) fora G-invariant Borel set 25 C 2”. It is also easy to see
that 235 € ;. The G-invariance of 2 then implies that v;(Z3) = 1.
By Proposition 2.2(b) and the definition of %, v; is a SAT measure
on (%5, ag). ]

THEOREM 3.11. Let G be a countable group and H a subgroup of
finite index. If H admits only purely atomic SAT actions then G also
admits only purely atomic SAT actions.

Proof. Let {g;}?_, be aright transversal of H in G. Itis clear that
if v isa SAT measure on a G-space (£, «) then coHgv, ... ,Hgu)
is dense in L!(2’). Considering £ as an H-space our claim follows
from Lemma 3.10. a

Recall that by Gromov’s theorem [6] every finitely generated group
of polynomial growth contains a nilpotent subgroup of finite index.

CoROLLARY 3.12. Finitely generated groups of polynomial growth
do not admit nonatomic SAT actions.

THEOREM 3.13. The following conditions are equivalent for a finitely
generated solvable group G :

(a) G has polynomial growth,

(b) G does not admit nonatomic SAT actions,

(c) if u is a probability measure on G, then every u-harmonic func-
tion is constant on the cosets of the smallest subgroup H C G such that
uH)=1.

Proof. (a) = (b) is contained in Corollary 3.12. (b) = (c) fol-
lows from Lemma 1.1(b). To prove that (c¢) implies (a) we invoke
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the following result of Rosenblatt [11]: A finitely generated solvable
group has polynomial growth if and only if it does not contain a free
subsemigroup on two generators. Suppose that (c) is true but (a) is
false. Then G contains a free subsemigroup S on two generators
a,b. Let u = %5,1 + %(5,]. From (c) every u-harmonic function 4
satisfies #(gs) =h(g) forall g€ G and s€ S. Let p, =150 4,
where u' is the i-th convolution power. Using [3, Théoreme 1] we
have

Jim ||gun — pn|l = sup{lh(g) — h(e)l; h € Z, ||k < 1}

for every g € G, where || gu, — un|| denotes the total variation norm
and # the space of u-harmonic functions. Thus

nlirgo Isn — un|| =0 foreverysesS.

Note that u, is a sequence of probability measures carried on S.
We can consider these measures as means on S. The set of means
is weakly * compact. It follows that every weak * cluster point of the
sequence U, is a left invariant mean on S'. Since S is not amenable
we arrive at a contradiction. Thus (c) implies (a). O
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