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An interpolation subset in the boundary of a domain is a closed set
in which every continuous (or smooth) function can be extended as a
holomorphic function inside the domain and continuous (or smooth,
respectively) up to the boundary. In this paper we give some geometric
description for submanifolds in the unitary group to be interpolation
sets for the domain obtained by taking polynomial hull of the uni-
tary group. In particular, we retrieved corresponding results on the
polydisc.

The goal of this paper is to characterize the interpolation manifolds
in the unitary group U(n), which is regarded as an n?-dimensional
real analytic submanifold in C n — R2 _ The theme of this topic
started from the work by Henkin and Tumanov in [5], and Burns-Stout
in [2] who proved the case for real analytic interpolation manifolds
on the boundaries of some pseudoconvex domains. Then a lengthy
cycle of works (Hakim-Sibony [4], Henkin-Tumanov [5], Stout [13],
etc.) followed which mainly study the case for interpolation manifolds
in the boundaries of strongly pseudoconvex domains. By using an
embedding technique, Saeren’s paper [11] was the first to deal with the
case for the interpolation manifolds in the polydisc. In what follows,
we shall deal with similar problems for U(#n), which contains the
polydisc as an n-dimensional real analytic submanifold.

The paper is organized in the following way.

In §1, we give some basic definitions and properties related to the
unitary group U(n). In particular, the polynomial hull of U(n) is
described. After introducing the open-cone condition and the closed-
cone condition, which bear some resemblance to the polydisc case,
§2 contains the statement of all the results in this paper. Section 3
provides mainly the technical details for the proof of the results stated
in §2. Finally, §4 contains some remarks that relate our work to that
of Jimbo-Sakai [7] and that of Saerens [11], [12].

1. Definitions and certain properties of U(n). In this section, we
are going to introduce several notations and definitions that we will

181



182 YEREN XU

use throughout the paper. Since we are mainly concerned with some
analytic properties of U(n), we will ignore, for the most part, the
algebraic structure of this compact Lie group.

Let U(n) be the unitary group in C", that is the set of all n x n

unitary matrices. If we use the standard coordinates of C" and write
Z=(Z',...,Z"" with Z' =(Z},...,Z}), then

Un)={ZeCr:Z1Z =27 =1I,}.

The group U(n) is a real analytic manifold, and dimg U(n) = n?. If
we define

n
$H(Z) = Re{Zz,gz,g—a;} , 1<i,j<n,

k=1
n

wi(Z) = Im{Zz,gz,g} , 1<i,j<n,
k=1

then U(n) = {Z € C": ¢i(Z) = yi(Z) = 0, for all i, j}. Note
that automatically we have y/(Z) = 0 for all 1 < i < n. Under
the identification of an n2-vector & = (&}, ..., &L, ..., &F, ..., &M
with an (n x n)-matrix £ with row-vectors &' = (¢, ..., &), the real
tangent space of U(n) at a point P is given by

Tp(U(n)) = {& € C™': & + PEP = 0}.

This can be seen as follows. First, by the definition of real tangent

space,
=0,

zZ-I,

) ot
T; (U(n)) = {éeC” : Re( > éfaijs
t

1<4s,t<n

oyl

— s_ ')

_Re( Z f’az,s)
1<s,t<n

foralllgi,jgn}

Z=I,

={feC”: E+E =0}

If PeU(n), sothat P: C* — C" defined by P(z) = P-Z with the
canonical correspondence between C " and GL(n, C) given above,
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then the mapping P is nonsingular and linear. It carries U(n) to
itself. The differential dP: C" — C" is just P,and PI, = P. Thus

Tp(U(n)) = dP(T; (U(n))) = {x € C"": x = P& with & + & = 0}.
Then, as £+ &1 =0,
0=¢+& =Py +(PTy) = P~'(x + Px'P).

Our conclusion follows. (In particular, the tangent space of U(n) at
the identity matrix may be identified with the set of all n x n skew-
hermitian matrices. That is to say, the Lie algebra of U(n) is the
algebra of all skew-symmetric matrices.) Therefore U(n) is a totally
real submanifold in C* with maximum dimension. The total reality
of U(n) also follows from the observation that U(n) is the fixed
submanifold of the antiholomorphic linear mapping 7: GL(n, C) —
GL(n, C) given by T(A) = (A~ 1)!.

Let D be a bounded domain in C”. We denote by 4%(D) the
algebra of all functions that are analytic on D and have kth (0 <
k < oo) continuous partial derivatives on the closure of D. The
algebra A“ consists of all analytic functions on D that extend to be
analytic on a neighborhood of D . For the algebra A° (functions that
are analytic on D and continuous on D), we write simply A(D).

Given a bounded domain D with smooth boundary oD, a compact
subset X is called a peak set for AX(D) if there is a function f in
A*(D) such that f|]z = 1 and |f(z)| < 1 forall z€ D\X. A compact
set X C bD is called an interpolation set for AX(D) if for any given
function f e C¥(X), there is an F € 4X(D) that coincides with f on
Y. If F can be chosen in such a way that |F(w)| < max,c5 |F(z)| for
all w in D\, then X is called a peak-interpolation set for A*(D). We
call X a local peak set (local interpolation set, local peak-interpolation
set) if for every point p in X, the corresponding assumptions hold
for 2N U with some neighborhood U of p.

Recall that for a compact subset K in C”, the polynomial hull of
K is defined to be

K ={zeC", |p(z)] £ Maxyex [p(w)]
for all holomorphic polynomials p in C"}.

In the following lemma, we use the notation 4 < 0 to mean that the
square matrix 4 has only nonpositive eigenvalues.
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LEMMA 1.1. The polynomial hull of the unitary group U(n) in cr’
is
Un)={ZeC":Z1Z - I, < 0}.

Proof. Let A={Z € cv, ZiZ-1,< 0} . First we know that the

torus © consisting of all matrices of the form Diag(e?, ..., e%) is
contained in U(n). The polynomial hull of © is given by
© = {Diag(A;, ..., An): || <1 fori=1,...,n}.

On the other hand, every n x n matrix can be written as UDV with
U, V two unitary matrices and D a diagonal matrix, a direct conse-
quence of Schur’s 1emma about diagonalizing square matrices (cf. [1,
p. 195]) The set U(n) is 1nvar1ant under the action of U( ). That is,
if Pe U(n) then UPV € U(n) Therefore A C U(n) Conversely,
if P ¢ A, then there is an eigenvalue of P, say 4;, with modulus
strictly greater than 1. By Schur’s lemma, there exists a unitary ma-
trix U such that U~!PU is an upper-triangle matrix with diagonal
elements the eigenvalues of P. Assume that A; appears in the first
position of the diagonal and let U~! = (v}). Then the polynomial

p(Z)= > ulzjv

1<s,t<n

enjoys the following properties:
(1) p(P) = | > 1,
(2) Maxzey(m) IP(Z)| = Maxzeym lz]1 < 1.
This completes the proof.

From the above proof, we can obtain a stronger conclusion that the
linear convex hull of U(n) coincides with its polynomial hull, and

therefore that U(n) is convex. Also, from the above lemma, U(n) is
closed under matrix multiplication and has U(n) as its Shilov bound-
ary. Since a Hermitian matrix is positive definite (i.e., all eigenvalues
are positive) if and only if the determinant of all its principal minors
are positive, U/(;) is the semianalytic set defined by

n .
U(n) = {z €C" : Det [(5;1 -> z,’czi] >0,
1<i, j<I

k=1 <i,j<
foralll=1,...,n}.
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2. Statement of results. In this section we will state several theo-
rems; we leave the proofs to the next section.
Let & be the set of all skew-Hermitian matrices A and define

P,={4eF:id>0}, FP_={Ae S :iA<0}.

A C! submanifold T inU(n) is said to satisfy the open cone (resp.
closed cone) condition if the following holds for every point p €

T,(Z)p~! ¢ A\P, U

(resp. if T,(Z)p~! C P\ (L UA)).

Here we are using the identification of an n“-vector { withan nxn
matrix as we mentioned at the beginning of §1. For a k-dimensional
C! submanifold X in C” , the real tangent space at the point p is
defined by

Ty(Z) = {J(@)p-V:V € R}

k s
2{(2% UI) :V:(v‘,...,vk)eRk},
Bx, )
1<s,t<n

I=1
where X is parameterized near p by the C! mapping
2
P = (¢§)1§s,t§n: Rk - C"

and J(®), is the n? xk Jacobian of ® at p. Therefore our open cone
(or closed cone) condition simply means that for all V = (v!, ..., v¥)

in R*, the matrix
k n
, o=\ | .1
! (Z <Z dx, ¢r) lpv

I=1 \r=1

2

1<s,t<n

is neither positive semi-definite nor negative semi-definite (or neither
positive definite nor negative definite).

Our first theorem is a simple analogue of [2, Theorem IV.1] and
follows from the semianalyticity of U(n).

THEOREM 2.1. A real-analytic closed submanifold X in U(n) is an
interpolation set for A°(U(n)) if and only if there exists a complex
submanifold A in a neighborhood of U(n) such that
T=Un)n# =Un)n.A#.
There is a geometric description of the real-analytic submanifolds
that are interpolation sets for A®(U(n)):
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THEOREM 2.2. Let X be a real analytic closed submanifold of U(n).
If X satisfies the open cone condition at each of its points, then X is
an interpolation set for A® ([7(;)) . Conversely, if a is an interpolation
set or A“’(If(\n)) , then X necessarily satisfies the closed cone condition
at each point.

For the C%interpolation problem, we can get a stronger result as
follows

THEOREM 2.3. Let T be a closed C? submanifold in U(n). If
satiﬂﬁ\es the open cone condition, then X is a peak-interpolation set for
A(U(n)). Conversely, ¥ must satisfy the closed cone condition if it is

——

a peak-interpolation for A(U(n)).

In the case of C°°, we have obtained only a partial result as follows.
For the corresponding results in the polydisc case, see [8].

THEOREM 2.4. Suppose that X is a closed C>* submanifold of U(n).
If X satisfies the open cone condition at each of its points, then X is
a local peak set and also an interpolation set for A~°(U(n)). Con-
versely, if T is a peak set for A* (U/(;)) with k > 1, then there exists
an (n? — 1)-dimensional C* submanifold # in some neighborhood
of U{(;) such that £ C #/ NU(n) and # NU(n) satisfies the closed
cone condition at each of its points.

We end this section by giving some examples.

ExAMPLE 2.5. Consider the real analytic curve I' in U(n) defined

by
I gertt /T —¢g2e2nt
O=\_vizeem@ getr-i

where v2/2 <& <1 and 1+ 52— 3¢2 +2¢* < 0. Then we have

-—82 6—83—ieq
m«»m:( vie )

e—¢ +ien 82

Vi-é
Hence the curve is a peak-interpolation set for A(U/(;)) for t near
0, since at t = 0 we have that

e2

Det(il"(0)I(0)") = 1=

(1+n%-3e%+2* <0.
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ExAaMPLE 2.6. Let SU(n) be the special unitary group in U(n).
Then SU(n) is a peak-interpolation set for A“(U(n)). This can be
seen either from Theorem 2.1, since

SU(n) =SU(M)N{Z € C": det(Z) = 1}

=Umn)Nn{ZeC": det(Z) =1}

and {Z € cr' det(Z) = 1} is a complex submanifold in cr . Al-
ternatively, the result follows from Theorem 2.2, since for any & €
Tp(SU(n)), we have that

Tr{iéP} =0

and this implies that £ can be neither positive definite nor negative
definite. For any fixed real number 6, we define a submanifold

Ug(n) ={Z € U(n): det(Z) = ¢'%}.

Then Uy is a peak-interpolation set for A‘”(U/(;)) and for 4A(U(n)),
since we can show that this submanifold satisfies the open cone con-
dition. Similar to the second proof, one can show that the special
orthogonal group

SO(n)={Z €R" :Z!Z = I,}

is also a peak-interpolation set for A‘”(U/(;)) and for A(U(n)).

3. The proof of the theorems. In this section, we will give a complete
proof of the theorems stated in the last section. The ideas in these
proofs are originally from Nagel and Rudin [9], Burns and Stout [2],
and Saerens [11]. Two preliminary results from matrix analysis will
be used to deal with U(n).

LEMMA 3.1. If 4 = (a;'.) is an n X n positive definite matrix and
B = (b]".) is an n x n negative definite matrix, then we have following

inequality:
n

atbt < 0.
Y ajb;

i,j=1
Proof. Recall that the Schur product of two n x n square matrices
A= (aj.) and B = (b]’:) is the n x n matrix C = (¢}) defined by

cj.‘ = aj.b]’:. It is well known that the Schur product of two positive
definite matrices is still positive definite (cf. [1, p. 94]). Therefore
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the matrix C = (a}b!) is negative definite. Taking X = (1,..., 1),
XCX? < 0 gives our first lemma.

LEMMA 3.2. If an n x n matrix A = (aj.) is positive definite, then
the n* x n* matrix B = (a!l,) is also positive definite.

Proof. Let X = (X1, ..., X,) be any vector in c” with X; =
(X},..., X}) in C", and let B! = (ail,)nxn- Then B = (B!). Now
- n - n n ) -
XBX'= Y X;BiX'=Y > alXxfx!
i,j=1 i,j=1k,I=1
n n R
= > | Y dxfxty).
k=1 \i,j=1

Since 4 > 0, for any fixed k, /, every term inside the parentheses is
strictly positive. Therefore B is strictly positive definite.

The proof of Theorem 2.1 follows, mutatis mutandis, fron/l\the al-
gebraic proof of Theorem IV.1 of [2], since we know that U(n) is a
semi-analytic set and that the polynomial hull of U(n), 6(_5) has a
Stein neighborhood system.

The proof of Theorem 2.2 consists of two parts. First we prove the

theorem for 1-dimensional submanifolds, i.e., for curves, as follows.

ProrosiTiON 3.3. Let T' be a simple closed real analytic curve in
U(n), say I’ = T(R) with T(t) real analytic, regular and injective on
[—1, 1), and periodic with period 2. If for every t € R, we have that

I'(OT(@) c AP UF,

then T is an interpolation submanifold of A/‘"\U{(;). Conversely, if T
is a closed interpolation submanifold of A®U(n), then for all t € R

I'(OTQ) ¢ A\P. UL

Proof. Let I =[—1,1]. Then I'(1) =T'(-1) and I’ =T'(Z). We
can assume, without loss generality, that I'(0) = I,,. Since I' is real
analytic in a neighborhood of the interval I and is periodic, we can
extend I' to be holomorphic in a neighborhood R x [-n, n] C C! of
R for some suitable n > 0. We denote this extension again by I'.
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We have, by the Taylor expansion of I'(¢z + is) about a point ¢ € R,
that for small s

- EiI“”(t) + o(s?).

I'(t+is)=T0)+isT () 3

As I'(R) c U(n), we have
L)L) =1,
for all ¢ € I. Therefore, by differentiating the above equality with
respect to ¢, we obtain
r'or@:+rori@): =0,
M"(OT() + 20 (OT () + DO (1) = 0.

According to these equalities, we get

1, - T(t + is)T(Z + is)!
= is(T(OT () - ()T

+ %(F”(t)_fw+ C(OI7(0) = 2I(O7 (1)) + o(s?)
= 2isT()T ) — 282 (O)TT(E) + o(s?).

If D'(0)T(2)! ¢ P, UZ_, then the matrix I"(t)[(¢)! has two eigen-
values with opposite signs. Therefore, there exists a constant ¢ > 0
such that for every ¢ € R, the matrix I, — I'(¢+ is)I'(z + is)! also has
two eigenvalues with opposite signs for t € R and |s] < o, i.e., for
these ¢ and s, the matrix I, — I'(¢ + is)I'(z + is)! cannot be positive
semi-definite or negative semi-definite. Define f‘, a complexification
of T', by

I'={I(z): z=1t+is with € R and |s| < o}.

Note that I is a submanifold of a neighborhood of U(n), provided
tllag o is small enough. The above observation implies that I" meets
U(n) only along U(n), i.e.,

I'nUn)=TnUMn) =T.

Therefore our conclusion that I'" is an interpolation set for A“’(U/(Z))
follows from Theorem 2.1.

Conversely, suppose I"(2)I'(t)! € F# U Z_ for some Ty € R.
We assume thatfy = 0 and I'(¢y) = I,. Then there exists a small
neighborhood J = [-#, n] of 0 so that for all ¢+ € J, the matrix
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" (1)I(2)! is either positive definite or negative definite, say the former.
Now the positive definiteness of this matrix implies that we can find
a positive constant ¢ such that the following two conditions hold for
D={z=t+is:teJ and|s|<o}:

1. The matrix I"(z) is nonsingular for z € D.

2. Then the open set D is mapped by I" to C" as follows:

D_={z=t+is,teJand —c <s<0}— C"\(Un)\U(n)),

and

D,={z=t+is,teJand 0<s <o} —Un),

or the other way around, D_ is mapped to U(n) and D, to
C"2\(U/(;)\U(n)) . We assume the former one.

Therefore the embedded complex curve I'(D_) meets U/(;) only
along the curve I', while the embedded complex curve I'(D,) is con-
tained entirely in U/(;) and meets U(n) only along I'. The variety
T is a one-dimensional complex manifold that is biholomorphically
equivalent to an annulus in the complex plane, provided ¢ > 0 is
small enough. There is a function ¢ defined and holomorphic on a
neighborhood of T in T that takes I' bianalytically onto the unit
circle in C. We can suppose that ¢ oI" takes D, into the unit disc
in C and takes D_ into the complement of the unit disc. If zp € C
lies in the unit disc but has modulus very near one, then the function
f defined on T" by |

1) = gty —=
is in C%(I'), but does not extend analytically to I'(Dy). This gives
the proof of the second part of the proposition.

The above proposition leads to the proof of Theorem 2.2, by reduc-
ing the dimension of X to 1 as follows: o
Suppose that X is an interpolation set for 49(U(n)), i.e.,

A2(U(n))|s = C*(2),

but there is a point P in X such that Tp(Z)P? is not contained in
N\ (P U ). Then we can find an n x n matrix vp in Tp(X),
so that vpP! € P, U P_, say it is positive definite. There exists a
simple closed analytic curve I" in X in a neighborhood of P such
that I'(1) = P and I'(¢) = vp. Here we identify the curve I" with
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the image of real analytic map I" from the unit circle S! in C. The
mapping I" can be extended to a holomorphic function in a tubular
neighborhood D of S!. The positiveness of the matrix vp P! implies
that there exists a neighborhood B of (1, 0) so that one of the sets
D_ = {lz| < 1}nDNB and D; = {|z| > 1} N DN B is mapped into
U(n) and the closure of the image meets U(n) only along I". Thus,
by the method we used in the proof of the second part of the above
proposition, a real analytic function f on I' can be /o\btained that
cannot be extended to a neighborhood of I" inside U(n). Since X
is a simple closed real analytic curve, C“(I") = C¥(Z)|r, which leads
to the contradiction that C%(X) # A“’(U/(;))|;. This contradiction
yields the necessary condition in Theorem 2.2.

To prove the sufficiency, we only need to construct a complexifi-
cation X of X that intersects U(n) in X. Suppose dimgX = m.
Then there exists a bianalytic map ® from an open set QQ in R™ to
a neighborhood B of the point P such that £N B is the image of ®.
The open cone condition of ¥ means that the matrix

(BEee)

I=1 r=1
is neither positive definite nor negative definite for all points in Q
and for all ¥V = (v!,...,v"). Since ® is real analytic on Q, we
can choose a thin neighborhood Q of Q in C™ and extend @ to
an analytic mappmg, agaln denoted by &, from Q toa complex
submanifold £ in C” . For each fixed Xo+ 1Yy in Q, consider the
curve
I'(¢t) = (X + itYy), forlt < 1.

(We can assume that Q is symmetric about R™ .) For all ¢ in the
unit interval, we are in the same situation as we had in the proof of
the first part in Proposition 3.3. Hence by choosing small Q we can
obtain a complex submanifold X contained in Q that meets U( )
only along the X. This completes our proof of Theorem 2.2

In order to prove Theorem 2.3, first we make the following conven-
tion:

Given two vectors in C" = R¥" . We regard them as two n x n
matrices U = (ul, + iu%) and V = (v}, + ivZ) and define the usual
Euclidean inner product between these two vectors (matrices) as

U.V= Z gV, + U3 Vg,).

s,t=1
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This is the real part of the standard Hermitian inner product in cr ;
it is the standard real inner product on C" = R?"" .

Recall that a C! submanifold .# in C" is called totally real at a
point P in ./ if there is no complex subspace contained in the real
tangent space of .# at P, except the origin. Harvey and Wells [3]
proved that if M isa C! totally real submanifold of a complex mani-
fold X, then there exist a neighborhood .#* of M and a nonnegative
function ¢ € C2(#") such that

l. M={zeN:¢(z) =0} ={z € X : grad(¢(z)) = 0},

2. ¢(z) is strictly plurisubharmonic on /.

The idea for proving Theorem 2.3 is, at every point P in X, to em-
bed X locally into the boundary of a strictly pseudoconvex domain &
in C" such that ¥ is complex tangential in the boundary 4Z . This
can be done first by requiring < to be strictly pseudoconvex near the
point P. Then use a method from Stout [13] and Saerens [11] to get
a globally strictly pseudoconvex domain & so that X is also complex
tangential near P. Thus X is a local peak set and a local interpolation
set for A(U(n)), following results from Henkin-Tumanov [5]. More-
over, by using partition of unity e/xgctly as done in Hakim-Sibony [4],
X is an interpolation set for 4(U(n)). Finally the property of global
peak-interpolation for X is obtained from Varopoulos’ Theorem in
[14]. We give the proof of the first part and leave the proof of the
second part to the references [11] and [13]. Without loss of generality,
we can assume that P=1,.

PROPOSITION 3.4. Let T be a C? submanifold of U(n) that con-
tains I, . If X satisfies the open cone condition at I,,, then there exists
a C? function p: C" — R such that for the domain & defined by
g ={Z ¢ cr . p(Z) < 0}, there is an open subset % in C" such
that

1. dp(Z)+#0 for Z in 7, .

2. UnmNZ Cc b and % Nn(U(n)\U(n)) c <,

3. Tp(X) C TS (D) if P X, and

4. p is strictly plurisubharmonic in a neighborhood of b2 N% .

Proof. Assume dimg X = m. Then m < n2—1. We note that there
exists a neighborhood B of the point I, in U(n) and an (n? - 1)-
dimensional C2 submanifold X of U(n) so that YN B satisfies the
open cone condition and contains XN B . This can be done, using the
equivalent definition of cone conditions stated in Remark 4.1, by the
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same argument given in Saerens [11]. (See the proof of Lemma IV.2
in [11].)
So starting from now, we can assume that the manifold X is of top
dimension, i.e., of dimension n2 — 1. We need to show that if
Tp(2)P' C A\(PNF)

for P € X near the identity, then a normal vector e(P) € (Tp(Z)P?)*
can be chosen such that e(P) € #, UZ_. For this, it is enough to
assume that P = I, and that X is given by ®(Z) =0 for Z € U(n)
near I, and® a C? real-valued function with d® # 0 on X.

Let Bgp be the skew-hermitian matrix defined by

Bo = (Bjj) = ((% - -5-;—)7) (In)) :
J i

Then there exists a unitary matrix U so that
UBoU! = idiag(A;, ..., An), A ER.

Consider a linear change of coordinates L: Z — UZU". Then under
this mapping, U(n) — U(n), I, — I, and for Z € L(U(n)) = U(n)
near the identity, Y is given by ¥(Z) = ®(U'ZU) = 0. Moreover,

9P —
a—zjz— Z kaZkUlj’

<U’
ZZ, .

ZUk—a_ﬂ?ﬁ
k,l

BZ] Z

Thus L
B\y = UBq;Ut = idiag(ll s ey A.n)

On the other hand, by the definition of the real tangent space,

Ty (Z) = { =(Ah)es: Re{ZAJaZI }:o}.

If A= —A7, then
oY

{ZAJazz
= EZA;Z(B\P);'. = iZA,—A;’.
i,j i
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Therefore, the condition 77 (¥) C S\%, US_ implies that the real
numbers A;, ..., A, all have the same sign. (For if, say, 4; > 0 and
Az < 0, then the skew-hermitian matrix A4 = i diag(4;, —4;,0, ..., 0)
would be in %, N T; (X).) Thus the matrix iBy is either positive
definite or negative definite, and by our definition of normal vector,
we can choose e(Ip) = By, since for all vectors 4 € 17 (%),

A-e(I,) =Re»_ A(By)’ =0.
i,j

For a general point P = (P} ) € £ near I,, we can choose

(33 33) ).

and the positive (or negative) definiteness of e(P) follows from that
of e(l,). '

To construct our desired function p, we assume, without loss of
generality, that e(P) € %, ; i.e., the matrix ie(P) = (C}(P)+iDf(P))
is positive definite for P near the identity.

By the theorem of Harvey and Wells, there exist a neighborhood
A" of Z and a non-negative strictly plurisubharmonic function ¢(Z)
in ./ such that

I={ZeN:¢(Z)=0}={Z €N :grad¢(Z) = 0}.
If H(¢)p denotes the complex Hessian of ¢(Z) at P, i.e.,
H($)r = ( 32¢~(P>) ,
0808k

where 1 < j, k < n? and ¢ j runs through the n? complex coordi-
nates Z ;', then the n? x n? matrix H(¢) is positive definite near
I, . Therefore there exists a large positive number «g such that the
n? x n? Hermitian matrix B + agH(¢) 1, 18 positive definite, where

8(C3(Z) + iD§(Z)) aCZ)+ii2)
Bz( “ozF )Z=,n+( 573 )

z=I,

We define a real-valued C2? function
n

pUZ) =Y (CHZ)pi(Z) + D}(Z)¥i(Z)),

s, t=1

where {¢{(Z), y;(Z)} are the defining functions of U(n) defined
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in §1, and choose an arbitrary C2 function f: R — R such that
f(0) =0 and f’(0) = o . Then our desired function p is given by
P(Z) = pi(Z) + f(¢(2)).
Our assertion 1 in Proposition 3.4 follows from the fact that

op(Z) _op(Z)
0Z¥ |,_, OZE

= Cy(In) + iDy(In)

Z=I,
and that our matrix ie(,) is nonzero. For part 2, we note that if
Z €U(n) isnear I,, ¢(Z) = ¢,(Z) v} (Z) =0, and hence U(n) C

b . For the inclusion that %/ ﬂU(n) C &', we note that for Z € U(n)
near I,,

($1(Z) +iy;(Z)) <0,  (C/(Z)+iDj(Z))>0.

Therefore, Lemma 3.1 and the fact that at I,,, f o ¢ vanishes to the
second order while the function p; vanishes only to the first order,
yield our result. For part 3, we note that the complex tangent space
of b7 at P € X is defined by
_ o} |
Z=P

TS (D) = { E = (E)pxn: Z év azu
u,v=1

A computation shows that at P, E € T§(b2) if and only if the

following equality holds

)

u,v=1

{E= Ent 3 cv‘"glz?

n
(%) Y CYPK(CE(P)+iD(P) =0
u,v, k=1

Thus the inclusion Tp(X) C T5(BZ) follows from the fact that the
skew-hermitian matrix e(P) isin (Tp(Z)P?)*,i.e., e(P) has to satisfy
the equality (x) for all E € Tp(X).

To prove the last part, it is enough to show that the Hessian of
p(Z) is strictly positive definite when P = I,,. This is obtained from
Lemma 3.2 and the following identity

8%p(Z)
821077 | |z

Thus, we finish the proof of our proposition.

= (6f (CY(In)+iDy(In))) 22+ B+ 1 (0)H(9) | 21,
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The global version of Proposition 3.4 is stated in the following
proposition that ensures that the domain & can be chosen globally as
a strictly pseudoconvex domain. The proof is the same as that given
by Saerens in [11] for polydiscs.

PROPOSITION 3.5. Given a point P € X, there exists a strictly pseu-
2
doconvex domain @ C C" with C? boundary and an open subset
% containing P such that conclusions (2) with (3) in Proposition 3.4
hold.

It is known [5, 10] that a C! submanifold M in the boundary of
a strictly pseudoconvex domain D is a peak-interpolation set if and
only if for each point P € M, Tp(M) C TS (bD). Thus together with
Proposition 3.5, we can assert, following the lines in Saerens [4], that
X is a local peak set and an interpolation set for A(U(n)), provided
that X satisfies the open cone condition at every point. Since, for
every point P in U(n), the function

n k pk
fr(Z)= E—"—’jz—’ﬁ for Z e U(n),

peaks only at the point P, P is a peak point for A(U/(;)) . Our suffi-
cient condition in Theorem 2.3 is then an immediate consequence of
a result, due to Varopoulos in [14], which implies that, for a bounded
domain D, an interpolation set for A(D) of which every point is also
a peak point for A(D) is actually a peak-interpolation set for A(D).

Our proof of the necessity in Theorem 2.3 is based on the following
two theorems (cf. [9]).

THEOREM (Nagel and Rudin). Let the segment (0, 1) C R be one
edge of an open rectangle Q in the upper half-plane of C. Suppose

(a) f:Q — C is a bounded C!-function, and

(b) %% € LP(Q) for some p > 1.

Then lim f(x + iy) exists for almost all x € (0, 1), as y — 0.

THEOREM (Nagel and Rudin). If & € C" is a domain and if K C
b is a peak set for A(D), then there exists an F € H*(Z') which
has no limit along any curve in < that ends at a point of K.

Nagel and Wainger obtained several more general results. For de-
tails, see [10].
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Suppose now that ¢ is a peak set for A([T(;)) and that there is a
point, say P, at which there is a non-zero vector ¢ € Tp(X) such that
EPLe P, U . Choose a C? simple closed curve y in U(n) so that
P €y and y isthe image of some C? periodic mapping ¢: R — U(n)
with ¢(0) = P and ¢'(0) = &. Let d = Max{}|¢||oo, 9" lloc} < oo
Assume that ip/(0)p?(0) < 0. (The same proof works for the case
when the matrix i¢’(0)p!(0) is positive definite.) Then this matrix
remains negative definite for small x in R. Without loss of generality,
we assume that ¢(x + 2) = ¢(x). Choose a function y: (-1, 1) —

C n’ such that

1 1 1
/_1 wl(x)dx =1, [1 xyf(x)|dx < e

The existence of such a function is seen as follows. Let ¢ = ﬁ >0,
and let 4 be a function on [0, 1] with A4(0) = A/(0) = /I”( ) =0,
A(1)=1/2, A positive and increasing on [0, 1] such that fo x)dx
> 1/2 — c¢. Then by extending 4 to [-1, 0] as an odd functlon the
function A'(x) has the desired properties.

Define uf(x,y) = [! (pF)(x + ty)w}(t)dt and

D(x + iy) = ¢(x) + iyu(x, y)

for x near 0 and y > 0. Since our matrix i¢’(x)@!(x) is negative
definite when x = 0, we can find a positive number e so that for x
near O,

Im(2¢ )>e>0

for k=1,..., n. Therefore ¢ and ® have the following properties
for z=x+1iy:

1. &(x)=¢p(x) and B‘D =1i¢'(x).

2. There exist two small posmve constants ¢, n such that under
the mapping @, the region (—¢, &) x [0, 5] is mapped into [T(;) and

Maxxe[—a,a] Wl(x) - ¢,(X +y)| <dy<e.

- ux(x, y)I < |l¢'“oo, uy(x, )| <1, and |25 < C < 0.
Let ®(z) = (®!(z), ..., D"(z)), where the <I)k >s are the columns
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of ®. Thenfor 1 <k <n and z near 0

n
L= @ (x + iy)> = 1 =) lof (x) + ivuf (x, y)I°
I=1

=2y (Im Z(q)}‘)’(x)w}‘(X))
I=1

n
2y (xmz o () (1)~ <¢,k>'<x>>)
I=1

—y*|uf(x, »)
since second and last term in this equality are O(y?) by the above
property (2). Now U(n) is contained in the set .S, S = §2* 1 x...x
S2n=1 "the product of n copies of (21— 1)-sphere. The distance from
the point ®(z) to U(n) is greater than or equal to that to .S'. Suppose
{ to be a point in S. Then

|0%(2) — K> = 1 + 10K (2)] - 2Re((¥, DF(2))
> 1 — |®%(2)]? > ey.

Therefore dist(®(z), U(n)) > ey. If F is a function in A(U/(Z)) , by
letting f(z) = F(®(z)), we have following estimate for small y:

0f(2)| o IFlle __ |0%(2)
9z |~ dist(®(z), U(n))| 0z

1> ey,

=0(y~'?).

Therefore %Eﬁ belongs to .Z?(Q) for some rectangle Q in the upper
half plane, where 1 < p < 2. Our theorem then follows from the
theorem of Nagel and Rudin.

The proof of the sufficiency of Theorem 2.4 could have been carried
out exactly in the same fashion, if one notes that our constructions and
all the theorems we quoted there still work in the C* case. But since
we no longer have a C* version of Varopoulos’s theorem, we can only
reach the conclusion that X is a local peak set and an interpolation
set for A>°(U(n)). .

Proof of the necessity in Theorem 2.4: Let f € AX(U(n)) be such
that fly =1 and |f 1@\2 < 1. Without loss of generality, we can

assume that f # 0 in lﬂﬁ). Let log(f(Z)) = u(Z) + iv(Z) and
M ={ZeC", v(Z)=0}nU(n).

Then .# contains X . First we show that near every point Py € X, .#
is a manifold of dimension n2—1. This amounts to showing that there
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exists n € Tp (U(n)) such that n(v) # 0. Consider the holomorphic
mapping ¢ from the unit disc U in C to U/(;)\U(n) defined by
¢(&) = ¢Py. Then ¢(1) = Py, f(#(1)) =1 and |f(¢(S))] < 1 for

£ € U. Therefore, Hopf’s lemma and the Cauchy-Riemann equations
give dv(p(e?))/d0 # 0. By taking n = @551 € Tp(U(n)), we
have n(v) # 0. Thus d(v|y,)) does not vanish at point P,. Next
we claim that .#Z satisfies the closed cone condition at every point of
%. If not, say at P, we have that the set Tp(.#)P? is not contained
in the set \(#; UZ_). Then there exists an n x n matrix ¢ in
Tp(#) such that iEPT > 0 or i¢P! < 0, say the former. LetA4 =
iP¢. Then &+ PEP = 0 implies that 4 = P~1(iEP))P > 0. For
|{] < 1, we define a matrix function M({) = I, — c(1 — {)A, where
¢ =1/max,c;<, 4; >0 with 4; the positive eigenvalues of the matrix
A. (If A<0, wetake ¢ = —1/max;<;<,|4;] < 0.) The eigenvalues
of M({) are u; =1—c(1 —{)A; with

Iu,- =1-—ci; (g(ll—l_%ezc)—c%i) <1,
since 2(1 — Rel) > (1 —Re{)? + (Im¢)? = |1 — {2 M(1) =
Therefore the mapping { — PM({) is C* from the unit disc to
U/(;). The function f(PM (C )) takes its maximum modulus only at
{ = 1. Hopf’s lemma yields 2 |C 1 > 0. Thus the Cauchy-Riemann
equations give 60|¢ 1> 0. Now we write M( ) = (ak({)) and v =

v(PM({)) = v(Xg=, Psat (£)). Then dgat Ole=1 = 121 15;”” and
L Bv
-3 i (Treo)]

s, 1=
iPS—ak(l)
ZszZ::l de t

ov

0< —

n
ov
- 2z

s,t=1

&
=P

__ia_v
—, 071 12-

s,t=1

which contradicts the equality Re(}7 ,_; Z%|2-p&) = 0, since & €
Tp(A'). Thus we finish our proof of Theorem 2.4.

4. Remarks.

REMARK 4.1. Recall that U(n) is the image of ., the set of all n x
n skew-Hermitian matrices, under the exponential map. Therefore,
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if Q is an open subset in R™ and if ¥ is a C*¥ mapping from Q
to ., expo¥ is also a C*¥ mapping with image in U(n). Under
this correspondence, if the set exp(‘¥(Q2)) is a submanifold in U(n),
the open cone condition and closed cone condition on exp(¥(S2)) are
converted to the following form:

open cone condition at point P = W(X):

{(JP)|xV:VeR" CcA\(FLUZL),
closed cone condition at point P = ¥(X):
{(JP)|xV :VeR"}CA\(FPLUAL),

where JW is the Jacobian of the mapping ¥. Thus we can restate all
theorems in §2 by imposing these revised cone conditions on W(X).

The proof of the equivalence of these two types of cone conditions
is based on the following lemma:

LEMMA 4.1. Let H=H(t,..., ty) be an n x n matrix that de-
pends on the parameters t,, ..., t,,. Then for any constant s

8 sH — /S —(s—s)HaH -s, H

Proof. Let X(s, t) = £-e~sH . Then

dX 9 9 ——sH —sH
ds at, s’ Btj( —He™)
OH _ g

= —HX——B'—t;‘e

Hence X (s, ¢) satisfies the inhomogeneous system

dYy
— Y =
= =AY(5)+B(s), Y(0)
which has the solution Y(s) = fj e*"94B(t)dz. As a consequence,
we have the desired equality in the lemma.

By using this lemma, our equivalence follows immediately. For
if we write ¥(X) = (y(X)) and €¥X) = (e5(X)), then for every
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V =(v1,...,Uyn) € R" we have

m m
._ 8es(X) - aeS(X))
Y(X) § i ANl = je~YX) 2 hhd A S
¢ (1 ;90X ) * ( < 0% Jun
= nxn

I=1

m 1
= je~ N Y H) / et 2 prvony )y,
- 0 axl nxn

1 T ops(X
_ —t¥(X) [ ; i (X) T¥(X)
-/0 e (lz ax; v,) e dr.
nxn

I=1

As two conjugate matrices, the left-hand side is positive (or negative)
definite if and only if the right-hand side is. This gives the equivalence
of the two type of cone conditions.

There is an interesting consequence of the above equivalence. If we
canonically embed the polydisc T" into U(n) as

(215 ..., 2zn) € T" — diag(zy, ..., z,) € U(n),

then every submanifold X in 7" can be considered as a submanifold
¥ in U(n) of the same smoothness. It follows that ¥ satisfies the
open (closed, resp.) cone condition in our definition if and only if £
satisfies the open (closed, resp.) cone condition in Burns and Stout
[2] and Saerens [11]. Namely, if Q is an open subset in R™ and if
®: R™ — R" is a nonsingular map of class C2, then the open cone
condition in [2] and [11]

{®'(X)V :V € R"YnRT = {0},

which implies that the set {(e/®:X), ..., ¢®:(X)): X € Q} is a peak-
interpolation set for the polydisc algebra A4(U"), holds if and only
if

(J¥X)V :V € R"} c AP, UP.,
where W(X) = diag(i®;(X), ..., i®,(X)) € &. Moreover, the point
(X)) | e®.(X)) in U” corresponds to the point

diag(e’®X) | .., (X)) = exp(¥(X)) € U(n).

Similarly, the closed cone condition in [2] and [11] can be obtained by
the same argument. Therefore all parallel results in [2] and [11] about
peak sets, interpolation sets and peak-interpolation sets for A(77"),
A>®(T™) and A®(T") can be obtained as corollaries of our Theorem
2.1,2.2,2.3and 2.4.
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REMARK 4.2. If a submanifold £ in U(n) happens to be a closed
subgroup (Lie subgroup), e.g., SU(n), then the cone condition holds
at every point if and only if it holds at one point, because we have
following proposition.

PROPOSITION 4.2. If X is a subgroup of U(n) and satisfies the open
cone condition at point Py, then X has the same property at every
point P.

Proof. From the definition of the real space of U(n), we can derive
that for any unitary matrix U,

UTp(U(n)) = Typ(U(n)) and Tp (U(n))U = Tpy(U(n)).

Since X is a subgroup of U(n), PPy ! also lies in X. Therefore
Tp(U(n)) = PPO‘ITPO(U(n)). Let £ = ¥Y(Q) with ¥ defined in Re-
mark 4.1. Assume P = W(X) and Py = ¥(Xp). Then there exist m?
functions A(X, Xp) = (a,ﬁ(X, Xo0))mxm such that

aY¥(X) _ 1 [ <= 8¥(X)
5x = FO¥(X0) 1( i

-0

al(X, Xo) | »
j=1
since ¥ C U(n) implies Tp(X) C Tp(U(n)). We only need to show
that the matrix A(X, Xy) is nonsingular. But this is obvious, since
we have

¥(X) _ i O¥(X)

! j
axk axl (X)a](X0> X)ak(Xﬁ XO) >

j,l=1
and this implies that A(X, Xp)A(Xy, X)=1,.

REMARK 4.3. Let & = 2, x --- x &, be a domain in CV, where
each 9, is a strictly pseudoconvex domain of C* with C* bound-
ary. Let p, be a defining function for &, andset I' = b x---x b,
and 1% = ia, (P)~!x% with x% = (grad p,)p and a,(P) = |x4|, v =

1,...,r. Foreach vector A = (4y, ..., 4,) with 4, > 0, we set
r r
Ap(d) = {Zm;, t, € R and Zmu:o}.
v=1 v=1

T. Jimbo proved in [7] the following result: Let M C I" be a real C*>
submanifold. If M is locally a peak set for A°(Z), then there exists
a vector-valued C>* function A = (Ay, ..., A;) with A, >0 such that

Tp(M) C TS (T) ® Ap(A(P)).
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Conversely, if M satisfies the above inclusion, then it is locally a peak
set and locally an interpolation set for A*(Z).

In our case, as the unitary group U(n) is contained in the product
of n-copies of unit sphere, we need consider the domain that is the
product of n-copies of unit ball.

PROPOSITION 4.3. Let Q be an open set in R™, and let ® be a
nonsingular C>® mapping from Q to bB, X ---xbB, = Sz’:\l X e X
S2n=1 Set T = ®(Q). If T is a local peak set for A*(U(n)) may
not be a local peak set for A*(Z), where & = B, X --- X By, then at
every point Pe X, P =®(X),

>k (Z‘Pk 2% (X))=0 fori<j<m,
k=1

for some A= (A, ..., An) with 4, > 0.

Two comments about Proposition 4.3 are in order:

1. The condition in the proposition is also sufficient, but we only
need the necessity so that we can compare the equality in Proposition
4.3 with our cone conditions.

2. The above equality implies that for any vector V = (vy, ..., Up)
the matrix Z (PHX ) )v ; 1s neither positive definite nor neg-

ative definite. Therefore 1f Y is contained in U(n), then it has to

satisfy the closed cone condition. But a local peak set for Am(lf(\n))
may not be a local peak set for A°(Z), as the following example
shows.

EXAMPLE 4.4. Let T be a smooth curve in U(2) C $3x.S3 defined

by
¢ dete)
Y= {(-dei/f(t) Ceia(t)-f—iﬂ(;)) te R} ,

here c, d are real constants satisfying ¢2 + d2 = 1. Then we have

1. If &/(t)p'(t) < O for all ¢, then X is a local peak set for
A=(U(n)).

2. X is a local peak set for A*(B, x B,;) only if &/(¢)f'(t) <
—(cB'(t))* < 0 for all ¢.
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Proof of Proposition 4.3. It is easy to get that

Ap(A) = {i(tlz}, stz o, thZl, oo thZy)p:

n
t=(t1, ,tn)ERn, and Zt}).1=0}
=1

For each V € R™, E"’ O X)’U ; € Tp(Z) implies that E’” a?x )v]

— (ite @5 (X)) 1<k, j<n must lie in TS(T), where I' = §2n-1 x .
S$27=1 That means that

" [ 9Dk (X —
> —L(-—)vj—izk¢5<(X) K (X)=0
=1 \j=1 0x;

for k=1,...,n. Since V is arbitrary, oﬁr result follows from the
equality Y7, |®F(X)2=1.

Acknowledgment. I would like to thank my advisor Professor Edgar
Lee Stout for his great help. Without his steady, patient support and
encouragement, it is impossible for me to finish this paper.

REFERENCES

[11 R. E. Bellman, Introduction to Matrix Analysis, McGraw-Hill, New York, 1970.

[2] D. Burns Jr. and E. L. Stout, Extending functions from submanifolds of the
boundary, Duke Math. J., 43 (1976), 391-404.

[3] F.R. Harvey and R. O. Wells, Jr., Holomorphic approximation and hyperfunc-
tion theory on a C' totally real submanifold of a complex manifold, Math. Ann.,
197 (1972), 287-318.

[4] M. Hakim and N. Sibony, Ensembles pics dans domaines strictement pseudo-
convexes, Duke Math. J., 45 (1978), 601-607.

[5] G. M. Henkin and A. E. Tumanov, Interpolation submanifolds of pseudoconvex
domains, Trans. Amer. Math. Soc., 115 (1980), 59-69.

[6] L. K. Hua, Harmonic analysis of functions of several complex variables in the
classical domains, Transl. Math. Monographs, vol. 6, Amer. Math. Soc., Provi-
dence, RI, 1963.

[71 T. Jimbo and A. Sakai, Interpolation manifolds for products of strictly pseudo-
convex domains, Complex Variables, 8 (1987), 222-341.

[8] J. M. Labonde, Thesis, Universite de Paris-Sud, Centre d’Orsay, 1985.

[91 A. Nagel and W. Rudin, Local behavior of bounded holomorphic functions,
Canad. J. Math., 30 (1978), 583-592.

[10] A. Nagel and S. Wainger, Limit of bounded holomorphic functions along curves,
Recent Developments in Several Complex Variables, Princeton University
Press, Princeton, 1980, pp. 327-344.

[11] R. Saerens, Interpolation submanifolds, Ann. Sci. Norm. Sup. Pisa Cl. Sci. IV
Ser., 11 (1984), 177-211.



INTERPOLATION MANIFOLDS 205
[12] , Interpolation Theory in C" . 4 survey, Lecture Notes in Math., vol. 1268,
Springer-Verlag, 1986, pp. 158-188.
[13] E. L. Stout, Interpolation manifolds, Recent Developments in Several Complex
Variables, Princeton University Press, Princeton, 1980, pp. 373-391.
[14] N. T. Varopoulos, Ensembles pics et ensembles d’interpolation pour les algebres
uniformes, C. R. Acad. Sci. Paris Ser. A, 272 (1971), 866-867.

Received April 3, 1992 and in revised form October 23, 1992.

UNIVERSITY OF WASHINGTON
SEATTLE, WA 98195

Current address: Department of Mathematics
Temple University
Philadelphia, PA 19122






PACIFIC JOURNAL OF MATHEMATICS

Founded by
E. F. BECKENBACH (1906-1982) F. WoLF (1904-1989)
EDITORS
SUN-YUNG A. CHANG THOMAS ENRIGHT STEVEN KERCKHOFF
(Managing Editor) University of California, San Diego  Stanford University
University of California La Jolla, CA 92093 Stanford, CA 94305
Los Angeles, CA 90024-1555  tenright@ucsd.edu spk@gauss.stanford.edu
chang@math.ucla.edu
NicHOLAS ERCOLANI MARTIN SCHARLEMANN
F. MICHAEL CHRIST University of Arizona University of California
University of California Tucson, AZ 85721 Santa Barbara, CA 93106
Los Angeles, CA 90024-1555  ercolani@math.arizona.edu mgscharl@math.ucsb.edu
christ@math.ucla.edu R. FINN Ha s
iversi ROLD STARK
HERBERT CLEMENS g::ﬁtf-g:g léx:v;gl(t)); University of California, San Diego
University of Utah ﬁnn@galiss.stanford edu La Jolla, CA 92093
Salt Lake City, UT 84112 ’
clemens@math.utah.edu VAUGHAN F. R. JoNEs V. S. VARADARAJAN
University of California University of California
Berkeley, CA 94720 Los Angeles, CA 90024-1555
vfr@math.berkeley.edu vsv@math.ucla.edu
SUPPORTING INSTITUTIONS
UNIVERSITY OF ARIZONA UNIVERSITY OF OREGON
UNIVERSITY OF BRITISH COLUMBIA UNIVERSITY OF SOUTHERN CALIFORNIA
CALIFORNIA INSTITUTE OF TECHNOLOGY STANFORD UNIVERSITY
UNIVERSITY OF CALIFORNIA UNIVERSITY OF HAWAII
UNIVERSITY OF MONTANA UNIVERSITY OF UTAH
UNIVERSITY OF NEVADA, RENO WASHINGTON STATE UNIVERSITY
NEW MEXICO STATE UNIVERSITY UNIVERSITY OF WASHINGTON

OREGON STATE UNIVERSITY

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are
not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed
form or offset-reproduced (not dittoed), double spaced with large margins. Please do not use built up fractions
in the text of the manuscript. However, you may use them in the displayed equations. Underline Greek letters
in red, German in green, and script in blue. The first paragraph must be capable of being used separately as
a synopsis of the entire paper. In particular it should contain no bibliographic references. Please propose a
heading for the odd numbered pages of less than 35 characters. Manuscripts, in triplicate, may be sent to any
one of the editors. Please classify according to the 1991 Mathematics Subject Classification scheme which
can be found in the December index volumes of Mathematical Reviews. Supply name and address of author
to whom proofs should be sent. All other communications should be addressed to the managing editor, or
Julie Honig, University of California, Los Angeles, California 90024-1555.

There are page-charges associated with articles appearing in the Pacific Journal of Mathematics. These
charges are expected to be paid by the author’s University, Government Agency or Company. If the author or
authors do not have access to such Institutional support these charges are waived. Single authors will receive
75 free reprints; joint authors will receive a total of 100 free reprints. Additional copies may be obtained at
cost in multiples of 50.

The Pacific Journal of Mathematics (ISSN 0030-8730) is published monthly except for July and August.
Regular subscription rate: $215.00 a year (10 issues). Special rate: $108.00 a year to individual members of
supporting institutions.

Subscriptions, orders for numbers issued in the last three calendar years, and changes of address should be
sent to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163, U.S.A. Old back numbers
obtainable from Kraus Periodicals Co., Route 100, Millwood, NY 10546.

The Pacific Journal of Mathematics at University of California, c/o Department of Mathematics, 981 Evans
Hall, Berkeley, CA 94720 (ISSN 0030-8730) is published monthly except for July and August. Second-class
postage paid at Berkeley, CA 94704, and additional mailing offices. POSTMASTER: send address changes to
Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS at University of California,
Berkeley, CA 94720, A NON-PROFIT CORPORATION
This publication was typeset using AAS-TEX,
the American Mathematical Society’s TEX macro system.
Copyright (© 1994 by Pacific Journal of Mathematics




Sn
SHAOPING CHANG

R-groups and elliptic representations for SL,, 77
DAVID GOLDBERG

The boundary distortion of a quasiconformal mapping 93
JUHA HEINONEN and PEKKA KOSKELA

Strongly approximately transitive group actions, the Choquet-Deny theorem, 115

and polynomial growth
WOICIECH JAWORSKI

g-canonical commutation relations and stability of the Cuntz algebra 131
PALLE E. T. JORGENSEN, L. M. SCHMITT and REINHARD FRANK
WERNER

Complete open manifolds of non-negative radial curvature 153

YOSHIROH MACHIGASHIRA

Perturbations of certain reflexive algebras 161
DAVID RYDER PITTS

Interpolation submanifolds of the unitary group 181
YEREN XU



	
	
	

