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ON THE COMPACTNESS OF A CLASS OF
RIEMANNIAN MANIFOLDS

ZHIYONG GAO AND GUOJUN LIiao

A class of Riemannian manifolds is studied in this pa-
per. The main conditions are 1) the injectivity is bounded
away from 0; 2) a norm of the Riemannian curvature is
bounded; 3) volume is bounded above; 4) the Ricci cur-
vature is bounded above by a constant divided by square
of the distance from a point. Note the last condition is
scaling invariant. It is shown that there exists a sequence
of such manifolds whose metric converges to a continuous
metric on a manifold.

Introduction. Let £ = L(H, K,V,n,ig) be the set of n-dimen-
sional Riemannian manifolds (M, g), s.t.,

(0.1)

(0.2)
(0.3)

(0.4)
(0.5)
(0.6)

M is diffeomorphic to (Bs, ¢o), the standard Euclidean ball
of radius 2, center = 0;

(M, g) has C* curvature tensor in M;

for any * € M, the Ricci curvature at z |Ric(g)(z)| < Hr™?,
where r = dist(z,0);

the injectivity of (M, g) > 19 > 0;

/M |Rm(g)|%dg < K;

volume of (M,g) < V.

In the case when the condition (0.3) is replaced by |Ric(g)| < H,
and (0.6) is replaced by a diameter bound, a compactness property is
proved by the first author in a more general setting. The purpose of
this paper is to extend some of his results to the present situation

where the bound om Ricci curvature of (M,g) blows up like 7~

2

at a point. As an application, we will discuss the compactness of
orbifolds with a finite number of singularities.
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The main result is:

THEOREM 0.7. Let (Mg, gx) € £, k =1,2,3,.... Then there
ezists a subsequence (again denoted by (Mg, gx)), a C*® manifold M’
diffeomorphic to By(0), and a C° metric ¢’ on M' s.t. gr — ¢’ in
C°-norm on M’ and the convergence is in C1*-norm away from 0.

In Section 1 we study the geodesic balls centered at 0. A com-
pactness estimate of the metric g will be derived. In Section 2, a
small geodesic sphere is shown to have a small diameter. In Sec-
tion 3, some L™*-curvature pinching results are derived, which will
be used in Section 4 to show the existence of harmonic coordinates.
We will prove in Section 4 the above main result and a slightly

different version.
In the definition of £, if (0.3) is replaced by a 1-sided condition

(0.3) Ric(g) > —Hr™?g,

then the above compactness result should be modified as follows.
Denote the set of such Riemannian manifolds by £’.

THEOREM 0.8. Let (My,gx) € £', k = 1,2,3,.... Then there
erists a subsequence of (My,gx), which converges in C°-norm to a
C*® manifold M' with a C° metric ¢'.

1. In this section, we assume that for some H > 0, 19 > 0,
(M, g) is a Riemannian manifold diffeomorphic to B, satisfying

(1.1) Ric(g) > —Hr™%g;

(1.2) inj(g) > 1o > 0.

Let B,(0) = {z € M|d(0,z) <} be the geodesic ball of M centered
at 0. Consider a geodesic polar coordinate system {r,z',--- ,z" 7'}
on B,(0), we have

n—1
(1.3) ds(g)? = dr* + > gij(r, z)dz'dz’;

i=1
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1 o? , 0 19}
(1.4) Rirrj = =5 559i(re) + 7 Zg 5, 9ik 5,91

For the Ricci curvature in the radial direction, we have

R Ui Wy pros S K
' T T2 VY 1 |ar9V"

where  g¢(r) = g(r, z),
(1.6) V9 dVo = \/det(gij) de' AL A d2" T,

(dVo = the volume element of the standard Euclidean sphere)
and

17 a
Zg g 8_911' a_gkl

We start out with the following estimate:

PROPOSITION 1.7. For p < 2, there exists Cy = C1(H,n) > 0

i [

Proof. The function is essentially the same as that given in [12],
p.5-6. For any piecewise C* function ¢ of r with ¢(p) = 0, we have

~g dr < Cyp.

2

9 dr

(e[l

5.9
= [t e~ [ R
0 0

n_
<
- 2

Take € = %, ¢=p—r,and use —R,, < Hr™2, we get

2

/Oqﬁr("’(gb——r)2 0 dr

Eg

<32(n-—1) /()¢(r2 + (¢ —r)?)dr + H/O(b(rQ(qS —r)3)r2 dr
< C(H,n)p®
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Thus,
¢ 2 2
0 1 ] 1
2 2 2 2
g < 2= <= .
/0 r . dr < (5)2/(; r(¢ —r) 3 g| dr < 201(H,n)p

PROPOSITION 1.9. There ezxists C; = Cy(H,i9,n) > 0 s.t. for
anyr € (O, g‘l), we have

r

g
Eln\/ﬁ’ S C2.

Proof. From (1.5) and integration by parts,

¢ 1,0 148 1 4
2R, dr = —=r? 21 —/2—1 —~/ 2
/or r 2T or ng+2 0 r@r ng 2 07‘

2
dr.

9
37‘g

Thus

1

a ¢ 1 ¢ bl
12 < -2,2 1 / 2
5" arln\/g_H/ér rdr+4C’1r+(0r

Elng

2 3 1
dr) r2
O

Next we study the induced metric g(r) = 3 g;;(r, z) dz* dz’ on
the geodesic sphere

9
>

¢
<3 Hr+ 1Cir+ (n—l)% (/0 r? .

S C2(H, 7:0, n)r.

S,(0)={zeM:d(z,0)=r}, r< %0.

PROPOSITION 1.10. There exists C3 = C5(H,n) > 0 s.t. for

0<r1<r2§%, we have

ngTzrl_lg(rl) S g(r2) S 6031‘27'1"19(7.1).
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Proof. From Proposition 1.7, we have, for any vector
— In A(r)
r

v=(...,v")e TS,
S/m; drS(/T2 rdr)rl_l

L T2
< Vra(Cirg)?ry =01,
where h(r) = g;;(r) dv'dy’. Hence 21 < Mral < (Carar™ here

9
arg

1
— h{r1)

03:\/6-1. D

Before we go any further, let us make some remarks regarding
conditions (0.3) and (0.5). Let 7 > 0 be small. Define a new metric
g" on M by ¢"(z) = 77%g(7x).

REMARK.
(1.11) If g satisfyes (0.3)", so does ¢".
(1.12) | 1B@)IE dg = [ IR dg.
B, B,

Therefore, by a scaling of this type if necessary, we can assume that
g satisfies (0.3) and (0.5) with K < 1.

Once we have Proposition 1.10 we can control the L™? norm of
the Riemannian curvature tensor Rm(r) of g(r), the induced metric
on S(0,r).

THEOREM 1.13. If (M, g) € L' then for any p < 5}11, there exist
rp €(5,p), Ci=Cy(H,K,io,n) >0, s.t.

(1.15) /S(o,r,,) ]Rm(r,,)g(rp) dg(r,) < Cyr;t.

Proof. By Lemma 1.17 in [12],3C5 = C5(H, %, n) s.t. for p < 2,

°19 nd <o 2 \Rm(o)|F d
P _ 2
/garg 7'__ 5 pn+/§| (g)] r *
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From Proposition 1.10, there exists C = C(H,io,n) s.t.

C7V4(p) < Va(r) < Cs/g(p)

for r € (2,p), ie., \/g(r) is equivalent to /g(p). Thus for some
constant Cs = Cs(H,29,n) > 0, we have

[

2

7]

ro| Valr)ar < c. (p"w(p) + [} 1Rm(g)# Vo) dr).

Integrating over S,(0), we get

w/Bp\Bg

Taking p = 3}, we get

J,

0
4

dg < C ‘"/d c/ Bm(a)|? dg.
or9| d9=Cer™ [ 9(p) + Cs B,,I m(g)|? dg

dg < Cs 69) vol (S.&> + CG/B |Rm(g)|? dg.

0
4

9
8rg

\Byy
8

By Bishop’s volume estimate [1], 3IC; = C7(H,io,n) s.t.
vol (Sgl)) < Cy. Thus we get a constant Cs = Cs(H,i9,n) > 0

s.t.

(1.16) /B

0
4

dg < Co+Cs [ |Rm(g)|? dg.

0
4

9
Brg

\By,
8

Define g7 = r~2g with r = %f. Noticing that Ric(¢g™) > —Hr2,
inj(g") > 1o, we can apply (1.16) to ¢”. By the scaling invariance
of (1.16), we get

L,

n

0
a9

dT
or g

o,
or

dg =/
By \By
4 8

<Cs+Cs [ |Rm(g)|F dg”

7
= Ca+Ca [, [Rm(g)|* dg
< Cs+ CsK = C.
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Hence

(1.17) A (/S

2

0

5.9 dg(r)) dr < C.

(1.17) and the Gauss formula on S,

i1/ 0 o 0 d
Rm(g)iju = Rm(g(r))iju + 1 (5;% 5, 9it = 5 9ik Egu)

imply that there exists a constant C = C(H, K,t9,n) > 0 s.t.
p n
L ([ 1Rma(r)I# dor) dr
sc+c ['( [ 1Rmig)? do(r)) dr
2 Sy
<C+CK.

This implies the existence of r, € [%, p] and Cy = Cy(H, K,i9,n) >
0 s.t.
[ 1Rm(r,)IF dg(r,) < Car.

Tp

O

We now state and prove the compactness estimate of the induced

metric on small geodesic spheres.
Let (M,g) € L', p<%, let r,€ [%,p] as in Theorem 1.13.
We have the following

THEOREM 1.18. There ezists Cig = c10(H, K,ig,n) > 0 and a
C* Riemannian metric h(r,) on the geodesic sphere S,, s.t.

(1.19) Cﬁ)lg(rp) < T'p2h(7'p) < Crog(ry);
(1.20) |[Rm(h(r,))| < Cio.

Proof. Proposition 1.10 and Theorem 1.13 are sufficient for car-
rying through the argument in [12]. O



30 L.ZHIYONG GAO AND GUOJUN LIAO

2. In this section, we show that the diameter of a small geodesic
sphere is small. More precisely,

THEOREM 2.1. There exists C11 = Ci(H, K,15,V,n) s.t. for
any (M,g) € L', any r€ (O, '—2‘1) ,  diam(g(r)) < Cyyr.

Proof. First observe that there exists a constant
C =C(H,K,iV,n) >0 s.t.

(2.2) diam (s%,) <c.

To prove (2.2), we normalize by scaling so that 1o = 4. Let y be a
minimal geodesic on the geodesic sphere 51(0). We show that there
exists C = C(H, 10, V) s.t.

length v < C.

Let a be any curve in the annulus B%(O)\B;_(O) s.t. for 0 <
t1 <ty <---<1, allti,tit1] is a minimal geodesic in the annulus.
The geodesic balls centered at «(t;) with radius 6 can be made
mutually disjoint by choosing é > 0 sufficiently small. Let N be the
number of these balls. By Gromov’s relative volume estimate [6],
the volume of each small bal is bounded from below by a constant
C' = C'(H,10,V,n). But the total volume of the mannifold M is
bounded from above by V (cf. (0.6)). Hence N < V/C’. Since the
induced metric g(r1) and g(rz) are equivalent (by Proposition 1.10),
we can project a|[t;, t;+1] into S1(0), to get (2.2).

Next, apply (2.2) to the metric g7 defined by ¢"(z) = 77 %g(7z).
By scaling properties, we get

diam (g(r)) < CX.
o
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3. Let (M,g) be in L. As before we use the geodesic polar
coordinates at 0, i.e.,

n—1
g =dr*+ Z gi,(z,7) dzt da’ = dr? + g(r),

ij=1
where ¢(r) = g(z,r) is the induced metric on the geodesic sphere

S, (0).
We will begin with the following estimate:

PROPOSITION 3.1. For p < %1, n € (0,p), we have

/ ma..X/
T(-;l,-;l) n<p JS(z,r)

< C(H,n,n,p)/B(m) |Rn(9)|? dy,

where B(x,r) is the second fundamental form of S(z,r),

(1) = {re e (1))

Proof. Let z € T(g,%), y € M st d(z,y) = p < 2. Let
v be the minimal geodesic from z to y with 4(0) = z, ~(p) =
y, d(z,y) = p. Observe that, as a consequence of Proposition 1.10,
there exists a constant Ciy = Ci2(H,10,n) > 0 s.t. for any Jacobi
field X on v with X(v(0)) =0, < X(~()),~'(l) >= 0, we have

[X(v()] £ Cra| X (v(D)]

YVt € [0,(], where [ = the length of ~.
Let E be the parallel vector field along v with

E(y(1) = X(~(1),

then the vector field A, defined by A = X — LE, is again a Jacobi
field. Assume | X (y(1))] = 1. We have

: dg<r>) dg(z)

B(z,r) + %g(x, 7)

l ! l
/IA'|2:/ < A" A> dt < [ |RmlX]A] d
0 0 o

< Crp(Cra + 1)/ |[fim| = 013_/ |Rm|,
y y
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where C13 = Clg(H, ig,n).

Next, by a cut-off function argument, one can show that (c.f. [12],

p.31)
(3:2) APG) < Cua [ Rl

We claim that there exists Ci5 = Cy5(H, K, 19,n) s.t.

2

B(z,7) + 79(4(D)

(41(0) < Cus [ ]
Y
To see this, let X, Y be vector fields on S(z,{) s.t.

Xyl =Y (D)) = 1,

and let E, E be parallel vector fields on v with

E(y(1) =Y(v(1)).

Extended X, Y to the geodesic ball B(z,!) s.t. they are Jacobi fields

on each radial geodesic. Then, clearly B(X,Y) =
- <V, X,)Y >= - < X"|Y >. We have, from (3.2), that

BOXGY) +7 < XY > (1)

—|< XY > —% < E,Y > [*(y(1))

= | <X/~ 1B,Y > P(3{1)

< CulY )P [ [Bml* = Cig [ R

To finish the proof, we define f(z,y), for z,y with d(z,y) = p+ —;Z
lo
=, b
97 y )
1 2
f(‘rvy): 1'21&<X B(CE,T)+—9($,T) (7(7“))7
n<r<p r

<

where v is the minimal geodesic from z to y, r = distance from z.
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Let
A= U slareg)en
zeT(1.3)
and
Y= U (x,S(w,p—k%))CMxM.
xET(;;Z g)
Then

[ 1090= [y (g T doct) ot
—/ (/ (z,y) dgy(z )) dg(y),

where g, is the induced metric of S (z, p+ ) and Q, =T (4, 2) N
S(y,p—{—g) C S(y,p—{-g). We have

/E/f(:c,y) = /Q (_/Qy flz,y) dgy(a:)) dg(y).

Define F(t) = v(t) for t € [0, p]. From (3.3) we get

/Qy f(z,y) dgy(z)
<c() [ ([IRm(@)?)ds,

< C(H,n,p) /;H ( A lRm(g)|%<7(ﬂ + g - t)>dgy> dt.

By Proposition 1.10,

dg, ('y (p+ g— - t)) >C (H,n, %) dgy(z).

Therefore

[, fenda@ <c(mnnl) [ R

Yy
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Finally we have

P Ui n
) <C H? y 1y I(T(—a ))/ d
[, 7w < ( n n)”” vetn)) [, 1Bm()lEdg
1 n
SC<H7nan7—7p5V7i0>/ IRm(g)!fdg
n B(p+n)

O

Let Rm(r) be the scalar curvature free curvature tensor of g(r).
We have the following proposition.

PROPOSITION 3.4. For any z € T (Z,g), where n € (0, p) with

p < we have

/,,p (/S(w) |Bm(r)|* dgz(r)> dr

< C(H,n,n, p, o) ((Lz(p) |Rm(g)|? dg)

+ (max/
n<p JS(z,r)

A()+ 0u(r)

1
2

n
2

dgz<r>)%

: dgx(r)) .

A+ ~g2(r)

+max/
n<p JS(z,r)

Proof. Rm(r) can be expressed as

(Bm(r))iju

= (Bm(r))ijn — Blr)

(n—1)(n—2

)(gik(r)gjl(r) ~ ga(r)g;x(r)),
where R(r) is the scalar curvature of g(r). We have

/S(z',r)

Bir(r)Bji(r) — %gik(r)gjl(?") ' dg(r)
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= /S(I,T) Bix(r) (Bﬂ(") + %gﬂ(r))
1

n
4

<c [ 1BIF|BO)+ o)

S(z,r

+c [
S(z,r)

§C</
S(z,r)

+c [
S(z,r)

3

B(r) + ~g(r)

Blr) + 20| datr))

n
2

Br)+ ~g(r)

This implies that
/S(z‘,r)

< C(H, K, io,m) (fary

1

z d

B(r) + 1g(r)

n
2

+C(H7 I(v t0, TZ) fS(z,r)
By Gauss formula,
(Bm(g))iju = (Rm(g(r)))iju + Bu(r)Bu(r) —
Therefore

[/
7 S(I,T)

B(r) + 7g(r)

Riua(9(r)) = 5 (g(r)ga(r)

—ga(r)gse(r)) e dg(r)) dr

3
< C(H,n,n,p) (/B(I ) |Rm(g)|> dg>

1
vttt (e [ 1B6)+ Lot

n<r<p

B(r) + ~g(r)

+C(H,n,1,p) (maX/
S(z,r)

n<r<p

(BixBji — BaBji) — 5 (9ingit — gigik)

_;gjl(r) <Bik(r) + %g,-k(r)) i dg(r)

dg(r)

dg(r)

L
2

dg(r).

n

! dg(r)

g(r)) :

dg(r).

Bil(’l‘)Bjk(T).

’ dg(?")) 2
: dg(r)) .

35
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Observe that

A‘x(n,p)

< C(Ha 1{3 io,n,’?,l’) (-/B

n
4

(n—1)(n —2)

R(r) — dg

-

(z.p)

|Bmg)? dg) g

Hence (3.4) follows immediately. O

PROPOSITION 3.5. For 0 < n < p < 2 let (M, ) €
L), zr€ M, with dist(z,0)E€ (;’f,g) Assume

Nt

dgr(r) — 0

B(zg,r) + %gk(r)

= max/
g n<r<p JS(z,r)

and
Pk = / |Rm(gx)|z dgx —+ 0 as k — oo.
B(.’l?k,p)

Then there exists a diffeomorphism ¢y : S(1) — S(zk,p) for each
k=1,23---,s.t.

[ \igu(r) = r* ds?% db — 0
5(1)

uniformly for n < r < p, where S(1) is the Euclidean unit sphere,
and
|#rgx(p) — p*db*lco -0 as k — oco.

Proof. Proposition 1.10 and Theorem 1.13 enable us to carry out
the arguments in [12] (cf. 5.18, 5.21, and 5.25). O

4. In this section we prove the existence of a controllable har-
monic coordinate system under the smallness condition of the L™/?-
norm of curvature tensor.

PROPOSITION 4.1. For any n € (0,1), there exists
e = €(H,n,t0,m) >0 s.t. if (M,g9) € L satisﬁes/ |Rm(g)|2dg <
M
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€, then there exists a diffeomorphism
n n 3 n 31 n
F= (R R B"): T<1+§,?> —>T(1+—2—,7> CR
having the following properties:
(a) A=0;
(b)y F7! (T (1 + 4,24+ 77)) D T(1—n,2n) and the image of F' D
T(1+2,2);
(c) | — &Y < 1—33—7; on T(l + 2 éﬂ); where
h =< VR, VA >;
(d) |dh¥|ce < C(H,n,n) for some «a € (0,1) on
T(1+2,%);
(e) |[F?~r? <2 where |F|?=Y_(k')* r=dist(z,0);

100n
1

) ||d*h¥)|pe < C(H,n,n) on T(l}‘—ZZ 5’—’1) for some g >

47 4
n.

Proof. Suppose for k = 1,2,---, (My,gx) € £  with
n 1
R 2 < -,
J,, 1Bma0lf < ¢
Proposition 3.1 implies that Jy, € T (g, Z) s.t.

[SIA]

dgr(yx,7)

1
Bk(yka T') + ;gk(yka T')

N, = max /
n<r<1 J Sy (yk,r)

) 1 n
<C <H,n,20,n,—> / |Rm(gx)|> dg
n B;
< Ck L

Proposition 3.5 implies that there exists ¢ : Sy — Sk(yx) = S5
s.t.

*gk — go|? dgo < Ck™1,
/T(lm)|¢k9k 90| 9o

where ¢ has been extended trivially to T(1,7), go is the flat met-

ric on Bj. In the Euclidean coordinates ¢ = (z*,--- ,2"), g¢o = 6;;.

Next we solve the Dirichlet problem
AF =0 in T(1,n)
F=z on 9T(1,7).



38 L.ZHIYONG GAO AND GUOJUN LIAO

By Proposition 1.10, we can show (as in [14])

1 1
VF -Vz|?dg < =C (H,n,~,n,10 ) .
~/T(1,n)l xlg g = k ( ,n,n,ﬂ,lo)

By a standard argument involving DeGiorgi-Nash-Moser iteration,
it follows that F' is the desired diffeomorphism. O

. THEOREM 4.2. For each My, gx. € L, there ezists, forl =1,2,--- ,

open sets Fy(l) C My s.t. Fi(I+1) D Fi(1) and Fi()UB(I™!) = M.
There also exists a diffeomorphism ¢r(l) for each pair of k and
Lo (D) : T(LI7Y) € R™ — Fi(l) such that ¢(1)* g, converges
in CY* norm to some CV® metric g; on T(1,17') C R™

Proof. By rescaling, we can assume that g, satisfies
[, 1Bm(ge)l¥dgs < e
M,

where € > 0 is given by Proposition 4.1. Therefore we have harmonic
coordinates

BE T <1+’7 3n>CMk—+D() T(1+— —)CR”,

2’2 2’ 2
satisfying (a)-(f) of 4.1. Taking n = I™!, by the Holder estimate (d),
we have, for each [ = 1,2,---, a subsequence of (M, gx), denoted

by gx(l), s.t. gi(l) converges in the C*-norm on T} (1 + 7, %'L) cCM
to a C1* metric g; on D(!). We can then take

_ U 377) _1

F’“(l)"T’“<+2 2) " T
By passing to a subsequence if necessary, we can make Fr(l+ 1) D
Fi(1). ]

THEOREM 4.3. Let ¢’ be a metric on M' = B;|{0} defined by
g'(z) = gi(z) if x € Fi(l). Then ¢’ can be extended as a C° metric
on By.

Proof. Theorem 2.1 says that the diameter of a small geodesic
sphere around 0 is small. Hence 0 is the only possible singularity. To
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show that 0 is a removable singular point, let, for fixed N =1,2,--- |

C(p, N) = {x e M|£ < d(z,0) < 2p} .
By Theorem 4.2, a subsequence (My,gx) converges to M’ away
from 0. Thus for each p,3k = k(p),3 a submanifold Ci(p, N) C
(Mg, 9x),3y, € Cr(p,N) s.t. y, = z, € C(p, N) (with dist(z,,0) =
p), and such that

Rm(ge)|3 d —/ RM(g)|? dg'| < p?,
Lo B0 da = [ (RM(E | <

and
1 1
” (—C(/), N)"Tp) - (_—Ck(p’ N)ayk) < p.
p p cle
By (0.5),
/ |IRM(g")|2dg’ =0 as p— 0.
C(p,N)
Consequently,

[ IRM(g)|Fdge =0 as p—o0.
. Ck(va)

Therefore, from the zero pinching theorem of [12], it follows that
(%Ck(p,N),y,,) converges to a flat manifold Dy in C*-norm as

p — 0. Thus (%C’(p, N),zp) converges to (Dy,en) in C1*-norm.
The direct union of (Dy,en) has to be (U(0),e) where 0 is the
isolated singular point, e is a unit vector in |BbbR", and U(0) is a
simply connected flat manifold since %C(p,N ) is the C1* limit of
simply connected manifolds —lp—C’k(p, N). Hence U(0) = B(2) — {0}.
Letting N — oo have that (%C(p,O),zp) converges to {B(2) —
{0}, e} in CY*norm. It follows that ¢’ can extend to a C° metric
on M’', diffeomorphic to B; C R™ O

REMARK. In the case (Mg, gx) € L', we use Proposition 3.5 di-
rectly in place of Proposition 4.1 and Theorem 4.2. This, combined
with Theorem 4.3, proves Theorem (0.8).

REMARK. Let O be the set of compact orbifolds with finitely
many singular points, satisfying (0.3)-(0.6). Let I' be the group
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acting on these orbifolds. We can lift a neighbourhood of each
singular point via I" to B™. It then follows from Theorem (0.7) that
O has the same compactness property.
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