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We show that any two maximal disjoint unipotent sub-
groups of an irreducible non-cocompact lattice in a Lie
group of rank atleast two generates a lattice. The proof
uses techniques of the solution of the congruence sub-
group problem.

We show that any two maximal opposing unipotent subgroups of
an irreducible lattice in a higher rank Lie Group, generate a lattice
in the Lie Group. The method of proof is to use certain techniques
of the solution of the congruence subgroup problem of arithmetic
lattices in higher rank groups.

We freely use the notation and results of [3] without giving ex-
plicit references therein.

Let G be a simply connected absolutely almost simple linear al-
gebraic group defined and isotropic over a global field K. Let Ut
be the unimpotent radical (which is defined over K) of a minimal
parabolic K-subgroup P* of G. Let U~ be the unipotent radical of
another minimal parabolic K-subgroup P~ of G which is opposed to
P* in the sense that Ut NU™ = {1}. Let S be a finite set of places
of K including all the archimedian ones, if any. We call thering
A =05 = {z € K;|z|, <1 for all places v of K, not in S} the
ring of S-integers in K. Choose a faithful representation G — G Ly
defined over K and define G(Og) = {g € G;¢;; € Os,1 < 1,5 <
N}. The subgroups in G which are of finite index in G(Og) are
called S-arithmetic groups. Define the S-rank of G to be the sum

> K, — rank(G). Given a non-zero ideal a of A and an algebraic

veES
K-subgroup H of G define H(a) = {h € H; h;; = 6;j(mod a), where

6;; =0if 1 # jand é;; = 1 if ¢ = j}. Let A(S) denote the ring
ofS-adéles of K.
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194 T.N.VENKATARAMANA

THEOREM . With the notation as above, let E(a) denote the
group generated by U*(a) and U~ (a). Then E(a) is an S-arithmetic
subgroup of G(a) provided S — rank(G) > 2 and K — rank(G) =
1,Char(K) # 2.

REMARK. The theorem holds also when K — rank(G) > 2 and
is proved for G a classical group of K — rank(G) > 2 in [17], G is
a Chevalley group of K — rank(G) > 2 [15] and for G an arbitrary
group of K — rank(G) > 2 [11]. ]

The theorem is proved for G = SL, in [18] and Vaserstein has
informed us that he has a proof (unpublished) of the theorem when
G = SU(2,1).

We now give an outline of the proof. The proposition of Sec-
tion 1 says: a subgroup F(a) which is closely related to E(a) (and
normalises E(a) ) has the property that given g € G(K) there exists
a nonzero ideal a of A such that ¢F(b)g~' C F(a). This is used to
show that there is a completion G of G(K) with respect to which the
subgroups G(a) have open closures in G. We then show that there
is a continuous surjection 7 from G onto G(A(S)) where (A(S))
is the ring of S-adéles of K. The main point is then to show that
the kernel C of 7 is central in G. Then by appealing to [13], we are
done.

In Section 2, we show that C' is central when the semi-simple part
of the Levi component of the minimal parabolic subgroup P* of G
is isotropic over K, for some v € 5. In Section 3, we prove the
same when G = SU(2,1) and in Section 4, by looking at suitable
embeddings of G = SU(2,1) and SL, in G, we prove that C is cen-
tral even in the case of G for which the semisimple part mentioned
above is anisotropic over K, for all v € S.

1. Construction of a completion G of G(K).

NoOTATION 1.1. Let G, E(a) be as in the introduction. Assume
that S —rank(G) > 2 and that K — rank(G) = 1. Let F(a) denote
the group generated by U*(a), U~ (a), and M (a) where M+P+tNP~.
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LEMMA 1.2.

(2) The group F(a) is Zariski dense in G.

(i2) More generally, if p : G(K) — GL,(C) or if p: G(K)* —
GL,.(C) is a homomorphism of abstract groups (C is algebraically
closed), then the Zariski closure of p(F(a) N G(K)* is equal to the
Zariski closure of p(G(K)1)).

(131) The Zariski closure of p(G(K)*) is connected.

Proof. The proof of (i) is easy: the Zariski closure of F(a) in
G contains U*(a) and U~(a), therefore contains Ut and U~ and
therefore equals G.

Given a non-zero ideal f of A, let U;f denote the Zariski closure
of p(U*(f)). Clearly, if f C C and c is a nonzero ideal of A then
Ut C Ut. Since UJ is Noetherian, there exists a nonzero ideal f
of A such that U;' is minimal. Given any nonzero ideal ¢ of A, we
have ¢cNb C ¢ and by minimality of U , we have U}t = U}, C UF.
If a € PY(K) is given, then there exists a nonzero ideal ¢ of A
such that ¢ C b and aU%(c)a™* € U*(b). Taking Zariski closures in
GL,(C), we obtain: p(a)Ufp(a)* C U} C U} = U;" which means
that U;" is normalised by p(P*(K)). It is easy to show that

U aU*(b)a™! =UH(K),
a€Pt(K)

using the facts that for any nonzero integer m,

U A"b= K
AEK™*

and that P* contains a K-split torus. Therefore U, contains
p(UT(K)). We thus get: the Zariski closure of p(F()) N G(K)™)
contains Ut D U2, = U;" which contains p(U*(K)) and by sym-
metry the Zariski closure of p(F() N G(K)*t) contains p(U™(K)).
This proves part (ii). Now (iii) follows from the fact that (G(K)*/
centre) is an abstract simple group [16]. O

DEFINITION 1.3. Let L/K be an algebraic extension and k£ C L
a subfield. Suppose f : G(K)* — k is a function whose G(K)™-
translates on the left (or right) span a finite dimensional vector
space (over k). We call f a G(K)*-finite function.
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COROLLARY 1.4. Let L,k be as above, f : G(K)* — k a
G(K)*-finite function. Suppose f vanishes on F(a) N G(K)T. (A)
Then f vanishes on G(K)*. (B) Moreover, G(K)" -finite functions

with values in k form an integral domain.

Proof. (A) Immediate from (II) of Lemma 1.2. (B) Follows from
(iii) of Lemma 1.2. O

LEMMA 1.5. The group M(A) is infinite.

Proof. Suppose Card(S) > 2. The group M contains a K-split
torus G, since 1 = K — rank(M), and G,(A) contains, by the
Dirichlet unit theorem, a free abelian group of rank = (Card(S) —
1) >1.

Suppose Card(S) = 1, S = {v}. We have a nontrivial K-
homomorphism M — G,,, with kernel M. Now, S— rank(M,) =
S — rank(M) — S — rank(G,,) > 2 —1 = 1. Therefore My(K,)
is not compact; but, (by [2] and [4]), Mo(A) is a cocompact lat-
tice in Mp(K,) and so My(A) is infinite. In particular M(A) is
infinite. |

We now state the main result of this section. We will prove it
later in the section after proving some preliminary results.

PROPOSITION 1.6. Given a nonzero ideal a of A and an element
of g € G(K), there ezxists a nonzero ideal b of A such that

gF(b)g™ C F(a).

NOTATION 1.7. The map U~ x M x Ut — G given by
(u=,m,ut) — u“mut is a K-isomorphism onto an open subset
Q of G. Given z € Q, we may write * = u;mgu, with u; C
U-, ms€ M, u, € Ut and z — u, is a K-rational function
from ) into U*.

Given a nonzero ideal a of A and g € G(K), consider the con-
jugate ¢g"'F(a)g = ¢~'h"'F(a)hg for all h € F(a). By Lemma
1.2, there exists an h € F(a) such that hg € Q and so, by re-
placing g by hg if necessary we assume, as we may, that g € Q,
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while looking at g7! F'(a)g. Let b; be a nonzero ideal of A such that
g 'G(a)g D G(by). Then for any h € F(a) N g~! we have

g R F(a)hg D g tAT P () hgN P D (g7 R PT hgn PY)(by)

= (u}:glp_uhg n P+)(b1) = (u;glp_uhg N P+)(b1) = (u;glMuhg)(bl)-

For z € Q denote by M, the group z™'P~z N Pt = u;'MU,.
Then ¢! f(a)g contains {My,(b1); h € F(a)N§g~'}. Denote by A,
the subgroup of P~(b) generated by {My,(b1);h € F(a) N Qg~'}.
We aim to show that A, contains P*(b,) for some nonzero ideal b,
of A, with b, C b.

Let h € {F(a) N Qg7'}, with Muy(by) = (up, Mupg)(b1),vn =
Uy, ug whence Myy(b1) = (vaM,V, ')(b1). There exists a nonzero
ideal by, of A such that b, C b; and such that A, D (vaMyv;')(b1) D
v M, (by)v; . We also have M,(by) C M,(b)) C A,. Denote by
[M,(by),v1] the subgroup of A, generated by {muvym™'m;'; m €
M,(by)}. Then A, contains [M,(by),vs]. Observe that My(bs)
is normalised by M,(b;) C A,. Denote by M,(b;)(vs) the set
{mvym™; m € M,(b,)}. Then we get: Ay D [My(br), My(b1)(va)],
and therefore A, D [My(by),[My(b1),vs]]. Let H, be the sub-
group generated by {[M,(b;),vp};h € F(a)N Qg~'}. Define V* =
(Ut UT),W* = U*t/V* and pr : Ut — W™ the quotient map.
Then V* and W are finite dimensional K-vector spaces, on which
M(K) acts by K-linear transformations. We have the unique quo-
tient 7 : My, — G, defined over K. Let

My = {o = eues € TL w1002 TT ool =1

veS vES

. Then (i) by [2] and [4], we have: M,(b;) is a cocompact lattice in
MY; (i) M is compactly generated [1]; (iii) M,(b;) is a finitely
generated group. (This follows from (i), (ii) and [5].) Moreover
every element of M,(b;) is semisimple.

We assume, as we may, that 6, is an ideal so deep that no non-
trivial element of M,(b;) — {1} has a nontrivial root of unity as an
eigenvalue in its action on W*. Let {v;v € F'} be a finite nontrivial
set of generators of M,(b;). For 8 € M,(b;) let 6. denote the linear
transformation induced by # on W+,
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If vy € F, write W, = (7« — 1)W*. Then w — (7. — 1w is
a K-linear map of W onto W,. Since v is semisimple; (i) w —
(7« — 1)w is an isomorphism of W, onto itself (ii); W, is a direct
sum of irreducible K[y]-modules: W, = @W;; (iii) if F,[y., v, ']
denotes the subring generated by v, and 7! in Endg(W,), then
F,[v.,7,!] is a ring without nilpotent elements. By Schur’s lemma,
the commutant of the image of F,[y., v, !] in Endg(W;) is a division
algebra over K and therefore \sm{Fp[’y*,fy* 115 End(W;)} is an
integral domain and thus defines a prime ideal p; of F ['y*,'y* 1
p; = Ker(p;). We thus get a finite set X(v) of prime ideals p
of Fy[v.,77!] and a decomposition W, = @ W, of K[v.,77']-
pEX (v)
modules such that the homomorphism F,[v.,v:'] = Endg(W,) has
kernel p. Moreover, F,[v., v, '] is a reduced ring acting faithfully on
W, whence (] p=(0). Letmyep~—- |J gpr:W,->W,
peX(7) peX (v)—{p}

denote the map w (H Wq) w. Then pry|W, : W, — W, is
qFp

nonsingular. We also denote by pr, the composite U
pr
W, 3 W,.

-1
o+ (05

REMARK 1.8. Let H C U*(K) be a subgroup normalised by
M,(b). Then pro(H) C W, is an (Fp[ys, 7, ']/p)-module. Moreover,
pr(H) contains pry(H).

Proof. Clearly pr(H) is a subgroup of W*, is therefore F,-stable
and hence pr(H) is an F,[., v, ]-module. Since pry, : W,, — W, and
W+ — W, are given by multiplication by elements of F,[v,,v.],
we have: pry(H) 'C Fyl3ery2 1(prs(H)) C Byl v 1(pr(H) C
pr(H). O

NoOTATION 1.9. Let k, denote the quotient field of the do-
main A, = F,[v.,7!]/p. Now, W, is an (F,[v.,7:']/p)-module
and hence is a kp-vector space as well as a K-vector space. [We use
the fact that W, splits as a direct sum of irreducible K[A,] mod-
ules W; and A, acts faithfully on each W; (v does not have roots of
unity as eigenvalue) and by Schur’s lemma, the commutant of A,
is a dimision ring D whence k, C D and acts on W;. Thus &, acts
on W, too.] Let Ry be the subring of Endg(W,) generated by k,
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and K. Then R, is a finite dimensional K-vector space and since v
acts semisimply on W), R, is a product of finite field extensions of
K. Now K is a global field and k, is an infinite field (again, k, is
infinite because v has no root of unity as an eigenvalue) and so k,
is also a global field, whence R, is finite dimensional over k,. Now
W, = &W; = ®Sm(R,) and so W, is finite dimensional over R,
and therefore W, is a finite dimensional k,-vector space.

LEMMA 1.10. Given v € F and p € X(v), there exists a finite
set {vp} of elements of Ut (K), for h € F(a)NQg ' NG(K)*, such
that the ky-span of {prp[y,vi]} is all of W,.

Proof. Let X\ : W, — k, be a linear form over k, which vanishes
on all {prp['y, vp); k€ F(a)NQg~1}. Then (k) = Ao pry[y,vs] (for
h € Qg™') has the property: p(h) = 0 for h € F(a)Ng~ NG(K)*.

A(h
Now pry[y, ve] = pro[ys, pr(vs)] and pr(vs) = B(h) with A(h) € W+
and B(h) € K; both A(h) and B(h) are polynomial functions on
G(K) with B(h) # 0 for all A € Qg™*. We think of K as embedded
in Ry. Let {€} be a ky-basis of R, and write B(h) = 3¢ Be(h) €
The function B(k) is polynomial on G(K)* and hence the k,-valued
function Be(h) is a G(K)*-finite function. Now B(h)~! € K hence
B(h)™' = ¥ Xe(h) €,Xe(h) € ky. Thus {Xe(h)} are solutions
of linear equations whose coefficients are kp-valued G(K)*-finite
functions on G(K)*, and by Corollary 1.4, such functions form a
domain. We may thus assume that Xc(h) belong to the quotient
Ye(h
field of Ry, and write z¢(h) = ZE((h))’ where Ye, Z : G(K)t — k,
are G(K)*-finite functions. We finally get

@(h) = X o prp[y. — 1][pr(vs)] = A o pry[y. — 1. [%} —

(1)) _ Yo pry((r. - C(R)
o1 (i) =G
)

(since A is ky-linear) and (k) vanishes on F'(a) N Qg™ N G(K)*.
Therefore A o pry(v. — 1)C(h) = 9(h) is a G(K)*-finite function
which vanishes on F(a) N Qg™ N G(K)*t, and G(K) — Qg™ is the



200 T.N.VENKATARAMANA

set of zeros of a polynomial n(h) = > ne(h) €. Thus, for all
€ P(h)ne(h) = 0 on G(K)* N F(a) and by Corollary 1.4, part
(ii), ¥(h) = 0 on G(K)*. This means that @(h) = A o (pre(7« —
Dpr(vy)) = 0 for all b € G(K)* N Qg ',v, = u,:glug. Taking
h = Zg',Z € UT(K), we get: Vi, = Z 'u, represents an arbi-
trary element of U(K)*, and

0= Xo (pry(y. — Dpr(U*(K))) = Ao (pry(y. — YW*) = A(W,).

Thus A = 0 on W, whenever 0 = ) o (pry[y, us), (h € F(a)N g™t N
G(K)*1)). Hence {prp[y, Va]; h € F(a)NQg~'} contains a k,-basis of
W,, but W, is finite dimensional, whence the lemma follows. O

LEMMA 1.11. There exists a finite set {vp} = X of elements
of UY(K) with h € F(a)N G(K)t N Qg™ such that (i) for every
v € F and p € X(v), we have, the ky-span of pry[7y,vs] is all of W,
(12) [v,vn] € Hy for all y € F,v, € X. We denote by Hx the group
generated by {[0,v] : vy € X0,€ My(by)}.

Proof. We get a finite set X, , = {vj} satisfying the conditions of
Lemma 1.10. Take X = UX,,,. O

LEMMA 1.12. Let ¢ be a nonzero ideal of A, contained in b.
Then there exist a nonzero ideal ¢, of (Fy[v., v7']/p) and a subgroup
H,. C U(t) N Hx such that

pTD(Hc) D) EX Cp(PT'p [73 ’Uh])-

Proof. We have pry[y,vs] = (7« — 1)pry(vn). Now, for any inte-
ger N,pro[y™, o] = (1 + v + - + 4 Dprily, ] € kgpryly, val
because <y, has no torsion eigenvalues. Therefore the ky-span of
{prol¥™,vr);vn € X} = ky-span of {pry[r;vs];vs € X} which by
Lemma 1.11 is all of W,. Choose now an integer N such that
(YN, vi] € U*(c) for all v, € X. Let ¢, C Fy[v.,771]/p be the
ideal generated by (1 4+ 4. + --- 4+~ 1). Let H,. be the smallest
subgroup of Ut (c) containing {[y",vs];vs € X} and normalised by
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M,(b). Then H. is clearly contained in U*(c) N A (v tupyvit € A,
for v € M,(b,)). Moreover, by Remark 1.8,

pro(H) D Y (Folv, v '1/0) - (L + v + - + 4 pralv,va] D
v €X

D > cpprp[y, vn)-
vh€X

a

LEMMA 1.13. Given a nonzero ideal C of A contained in b, there
is a subgroup H, C Ut(c) N Hx such that pr(H.) contains W (bs)
where b3 is a nonzero ideal of A contained in c.

Proof. We have: R, ® (H Kv) is a product of local fields L,,.
K \veS
Let

Sy = {w; |¥|L, <1}, S2 = {w; |7|L. > 1}, and S3 = {w; |y|L, = 1}.

Let ki(resp. ki) be the closure of k, in [[ L. (resp. in
wES]

11 Lw). Now Fy[v.,77']/p is a lattice in ky x k. Since  is
weESy

a (faithful) R,-module, the module W, ®k [] K, is a direct sum of
vES
{L,}, with multiplicity m,,. Let U; be a compact open subgroup of

@Buwes,Mwly. Then Y cppryly, va] contains a lattice in
‘UhGX

UP = Z klprp[% Uh] + E kZPTp[’)’, 'Uh] + U3.

Now {pry([y,vn]) : v» € X} contains a ky-basis of w, and since k;
is a local field (z = 1,2), each {L,;w € S;} is a finite dimensional
vector space over k; and Zkiprp[*/,vh] = Z myLy. Thus, U,

wES,
contains the nonzero H K,-submodule Z myLy, = Ey. Write
vES weS1US,

E;, = Y. > z.E,). Thisis also a (H Kv)—submodule of
PEX (v) z€My(b) veES
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W@ [I K., which is stable under M} (since it is stable under

K veS
the Zariski closure of M,(b): by finite dimensionality, the sum over

z € M,(b) is really a finite sum). We look at the action of v on
(Wt ® [1K,)/E,. By the definition of S; and S, v has only

bounded eigenvalues in its action on W*/E,. Now the space Y E,
vEF

is also Mg0 stable and on (W+ ®HKU)/ Z E,, every element ~
~EF
of f acts with bounded eigenvalues. We now use the fact that

(H U+(K,,)) x M is compactly generated, to conclude ((W+ ®
vES

[1K,) x M and therefore) (H K, ® W+) /> E, x M) is com-
vES YEF
pactly generated. On the other hand, the image og M in

Aut ([ K.) @ W/ Y E,

YEF

is bounded, as we have just observed.

This implies that

WHR[E=SE=Y Y wE) =13 i)

vES YEF YEF peX (r) z€My(b) Vb,

(B, cUcWRIIK).

We have: pry(H.) N Up(C pr(H.) N Uy) contains a lattice in U,

whence pr(H,) contains a lattice L. in W+ ® J] K., such that (i)
vES
L.C Y pry(H)NU, C WH(cA) by Lemma 1.12. (Here A € K* is

YP

such that for all ideals a of A, pr(U*(a)) C W*(a,))), (ii) L. is
M, (b)-stable. It can then be shown easily (see [13], Section (2.10))

that L, D W(b,), whenever L. C W*® H K, is a lattice satisfying
vES
(i) and (ii), where b, C A is a nonzero ideal. Take b3 = b, N C. The

proof of the lemma is over. O

LEMMA 1.14. There exists a non-zero ideal by of A such that
A, contains Ut (by).

Proof. From Lemma 1.13, we have any nonzero ideal C of A, an
H. such that H D H.,H. C U*t(c) and pr(H.) D W+(b3), with
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by C C C b Now, [W*(a), Wt(a)] contains V*(a?u) for a fixed
¢ € K™ and varying nonzero ideals a of A. In particular, [H,, H,]
contains [W(b3), W+ (b3)] D V*(b3u), whence Hx D V*(b3u). Let
by C b3uNbsA~'N A. Then for z € UT(by) we have pr(z) € W (b3)
(by definition of A\) C pr(H.) and so (14) there exists an h € H,
such that zh™! € V*(c¢). Thus U*(by) C H.V*(c) C HxV*(c).
Now we replace ¢ by ¢ N byu = ¢’. Then for the corresponding
ideals b, by, we have: U*(by) C HxV*(d) € HxV*(bsp) C Hx.
We recall that A, = [M,(br),[My(b1),vs]] and that for v, € X,
we have [M,(b1),vs] € Hx. Therefore if b5 = U,,exbs, then Ay D
[M,(bs), Hx] and we have just shown that Hy D U%t(bs). Thus
Ay D [M,(bs),U*(by)]. Again, by argumments similar to (2.10) of
[13], it is easy to show that [M,(bs), Ut (bs)] D U*(bs), for a nonzero
ideal bg of A. This proves the lemma. |

We now complete the proof of Proposition 1.6: we have seen that
g ' F(a)g D A, D Ut (bg) and Ay D My(by). The group generated
by U*(bg) and M,(b;) contains P*(b,) for some nonzero ideal b, of
A, hence g7 F(a)g D P*(by). By symmetry g~'F(a)g D P~ () for
a nonzero ideal b of A whence g~'F(a)g D F(b), with b= b_ N b;.

NOTATION AND DEFINITIONS 1.15. We construct §. Consider
the group G(K)* (instead of G(K)). By [7], G(K)/G(K)* is finite
and therefore we may (and we do) replace G(A),G(a) and F(a)
by their intersections with G(K)* without affecting questions of
S-arithmeticity. We denote the intersections by G(A),G(a) and
F(a). Define a topology on G(K)* by taking the sets {gF(a);g €
G(K)*, a nonzero ideal of A} to be open. We then get a left uniform
structure and a right uniform structure on G(K)*. We now call
a sequence {z,} in G(K)* to be Cauchy if and only if {z,} is
Cauchy with respect to both the uniform structures on G(K)?% i.e.
if and only if for every non-zero ideal a of A, there exists an integer
[ = Il(a) > 0 such that 'z, € F(a),zmz;* € F(a)for all m,n > [.
Define two Cauchy sequences {z,}, {y,} to be equivalent if and only
if for every nonzero ideal a of A, there exists an integer [ = [(a) > 0
such that z 1y, € F(a),z,y;" € F(a)foralln > [. It is now routine
to check that equivalence classes of Cauchy sequences in G(K)*
form a topological group G with G(K)* being a dense subgroup.
Let C be the kernel of the map ¢ — G(A(S)). By [12] ,Lemma
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(2.10), the map is surjective. Clearly C is a closed normal subgroup
og G. We also observe that UT(A(S)) and U~ (A(S)) are embedded
in G (as closures of UT(K) and U~ (K) respectively).

LEMMA 1.16. Suppose C is centralised by G(K)*. Then C is
centralised by G(K)*. Then C is finite and F(a) is an S-arithmetic
subgroup of G(K)*.

Proof. Let F(a) be the closure of F(a) in G. Then F'(a) is open in
G and therefore C ﬂm is open in C. By assumption, and density
of G(K)* in G, we see that C is central in G and so we get a central
extension

1—-C/CNF(a)— G/CNF(a)— G(A(S)) — 1,

where C/C' N F(a) is a discrete group. Thus G/C N F(a) is a locally
compact central extension of G(A(S)), split over G(K)* and by
[10], C/C N F(a) is a quotient of x(K) the group of n**-roots of
unity in K for all n. This shows that C itself is finite, and so, F'(a)
is S-arithmetic (see proof of (1.10) in [11]). O

NOTATION 1.17. Let G, denote the closure of F(a) in G(K)*
in the S-congruence topology on G(K)*. Then, by [12], G, is a
congruence subgroup. Since F(a) is stable under conjugation by
M(A), we see that M(A) acts by conjugation on the double coset
F(a)\G(a)/F(a). Let H be a K-isotropic K-simple algebraic K-
subgroup of G, let H be the closure of H N G(K)* in G, Hy the
closure of H N G(K)* in G(a(S)), Ho is the closure of H N F(a)
in the S-congruence topology on G(K)*. We get an extension
1-CNnH—->H— Hy—1.

LEMMA 1.18. Suppose a subgroup B of M(A) acts trivially on
the subset F(a)\F(a)H,F(a)/F(a) of the double coset
F(a)\F(a)HF(a)/F(a), for all but finitely many nonzero ideals a
of A. Then C N'H is centralised by B.

Proof. Let c € CNH and b € B. Then ¢ = lim (hn) for a
Cauchy sequence {h,,} in H. Since ¢ € C, its image in G(A(S)) is
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1,1i.e. h, € Hif m > [(a), for any fixed nonzero ideal a C A which
is sufficiently deep. Therefore bh,,b7! = &, hnny (by assumption)
where &,,,m,, € F(a). This shows that ¢, — 1 and 7,, — 1 in G,
which implies that bcb™! = c. 0

2. Centrality of C when M, is not abelian.

NOTATION 2.1. We denote by Mj, the connected component
of identity of the Zariski closure M; of M(A). We assume in this
section that [Mo, Mp] is not trivial. Therefore [Mo, Mo] is a semisim-
ple K-group, let M; denote the simply connected cover of [My, Mp).
Now, M;(A) is Zariski dense in M; since Mi(A) N My is Zariski
dense in My. Since M; is simply connected, by [8] and [9], M;(A)
has strong approximation.

LEMMA 2.2. There exists a congruence subgroup B of ]\71(/1)
such that for any two nonzero ideals a and b of A with a+b= A,
the group generated by My(a) and My(b) contains B.

Proof. This is an easy consequence of strong approximation. For
details see [12], Section (4.12). O

2.3. PROOF OF CENTRALITY. We borrow the notation of (4.8)
of [12]. Let f(g) be the function defined there. Write, as in (1.5),
g = u;mgyu, for ¢ € G,. This can be done if a is a sufficiently deep
ideal. With respect to the representation W in (4.8) of [12], f(g) is
defined, and u,m,, u, have the properties: f(g) = 1(mod a),

F@N (] )is = 6i), F( @)V [(mg)is — 8], f(9)V [(ug)i; — 6] €

where N is a large integer depending only on (G,W) and if
T € End(W),T;, denotes its (ij)"* entry of viewed as a matrix,
with respect to the basis defined in (4.8), [12]. Let B be as in (2.2).
Take 8 € Mi(f(g)*"). Then g6~" = (Qu;07")(6m,07")(Ou,6™") =
[0, u; Juymgug[(mgu,) ™", 0] and [0, u;] and [(mgu,)~", 0] lie in F'(a).
This shows that in F(a)\G(a)/F(a), My(f(g)*N) acts trivially on g.
Since F'(a) is dense in G, in the S-congruence topology on G(K)™,



206 T.N.VENKATARAMANA

one can find k € F(a) such that gh =1 mod(f(¢g)*"), and therefore
f(g)?N and f(gh)?"N are coprime. We have proved that M;(f(gh)*N)
fixes gh = ¢ in the double coset. Apply Lemma 2.2 to conclude
that B fixes every g in the double coset F(a)\G(a)/F(a). Now , by
Lemma 1.18, C is centralised by B C G(K)*, and since G(K)* i
simple modulo its centre, G(K)* centralises C.

3. Centrality of C when G = SU(2,1). We first prove a
lemma which is very similar to Lemma (2.1) of [14].

LEMMA 3.1. Suppose a and b are two elements of A such that
aA+bB = A. Let L/K be a finite separable extension. Consider
the K-group T = Rp/k(Gy,) where Rk is the Weil restriction of
scalars, let N be a positive integer and consider the group T, n in
T(A) generated by {T'((a + bz)");z € A}. Then the indezx fopn of
Topn in T(A) is bounded by a constant independent of a, b.

Proof. Tt is easy to reduce to the case when L/K is a Galois
extension. Let d = degree of (L/K). We will show that f,pn <
G(d,N,K) where G is a function of d, N and K. Let S be the
places of L lying above the places of S. Then T(A) = T(Os) is
commensurable with O% = G (O3). Moreover if a C A is a nonzero
ideal and a = a ®o4 O3 denotes the ideal in O3 generated by a,
then T(a) = G.(a). Now T(A)/T, N is a quotient of T'(A)/T[(a +
bz)"] = Gn(0z)/Gml(a+ bx)N] and the latter is a subgroup of
(O3/(a + bx)N)* the group of units in (Og/(a + bz)N). This shows

that if ¢[(a+bz)"] denotes the cardinality of (Og/(a/-_l—\_EE)N)*, then
fapn divides ¢[(a + bz)"] for all z € A. We have, therefore:

fasn < ged{p(a +bx)N : z € A}.

Write a + bz = py - - - px, a product of primes of A. Each p; decom-
poses as a product of primes B of Oz. Hence

(a+bx HHﬂ)N.

i=1 pjp
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Therefore

ko k
el(a + bz)V] = H ]_I_I(Norm BYN-Y(NormpB —1).
i=1p|p,

Since L/K is Galois, for a given p;, we have Norm 3 = (Norm p;):
for some integer f; dividing d, for each 3|p;. Moreover the number
fi of B lying above p; also divides d (in fact fir; divides d). We thus
get:

k
(1) el(e+ bx)M] = H(Norm pi)(N_l)f"'[(Norm p,-)f' —1]™.

=1

Let [ > 1 be a prime and suppose (¢|gcd{p[(a + bz)"];z € Os}.
Then by (1) we have:

(2) I TT (W) ¥=DI (Normps) ! — 1)

Case 1: Char(K)=0o0r N = 1:

Let ¢’ be the smallest integer such that 4de’ > e. Then € =
[ —1]+1, where z > [z] is the “integral part” function. Let ¢ > 1
be a prime, suppose ¢* divides the degree d(e') of K('V1)/K. We

may write
(3) (a, K('VD)/K) = o™

where (a, K ( lexl/l—)/K) is the Artin symbol and o € Gal( K ( le\//I)/K)
is a generator. Let K,/ K be the classifield corresponding to (b) in
A. Let E be the compositum of K, and K('V1)/K is o.

(A) If ¢gis odd or if q is 2 and m even, then z(m —z) # 0
(mod g) has solutions. We write

(4) (a, B/K) = (67)(6'""9)(57'€)(5)

where ¢ restricted to K('V1/K) is trivial. This can be done by
(3). We may represent each of the bracketed terms in (4) by (an
infinite family of) prime ideals p1, p2, p3, p4 by the Cebotarev density
theorem. Then from (4) we get:

(5) (a, Ky /K) = (p1p2pspa, Kb/ K)
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and so there exists A € K* such that A =1 (mod b) and &’ = a) =
pi1p2paps (by Artin Reciprocity) i.e. @' € A and @’ = a (mod b),
therefore a’ = aX = pypopsps. This shows from (2), that

el(a+ bx)N] = [[(Norm p;) VD" h ((Normwp;)* — 1)".

i=1
We have I°|p(a+bz)N. We are in the case 0 =Char(K) or N = 1.
If Char (K) = p > 0 then N = 1, whence [¢| fI((Npi)f" - 1) If -
Char (K) = 0, we use the infinitude of the siozlhtions {p:} to (4),
to pick p; such that Norm(p;) is a power of a prime p; > [. Then
again [°| ﬁ((N p;)’" —1)™. Let e, be the largest power of I dividing

=1
(N p;)¥ — 1. We have e < rye; + req + raes + rqeq. Let epr be
the maximum of ey, ez, e3,e4. Then e < 4epd (since r; < d) which
shows that ey > ¢/. Therefore, for some 7,1¢ divides (N p;)% — 1.

But (p;, K( 'il/I)/K) sends IC\I/I into ( 'il/I)N”m(p‘), therefore the
order of (pff, K( 'e\/I)/K) is equal to 1. From (4) and the fact that
5|K('V1) = o, we know that

(pi, K( lil/f)/K) =0 ora™ ¥ or o oro.

We therefore get: one of the numbers z fi,(m — z)f2, —fs or f4 is

divisible by the degree d(e) of K( 'il/_l—) /K and hence by ¢". By the
choice of z(z(m — z) # 0), this means that d(e) divides f; for some
i and f;|d for each i. Therefore ¢" divides d if q is an odd prime or

else if (a, K( 'iI/I)/K) = o™ where m is even.
(B) If ¢ =2 but m is odd, and

(a, K("VD)/K) = o™,
we write
(6) (¢, E/K) = (6™)(57€)(5)

and represent ¢™,57!'¢ and & by primes pi,p2,p3. Then (pi,

K('VD)/K) = o™, (b2, K('"VD/K) = 07, (pa, K("VI)/K) = o.
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3
By (2), we have I¢| J[((N p:)"* — 1)* (we use an argument similar

to the one in (A) to (lzhoose p; such that I|(Norm p;)). If e; is the
largest power of [ dividing (N p;)¥* — 1 and epr = max{es, ez, €3},
then e < Y r;e; < 3depr < 4deps whence €' < ey, i.e. ¢ divides
(N p;)’* — 1 for some i. Now (6) shows that one of the numbers
fim, — fa, fs is divisible by ¢”*, and since m is odd and ¢ = 2, this
means ¢"|f; or f, or f3 and each f; divides d. We have thus proved
in all cases that if ¢" is a prime power dividing the degree d(e'),
then ¢" divides by a constant depending only on (K, d) provided O
= Char (K) or N = 1. Now [ = [¥/%=1+1 i hounded which means
that /¢ is bounded by G(K, d, 1) whenever (¢|gcd{¢(a+bz)";z € A}
and we are in case 1. Thus in Case 1, f, ;1 is bounded by G(K, d, 1)
and if Char (K) = 0 then f,;~ is bounded by G(K,d,1).

Case 2: Char(K) = p > 0, and N > 1. Let pM > N

N
(choose M=1+ [llog }) Then T v1 C Tup N, because (T'(a +
ogp

br))P” T((a + bz)M) which shows that Card (T(A)/Ta,b,N) <
M(C’ard(S Card (T(A)/Ta,b,N) ie. fa,b,N —<_ pM(Card(S)—l)fa’b’1
and we have shown in Case 1 that f,;,1 < G(d,K,1). Therefore
fapn < G(K,d,N) in all cases. O

NOTATION 3.2.  We observe that for G = SU(2,1), for any
K-algebra A, we have

001 001
G(A) = {gESLg(L®A); a(*g) (010) g} (010)
100 100

where L/K is a Galois extension of degree 2 whose Galois group is
generated by 0,0 acts on L ® A by its action on L and on the group
SL3(L ® A) by acting entrywise, ‘g is the transpose of the matrix
g. Then

lz vy
Ut (K) = { (0 1 (—w)) ;s N(z)=tryk(y), z,y¢€ L} :
00 1

100
U (K) = {(m 1 0) N(z) =trrk(y), w,yGL},
y—T1
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a 0 O
M(K)::{(Oc‘z/a 0); aEL*}.
0 0 a!

Thus, M = R k(Gm). Take W to be the standard representation
of Gon L? and f(g) = ani(g) i.e. the (1,1)-th entry of g. Look at
the action of M(Os) on F(a)\G(a)/F(a), one can write

ai a2 (113\ 1 0 0
(x) g=|anaxnas| = |au/an 1 0

azy 432 033/ 031/011 —(021/011) 1

a7 O 0 lajz/an ais/an
X 0 (_111/(111 0 0 1 —(112/(111 .
0 o0 apt/\0o o 1

Suppose p : SL; — SU(2,1) is a K-representation (nontrivial)
such that

1z}, + 10}, +
p{(()l),a:EG}CU, p{(ml),xEG}CU
(thenp{(é t‘ql) it € G} C M) Moreover, f [p (8 agl)] =a or

a? as can be easily seen. If g € [p(SL,)], then (*) shows that M(a?)
acts trivially on g = p ZZ . Therefore M((a + bz)?) acts trivially

on g in F(a)\F(a)p(SLy)F(a)/F(a). Now Lemma 2.2 shows that
there is a fixed subgroup Ty of M(Ogs) such that Ty acts trivially
on F(a)\F(a)[p(SL2)]aF(a)/F(a). Hence, if H, = p(SLs), then by
Lemma 1.18, Ty acts trivially on C' N 'H,,.

Then Tg acts trivially on H,NC, and H,(K) acts on CN'H,. But,
if 2 # Char (K) then Ty and H,(K) generate G(K)*, which shows
that G(K)* acts, and acts trivially on C N H,. Thus H,(K) N
Ut(K,) and H,(K) N U(K,) commute if w,w’ € S, w # w'.
By {12], this implies U*(K,) and U(K, ) commute, whence C is
centralised by G(K)*.

4. The case when Mj is abelian. In this case we have emb ed-
dingsof H = Ry g SU(2,1) orof H = SL,in G where Ry/x(SU(2,1))
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of SL; has S-rank at least 2 ([12]). Therefore (Ut N H)(K,)
and (U~ N H)(K,) commute if v # w,v,w € S. By Lemma
(2.1) of [12], this means that [UY(K,), U (K,)] = 1 in G for

all v,w € S, v# w,ie. Cis central

CONCLUSION. We have shown that
1-C—-6G->GA(9)) -1

is a central extension in all cases, whence C is finite by [11], i.e.
F(a) is a subgroup of finite index in G(a). Now F(a) normalises

E(a). Hence, again by [12], E(a) has finite index in G(a). This
completes the proof of the theorem of the introduction.
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