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ON FLATNESS OF THE COXETER GRAPH FEg

MASAKI Izumi

‘We will show flatness of Ocneanu’s connections on Cox-
eter graph Fg. This completes classification of subfactors
of the type II; AFD factor with indices less than 4, which
has been stated by A. Ocneanu.

1. Introduction and main results. Since his celebrated work
[J], V. Jones theory of index is one of the central topics of the theory
of operator algebras, and further deep results have been obtained,
for example [PP, K]. Especially, on classification of subfactors of
the approximately finite dimensional (AFD) II; factor, A. Ocneanu
announced a striking result with the notion of paragroups {01, O2].
But the details of his proof have not appeared yet.

Ocneanu’s theory has two aspects. One is analytic aspect, which
is covered by Popa’s deep results [P1, P2], and the other is com-
binatorial aspect i.e. the theory of paragroups. Until now, exis-
tence and non-existence results of paragroups corresponding to the
Coxeter graphs except Eg have been obtained [B, K, SV, I]. The
purpose of this paper is to prove the existence of the Eg paragroup,
which shows that Ocneanu’s classification list in [O1] is correct.

The contents of this paper are as follows. In Section 2 we will
show that the study of flat connections on Fj is reduced to that
of other connections on some four graphs, two of which are Fjs.
In Section 3 we will prove the main result by computing the above-
mentioned connections. While we will treat only Eg case our method
is applicable to the other cases of the Coxeter graphs. Throughout
this paper we will freely use the contents and the notations in [K].

The author would like to thank Y. Kawahigashi. Without his
kind explanation the author could not understand the theory of
paragroups.
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2. Reduction to another embedding of string algebras.
We fix the following numbering on vertices of Fg.

7
| :
0—1—2—3—4—5—6

In [O1, page 159],[K, Theorem 3.1] it is shown that there are ex-
actly two connections on the Coxeter graph Fg up to gauge trans-
formation, which we will explain later, and these two are mutually
complex conjugate. We fix one of the connections on Eg and con-
sider a double complex of string algebras A, (0 < n,m < oo) as
in [K, O1]. Note that to obtain a flat connection the distinguished
point * must be 0 [I, Theorem 6.1],[O1, page 161]. We do this as-
sumption. Let ¢ : Ag o > A5 be the embedding map constructed
by the connection and £ a horizontal path

E=0-01-2-23-24-7.

Then it is shown in [K, Theorem 2.1] that the existence of the sub-
factors corresponding to Fjy is equivalent to

(2.1) L((€,8)) € As”
Let 1, n2 be vertical paths
m=0—-2132233—-24-5 mnm=0-21232-233-234-7,

p = (m,m) + (m2,7m2) and B the xsubalgebra of Ao generated by
the vertical Jones projections in Asp. Then the following hold
[K, Section 1].

Aso =B & C(m,m) ® C(n2, ).
B& Cp C 1(Aoeo)".
So, to show (2.1) it suffices to show
(2.2) pu((&,€))p € (pAspp)'.

Let A, = Aoyn, Bn = p(45,)p and p(z) = pu(z)p for ¢ € An.
Then B, is the string algebra of Eg with distinguished points x; =
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5,%9 = 7 and p is a filtered unital embedding of the string algebra
A into the string algebra B, which preserves the standard Jones
projections. By the word “filtered” we mean p(A4,) C B, for any
non-negative integer n. Summing up the above argument, we have
the following lemma.

LEMMA 2.1. Let A,, B, be string algebras of Eg with distin-
guished points x = 0 and x; = 5,% =7, and

§=02122-233—-4-7,

If for any unital filtered embedding p : A > By which preserves
the standard Jones projections, p(z) commutes with (1,%;) € By
(equivalently (%2, %2)), then for Eg there exist two and only two sub-
factors of the AFD factor of type 11; up to conjugacy.

Let us recall Ocneanu’s result on embeddings of string algebras
[03]. Let G, G, be finite bipartite graphs with distinguished points.
As in [K, EK] we admit that G; and G, have several distinguished
points. Let (A,),(Bn) be the string algebras of G;,G,, and p :
As > By a filtered unital embedding preserving the standard
Jones projections. Then for large n € N the inclusion matrices of
p(An) C By, and p(A,42) C Byyia coincide and we denote by Fq, F2
the corresponding graphs of p(As,) C Bon, p(A2n41) C Bopyr- A
slight modification of the argument in [O3] shows that p comes from
a connection on the following cells satisfying the renormalization
rule and the unitarity.

(2.3) 3 e

HEF,6€G,6 € F64€G or
& € Fo,6 € G1,63 € Fr1,8 € Ga.
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The unitarity means that the following matrix is unitary.

a —
— d
The renormalization rule is
a 3 s b a L) b
o Jes = #b)ue) 3 e,
p(a)u(d)

where £ is the reverse path of . (See Section 3 for the notations.)

We come back to our case, namely we assume G; = Gy = Fg. To
distinguish the vertices of G, from those of G;, we use the preceding
numbering for G, and the following numbering for Gs.

WS —— =

0—1—2—3—4—5—6

The Bratteli diagram of (A,) and (B,) are as in Fig.1.

Ay — -
AO— N go — %/1 1
4 — ¥ M B, — ) ¢
2 \ / \ 2 / \A/ \3

As — 20 1 By — 2 T

/ \3/ N ON SN S
Ay — 2 1 By — 20 9(710

\ / \ /‘\\ / / AN | /S AN
45— 5( a1 By — 2 1K 26 10
45— 5 9( 6 Bg—  1s( 372636
A, — 14 1567 B, — 137 507 997 36

FIGURE 1. The Bratteli diagrams of (4,) and (B,).

We have to determine F;, F,, or equivalently the inclusion matrices
of p(A,) C By, which we denote by I',,. Let G, G2 be the matrices
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corresponding to G;, G, i.e.

0 2 4 6 0 2 4 6
1/1 1 0 0 I/1 100
3o 11 0 310 1 1 0

Gi=cslo o1 1] “=s5lo 01 1
7\0 0 1 0 7\0 0 1 0

Then Gy, Gs, T, satisfy the following relations.
GéFZn = F2n+1G17

Galant1 = Toni2Gh.

Note that the graph corresponding to I',, is a part of that corre-
sponding to [',,2, and the edges in F; or F, connected to the
vertices in G; which appear in the former, have already been deter-
mined by I',,. Taking this fact into account, we can easily see that
the possible matrices are as follows.

0 2 4 6 1 3 5 7
1{0 0 0 O 0/0 0 0 O
1"0—-§ 0 0 0O , F1—? 0 0 0 O
5{1 0 0 O 412 0 0 O
7\1 0 0 O 6\1 0 0 O
0 2 4 6 1 3 5 7
1{0 0 0 O 0[O0 0 0 O
F2~§ 0 2 0 O, Fs—‘? 0 2 0 0
511 2 0 0 412 3 0 0
7\1 1 0 0 6\1 1 0 0
0 2 4 6 1 3 5 7
1/0 0 2 0 0{0 0 1 1
F4:§ 0230 ) an—1=? 00221 (n>3)
511 2 2 0 412 3 2 2
7\1 1 2 0 6\1 1 1 0
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0 2 4 6
1,0 0 2 1
310 2 3 1
Fm=51] 9 9 1| (23
7\1 1 2 0
So F; and F; are as in Fig.2.
Fi Fa
0 2 4 6 1 3 5 7
p
) [
7 5 3 1 6 4 2 0

FIGURE 2. F; and Fs.

3. Main theorem. In this section we will compute the connec-
tions on the cells (2.3). Our aim is not to determine all entries of
the connections, but to show that all possible connections satisfy
the assumption of Lemma 2.1. For this, it suffices to show that
“sufficiently many” entries of the connections take value 0.

Before starting computation we recall the gauge transformations
of connections, (in [O1, page 154] Ocneanu calls perturbations),
which become a key technique later. For a vertices x,y we denote
by Pathg:l’l)/ the set of edges between z and y. We consider unitaries

(u(€,m)en € End(1*(Path)))

for all possible vertices z,y in G, Gy, F1, Fo, between which there
exists at least one edge. For given connection

a—5—2—>b

wlel |e)

c —— d
a
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the transformed connection W' is defined as follows.

a —i~> b o —25 b
W, 5’11 Jfé = Z aW Ell lfs
615£2a£3a§4
c —— d c —— d
& &

for 616?1,6126]:2,

a ——E?—-> b a ——§2——> b
w’ sgl lsg = Y aw ell 153
£1,62,63,€4
c —= d c — d
& &

for & € Fp, &, € Fu,

311

where a = u(&,, &)u(&,, &)u(ls, £)ul€, &). Note that the condition

in Lemma 2.1 does not depend on the choice of gauges.

We will use the following conventions. As in [K] we will omit
the sign “W” of connections if no confusion arises. Since F; and
F2 have multiedges we need a numbering of edges, and we use that

starting from 1. We mean by

a — .
. — d
the unitary matrix (v;;)i; where 1 = (§,&4),5 = (&, &) and
a —25 b
vij = &1 511 J&*
c — d
&4
For example we will write as follows.
5 o 4, 4, 6
0 * *
E( )
o 22\ % *
.1
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where the (12, 4;) entry means

5 —— 4
@ P
2 —— 3
Let
$o0 2m s 3w o AT
sin o5 sin o+ sin o~
0_:1, 1) == 30, 2) = 30, 3) = 30’
#(0) =1, u(1) Sz 1(2) Sz 1(3) S
1 3T son 2T
T SN I T Sl 5+ ™
s 4w
H(7) _ 1 _sin 35

- T soom T
2cos5 sin g5

Then using (2 cos7/5)? = 1+2 cos /5, we can easily see that (u(2));
is the Perron-Frobenius eigenvector of Fg, and the following equa-
tions hold.

(3.1) 1(3) = u(6)u(7),
u(4) = p(2)p(6) = p(L)u(7),
() = pu(1)u(6).

Now we start computing the connections. Using the gauge free-
dom of the following edges in order,

(3.2)

1 — . 0 2

-3 |

.—
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7 — 4, 4, 3 — 4, 4,
J J“ﬁ 1 0 l 1_12 1 0
—2\0 1) T2\ 0 1)
— 1 L — 1
2 — 1 3 6 —— 51 5o
j i_l—S 10 l I_T 1 0
T\ \0 1) —3\0 1)
. —— 6 L — 2
4 —— 5 7 —— 4, 4,
j 15 (1 0 1_14 1 0
1—2_5_ 0o 1) l T 4\0 1)
. —— 6 . —— 5
7 — 44 4, 5 41 4,
Lo [=50 ) | 1501
T 4\0 1) T4\ 0 1)
—_— 7 . — 7
0 — 1 6 —— b 6 —— 5
I e N e
5 ——656 5 —— 6 1 —=0
14/1 0 O 2 1 0 0
1 l=24 01 0] —74[lo 1 o
T 34\0 0 1 o4\ 0 0 1
O — 3
Applying the renormalization rule to
1 —0 7 —— 14
| L] EREEYESE.
4 —7 0 — 1
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and using (3.1), we have

0 —— . 1, 1, 4 —— .

5 7
J l_g(* *) l l_ﬂ(* 1)
7T\1 0)’ oI \x 0/
— 1 . — 0
So, due to the unitarity we can put as follows.
(3.3)
0 — . Lol gy 5 7
J 1_3 0 & l 1_11(0 1)
Lo\ o) L 5T\e o)
— 1 — 0
2 — . 31 32 6 —— . 51 99
NSRS (S
23 \ —e3y €37 )’ 5\ —e4T equ )’
L— 2 — 4

g (i1=1,2,3,4),z,y,u,v € C,

el =1, |l + [yl* = [uf* + o = 1.

Applying the renormalization rule to

l

—

|
|

oY — O
O — Ut

l

W e—
T ——— ©

|

O —— =
-,
O — o

l

o ——
-,
s

|
J
l

|

ol —— on
] —— o

l

Ol ——
= — o

l

U — O

J

ol e o



and in the same way as above, we obtain the following.
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0 2 29
1 — . A4 0 0 w
E14/1(2) 3%
(3.4) l,—“— 24| o “am 0|,
T = 1 \V 1(2)
»S 6\ o w0
4, 4, 6
5 —— . = g2/ 1(2) 1
0 (0 =m
= 5 52 v #(2)
J . l ﬁ 0 - (1)
— T 22 \we 0 0
4, 4, 6
- Eav E4v M(Q)
b - it [wsT __;fg
T E4U a“y ©(2)
J l“ Al ws¥ =gy D
= = ©(2) 1
— 5 6\ 0 o)
W; (i:1,2,3)€C, ]w,lzl

Using the same type of argument as above, from (3.1), (3.2), (3.3),
(3.4) we have the following.

].1 12 31 32 33
-5 6
3 % 0 0 * %
2 — . 3 u(6)  _ \/K6)
231 0 e am **
3.5 l lz - —f ,
(85) B0 s Zowm *Y
— 4 25 | Zeld) 0 0 * %
2 u(2)
0 1 (1) 0 0
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(3.6)
31 32 51 52 7
T u(6) wzu(1)
a0 0 ZO
4 —— - u(6) _ € 1
1 j 21 0 w(2) e} 0 (2)
- () e un |
— 2 w0 W) @) 0 w(2)
23 * * * * 0
33\ x * * * 0
(3.7)
31 32 33 51 52 71 72
3/ = * * * * 0 0 \
23| = * * a b u‘(ll(f) 0
. 331 x * * c d 0 3@
l l _ 15 ] * a b “’_3:’; L %ﬁ :(2) 0 ’
1 55 « c d Ii’?é% —ﬁ% 0 \/;‘1(—2)
—5 (6)
1710 ui(ll) 0 \/[tfz')_ 0 u—(lﬁ 0
— (6)
271 0 0 u‘;l) 0 \/5(7) 0 ﬁ )
_ w2 +wup)® o @avp(l)?
where a = — , b=-— ,
1(2)p(6)(2) VR (2)u(6)u(2)
_ eqop(l) Je —p(2) + equp(1)

Ju@ue)p@ — fe@uE)u?)
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2 29 4, 4 43
L E(m .
—_— N .
1(2) zp(2)
2| m Tam *F
(3.8) j 1: Y X x k% |
— 3 4] = * x ox
34 * * x k% )
21 29 44 4,
5 . 4 * * * *
24| * * *
69 | |=al. . . x D
—5 glo J#@_ _1_ g
p(DeB)  /u(6)
4, 49 43 6
2« *=  * 0 \
o — —
22 x  x % _m2)
(3.10) l j _ w(1)u(3)
' T ok ox % 2(6)
) i "5
2 % % %
v 1(6) }
Applying the renormalization rule to
2 — 3 2 — 3 2 — 3 —

!

and using (3.1) and the unitarity, we obtain

3 — 14 3 — 5 —
4 — 3 4 —— 3 4 ——
I U N
3 — 2 3 — 2 3 —

Jl,2
4
)
2

Gl —— O] —

L]

N &—— O ] — W

l

[

(V]

317
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2, 2 4, 4y 43
5 [ zTu(2) gayu(2)
2 T 0 s )
3 —— . ) gp(2) ez w2 * *
, 2 1(3) u(3) u(7)?
o | =l m .
— 3 Al x * * x %
34 * * * x ok }
21 22 41 42
— 3
s w0 0 =
24 * * * *
/ - J—
(3.9) l l— 34 * * % *
— 5 r K2 1
61 0 0@ Tue ©
4, 49 43 6
i 12 [ iomm * 0 )
—
2 0« ki
(3.10) J lz - :
. 1 * x % S
") 7
2 \ * * * \/m
Thanks to
3 —— 4
1J 11 =0,
4 —— §
we have
—
1 =0.

—
O ——

l

> w
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Hence the unitarity of

4 —— .
. —— 4
implies that the following two vectors are mutually orthogonal.
wzup(l) wivp(l) 1
0,a,b, w2 0 w2 7 Su@)’ 0 ’

€47 £4U 1

*,C, d vow(2) T (@) 0 ) /““‘u(2)
So we have the following.

84(.4)37!170—/.1,(1) E4w3Wu(1)

0 =ac+bd + OF )
_ eaOp(1)(p(2) + wsip(1)?) | wstp(1)*(w(2) — eqtip(l))
1#(2)3u(6) 1#(2)°u(6)
e — ) + aTu(1)) + ann(1)(u(2) ~ (D)}
_w)
From &4 + w3p(1) # 0, we obtain v = 0 and consequently
6 — . 51 92
_3[u 0 ul =
(3.11) 1 l—z<0 m_), ul =1.
— 4
4, 4, 6
3 — . 1_4 w;ﬁi 0 0
| =70 @ =60
5 6\0 u€2()2) #—(15

The unitarity of
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implies

o — .
(3.10") j l
3

.

and hence we have

So the unitarity of

shows
(3.7)
31
13 %
23] 0
4 — 3| *
1=
7 B
171 0
27{ 0

MASAKI IZUMI

4, 4y 43 6
12 Wzﬁi_um * % 0 )
22 0 * % % ,
14 0 x % \/;%
24 * X % 0
4 —— 5
1l llz 0.
3 — 4
4 — .
|
— 4
3, 3s 5, 5, 7 Ts
0 s 0 £ 0 0
* 0 a 0o YO
0 * 0 d 0 YD
a 0 (mmwd g A= 0
0 d 0 a5 0 \/:_(2.)
Do 7% 0 g O
0 @ 0 \/35 0 el )
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Applying the renormalization rule to

{ lj@ﬁsz&, % P(kzLZ&l:Lﬁ,
3 —— 14 3 — 14

and using (3.1), we have

21 22 41 42 43
5 [ T2 __Byp(2)
3 2 (A _ma o x )
_— . 5| @ _B@Erp2) _ ps(2)
22| Y Tam . Twor F¥
n _ —
N
— 3 Al # * 0 * 0
34\« * * 0 =
(3.9")
21 29 44 4,
Y GG I 0 *
I - l Al « * a %% 0
. 34 * * 0 d Zi(g%
[ 0 1(2) 1
w(Dp@B)  \/u(6)
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(3.10")
4,
5 g
1 ©(6)u(7)
5 — . ) 0
l l v )
— 3
24 *
So the unitarity of
3 — .
—
implies the following.
(3.9/”)
2
= T
14 [ o
3 —— . v 0
l l_ ;Z *
—> b
6 0
(3.10™)
4,
12 [ wou)
5 —— . 2—2 0
l l Al o
— 3
24 *

0

MASAKI IZUMI
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In the same way we obtain the following from (3.9”) and (3.10™).

L Iy 31 32 33
- 6
350 0 * 0
2 .3 u6)  _ KO
T 3 0 iy . 0
3.5 J 1: = e e |
55 o) 0 WO e *
. —— 4 | T
29 L'é) 0 0 x 0
7 . u(7)
"N e o 00
(3.6))
31 32 91 92 7
I ©(6) @zu(1)
e O 0 2l 0 )
4 — - u(6) - 1
21 0 e) e B o
J J - 31 o _VEE) o 0 (1)
5 B w(7) / e(2)u(7) u(2)
23 0 0 * 0
33\ 0 * * 0 x )
Due to (3.5') and (3.6') we have
21 22 41 42 43
5 /zu2) _ Eypu2)
3 12 (%) T a0 0 = 0
T | m@ _mm@ _s@) g
) ”(3) pu(7)?
| l=alo -2« o
y 3 24 * 0 0 * 0
34\ 0 * * 0 =
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The unitarity of this matrix shows y = 0, |z| = 1, and

2 2 4, 4, 43
2(2a o 0+ 0)
3 — . —- F3zp(2 2
m —_— —
(3-8)1 i*lz; 0 A . 0 x|
. ——=3 A 0 0 0
34 0 * * 0 *)
2 — . 31 3
(3.12) j J:f z 0
23 0 £3T
. — 2

Finally we have come to the position to prove our main theorem.

THEOREM 3.1. For the Cozxeter graph Eg, there ezist two and
only two subfactors of the AFD type II; factor up to conjugacy.

Proof. Let £ be the horizontal path defined in Section 2, and p the
embedding map defined by one of the connections computed above.
By definition p((¢,€)) is as follows.

0 —— "

)
—_
—
T
)
~
N—
I
(—
g —— O

(a}_,ai)
oy ol
0 = <+ 0
Ly | | o)
I e T
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0 —— «<— 0

+ l l (ai,ai)
e

o3 o3

0 —=— +— 0

+ l l (0%,02).
04 0.4 —_— —
-7 7

q

So to show the assumption of Lemma 2.1 it suffices to prove

(3.13) 1 JZQ,
5 — «——— 7

o4 o_
for any pair of paths o,,0_ in G, satisfying
loi] =lo-| =¢l, s(o4) =5, s(o-)=7, r(o4)=r(0-).

Fix an edge ¢ € F, connected to the vertex 7
7

e

w

and assume that the following large connection is non-zero.
0 —— 7
l JC ,z=5orT.
Z —w

Thanks to (3.2)— (3.12) we can see by direct computation that z
is uniquely determined. (Of course o is not unique.) That is, if w
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is 4;, 43, 2, 0, then z must be 7, 5, 5, 7, respectively. This means
that (3.13) holds and we finish the proof. O

REMARK. In the same way we can prove the existence of other
paragroups. For example, it is much easier to show the existence of
E¢ paragroup. In the case of Degyen, we can also show the existence
using induction.

(B]

[EK]
[GHJ]
(1]

9]
[Ka]
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