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We find existence of a minimum in BV for the varia-
tional problem associated with div A(Du) + 4 = 0, where
A is a mean curvature type operator and p; a nonnega-
tive measure satisfying a suitable growth condition. We
then show a local L™ estimate for the minimum. A simi-
lar local L* estimate is shown for sub-solutions that are
Sobolev rather than BV.

1. Introduction. In this paper we initiate an investigation of
weak solutions of the

(1.1) div A(Du) 4 = 0

in a bounded Lipschitz domain Q@ C R". Here A is a function
for which the mean curvature operator is a prototype and u is a
nonnegative Radon measure supported in €2 that satisfies

(1.2) u(B(r)) < Mri®™ for all B(r) C Q,

where M >0 and 1 < ¢ < 5.
This paper has its origins in the work of [LS] where it was shown
that if u is a weak solution of

Au = p,
where p is a measure that satisfies the growth condition
u(B(r)) < Mr"-2+

for some £ > 0 and for all balls B(r) of radius r, then u is Hélder
continuous. In [RZ] this result was generalized to equations of the
form

(1.3) div A(z,u, Vu) + B(z,u, Vu) + p =0
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where y is a nonnegative Radon measure and A and B are Borel
measurable functions satisfying structural conditions that allow, for
example, the p-Laplacian. It is shown that if u is a Hélder continu-
ous solution of 1.3, then u satisfies

u(B(r)) < Mr"rte

for some € > 0. Under further restrictions on the structural con-
ditions, it was shown this growth condition on p was sufficient for
Holder continuity of w.

Recently, Lieberman [L] improved the results in [RZ] by proving
supremum inequalities for solutions of 1.3 without the restrictive
structural conditions, thereby establishing necessary and sufficient
conditions on the growth of u for the Holder continuity of solutions.

All of this analysis takes place in the framework surrounding the
p-Laplacian, p > 1. It is our purpose to address the situation of
p = 1. We first consider the question of existence of solutions of
1.5 in the case A is the mean curvature operator. We establish a
variational solution by minimizing

(1.4) /Q\/l-l— |Vul? dx+/9udu

in the class u € BV () where u satisfies the Dirichlet condition
u* = f on 0N, with f an integrable function on 0. In order
to ensure the existence of a minimum, it is necessary to assume
that the constant M in 1.2 is chosen sufficiently small. This is
analogous to the assumption made in [M], in which p is taken as a
bounded measurable function. We then show that the minimizer v is
bounded. In this context, it is not possible to utilize the argument
given in [L] to obtain an L* bound since there is no variational
equation associated with 1.4 . Rather, we employ a technique used
in [RZ] modeled on the method of DeGiorgi.

Next, we investigate an equation which contains the formal Euler-
Lagrange equation of 1.4. Thus, we consider a weak solution u €
Wh(2) N L*(Q) of the equation

(1.5) divA(Du) +p =0
where we assume there exist non-negative constants a1, a; such that

(1.6) p-Alp) > |p| — a1
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and
(1.7) |A(p)| < ao.

It is assumed that p is a nonnegative Radon measure supported
in the bounded domain 2 and satisfies 1.2. We show that if u €
WHHQ)NL>(Q) is a weak solution of 1.5, then |u| is bounded by the
L'-norm of u with respect to the measure dv = dz+dpu. Specifically,
we show that u satisfies a supremum inequality, 6.4. The proof of
this follows the proof in the corresponding result of [L]. The method
of DeGiorgi will still work in this case, however the Moser iteration
method used in [L] gives a slightly different result and is included
for this reason. It is well known that weak solutions of 1.5 are
not necessarily continuous, even under the assumption that p is
an absolutely continuous measure with bounded density (c.f. [M]).
Therefore, it is not possible to obtain the weak Harnack inequality
involving a lower bound for the solution.

The results of this paper are valid for equations with a more gen-
eral structure. For the sake of simplicity, we employ this simple
structure which fully illustrates the method. In a forthcoming pa-
per, we will address the question of regularity of solutions of 1.4 in
which almost everywhere continuity is established. The existence of
an a priori L bound will be essential in this future investigation.

2. Preliminaries. Throughout, we assume that €2 is a bounded
Lipschitz domain in R". The space W!1(Q) is the space of L'(Q)
functions whose distributional derivatives also lie in L!(Q).

The class of all functions in L'(2) whose distributional partial
derivatives are measures with finite total variation in ) comprise
the space BV (2). The notation

/ \Dul dz
Q

will be used to represent the total variation of the vector-valued
measure, Du, the gradient of u. Specifically, the total variation of
Du is

sup{/ﬂu divodz : v=(vy,...,v,) € C5°(4 R"), |v|§1}.
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We also make the notational definition

/Q V1+ |Dul’ dzx

=sup{/ﬂ(fdivv+vg) dz : v=(v1,...,un) € C°(),
Vg € CSO(Q), |’UI2 + |’U0’2 < 1}

The space BV (Q?) is equipped with the norm

lullay = [ lul do+ [ [Dul da.

The trace of u on 09 is denoted by u* (c.f. [Z, Section 5.10]). We
will make use of the following lemma on the convergence of the
traces of BV functions.

LEMMA 2.1. Let Q C R™ a bounded Lipschitz domain, and let
{ur}, v in BV(Q) with

lim/nluk—ul dz =0

k—o0

JLIEO/KZ\/1+|Duk|2dx=/Q\/1+|Du[2dz.

Then
lim luj — u*| dH™ ! =0,
k—00 JoN

with H"™! the n — 1 dimensional Hausdorff measure.

The proof follows directly from the proof in
[G, Proposition 2.6; p.34].

We will also have need for the following compactness result for
BV functions [Z, Corollary 5.3.4; p. 227].

THEOREM 2.2. Let 2 € R™ be a bounded Lipschitz domain. Then
BV(@)N{u : |lullgyy < 1} is compact in L'(Q).

It was shown in [MZ] that if p satisfies the growth condition
w(B(r)) < Mr™! on all balls B(r) (and therefore condition 1.2 in
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particular), then p can be identified with an element of the dual of
BV (Q). Furthermore, its norm

31 =l =sup { [ wdn : ullpya <1}

is comparable to M. Thus,

(2.1) [ wdn < [ 1ul du

< el el gy
< M ||ullpyg

The following well known result, [M], will be used in the existence
proof below.

. < * n—l)
(2.2) /Q|u|da:_C</Q|Du|dx+/aQu dH
with the constant C = C(Q2). This yields

* n—1
(2.3) lully@ < C ( | 1Dul dz + [ urdn )

Finally, we state the following Sobolev inequalities which are of
critical importance in our development.

THEOREM 2.3. Let ) be a bounded Lipschitz domain and suppose
i 18 a measure supported in § satisfying condition 1.2. Then there
exists a constant C = C(£2, q,n) such that

1/q
(2.4) ( i uqdp,) < oM /Q Du| do
Q
whenever u € BV (2) with compact support in ).

The proof may be found in [Z, Lemma 4.9.1; p. 209]. Also needed
is the standard Sobolev inequality for W11,

If u € Wy (Q) then there exists a constant C = C(Q,q,n) such
that

1/q
(2.5) ( i uqu) < C||Dull.

This is simply the above lemma in the special case that p is
Lebesgue measure.



188 WILLIAM K. ZIEMER

3. Existence of a Minimum. With 2 a bounded Lipschitz
domain and f € L'(0Q), we define I(u;) as follows,

I(u;Q)=/Q\/1+|Du|2da:+/nudu+/an|u*—f| dH™ .

We wish to minimize I over all u € BV (). That is, we wish to
find a function u € BV () such that

I(u;supp @) < I(u+ @;supp @), V¢ € C°(Q).

THEOREM 3.1. Let Q be a bounded Lipschitz domain. With I

defined as above, there exists u € BV (Q) such that
I(u; Q) = verg‘lfl(lﬂ) I(v; Q).

Proof. Following [G, Section 14.4], the first step is to consider a
slightly different Dirichlet problem in the complement of 2. For
this purpose, let B be a ball that contains 2, the closure of Q. Use
Theorem 2.16 of [G] to extend f to a Wh! function in B — Q that
will still be denoted by f. Let

J(u;B)z/B\/l-i-lDuf—}-/Budu.

Note that since supp u C 2, the second integral could have been
taken over ). We wish to show that there exists u € BV(B),
coinciding with f in B — Q, that minimizes J(u; B). We proceed
by showing that J is bounded below if the constant M in 1.2 is
sufficiently small.

J(u; B) Z/BJDuI d;c—i-/Qud,u

(by 2.1) > [ 1Dul dz ~ 7 [ull e,
M * n—1
2/;3|Du| dz M(C/émquH
by 2.3 C+1) [ |Duld
(by 2.3) +(C+1) [ |Dul da)
1 ~
> 2 _ Hn—l.
_2/B|Du|d:z: MC’/mfd
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The last inequality is obtained when M is small enough to insure
1-M(C+1)> 1L

Let J(ug) — A a minimum of J. We wish to find u € BV (B)
such that J(u; B) = A. For sufficiently large k£ we obtain from the
above inequality that

1
/\+12—/ | Du| da:~MC’/de"‘1.
2JB Q

Thus the terms [ |Duy| dx are uniformly bounded, which implies
by 2.3 and Theorem 2.2 that there exists v € BV (B) with uy — u
in L'(B). The gradient is lower semi-continuous with respect to
L'(B) convergence so that

- 2 2
h]zglorolf/B\/l—F]Dukl de/B\/l%—le dx.

From Theorem 2.3, the uniform bound on [z |Dug| dz also implies

that the terms
1/q
()
0

are uniformly bounded. Thus there exists a subsequence, denote it
by {ux}, that converges weakly in L?(£2; 1) to some w € LI(€; ).
The Banach—-Saks Theorem implies that there exists a subsequence
of {ux}, again denote it by {uy}, such that the sequence of Césaro
sums, {vx}, defined by

U1+“'+Uk
k

converges strongly to w in L7(£2; u). Moreover, the sequence vy also
converges strongly to u in L'(€2). This can be seen as follows: choose
e > 0 and let NV denote an integer for which [lu; — ul| ;) < € for
j,k > N. Then for j <k,

Vi =

[|ve—ul]

(ug —u)+ -+ (up — u)
k

lus —ull + - A flugoa —ull | Mg =l -+ flug =yl
2 T

< llur = uf| + - .l‘c+ [uj—1 — ul N (k- Jk+ e

S ‘
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Thus,
limsup |Jvx — u||] <€,
k—o0

which yields the desired result since € is arbitrary. To show that
w = u almost everywhere in {2 note that the strong convergence
of {vx} to w in L9(Q; ) implies the existence of a subsequence
that converges pointwise to w p-almost everywhere and therefore
(Lebesgue) almost everywhere, since Lebesgue measure is absolutely
continuous with respect to u in 2. But the strong convergence of
{vk} to u in L'(Q) implies the almost everywhere pointwise con-
vergence of a further subsequence to v in €. Hence, u = w almost

everywhere in €.
Since uy, converges weakly to u in L9(Q; u), the lower semiconti-
nuity of the gradient with respect to L'(£2) convergence implies

(3.1) A = lim inf J(ug; B) > J(u; B).
—00

Since uy, agrees almost everywhere with f in B — €, it follows that
u = f a.e. in B—, thus showing that J(u; B) > ). This completes
the first step.

We now proceed with the second and final step of the proof. For

each function v € BV (Q2), define

(z) = v(z) z€N
= flz) z€eB-Q

Then vy € BV(B) and by (2.15) of [G],
/ 2
/B 1+|D'l)fl dx+/vidu
:/ V/1+ |Duf? dx+/ 1+ |Dff do
B B-Q
du+ [ loh— f| A
+/B’Uf B+ aQ'UQ fl

=I(?};Q)+/B_ﬁ\/1+|Df|2 dz
J(vg; B) = 1(w; Q) +/B_§\/1 + |DfP? da.

Thus, a minimizer of J(v; B) with v = f on B — Q produces a
minimizer of I(v; Q). O

That is,
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4. An energy inequality. Now that we have obtained exis-
tence of a solution u € BV (Q) to 1.4, we will show that u is bounded.
Before doing this we will obtain an energy estimate to be used in
the DeGiorgi type argument of section 5.

Let Bg denote the ball of radius R in R™. Let n be a cutoff
function, n = 1 on B,, 0 < r < ™ < R, n = 0 on 0B, with
0<n<1lon B and |Dy < 2. Let ¢ = —n(u — k)*, then

supp ¢ = Ar = {u > k} N B, and

(4.1) I(u; Ag) < I(u + ¢; Ax)

Using

(4.2) /Ak |Dul dz < /Ak V1+|Dufdz < /Ak |Du| + 1d
and that on A
D(u+¢) = (1-n)D(u—k)" — Dn(u - k)",
we obtain from 4.1
/Ak ID(u — k)+l dz < /Ak(l -n) ’D(u - k)+| dz

T*_T/Ak|(u~k)+| dr

+ [, 7| k)| du+ 14

where |Aj| is the Lebesgue measure of Ax. This immediately implies

(4.3)
/B, |D(u— k)*| dz < /B n|D(u— k)*| dz
<

=3
- or* B+

Tt —7T
+/B (u—k)*| dput A4

(u~ k)*| dz

¥
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5. Supremum estimate for variational solutions.

THEOREM 5.1. Let 0 € (0,1), Q a bounded Lipschitz domain,
and B C Q with R < 1. Then for w € BV(Q) a minimum of I
there ezists a constant C = C (o, M) such that

supu < C(R_"/ utdz + R7IY / ut d,u)
B,r Bpr Bgr

where q 1s the constant from 1.2 and u™ is the positive part of u.
Proof. Let k be a positive constant to be specified later. Set
ki=k(1-27"), r; =0cR+27R(1 - o),

and 7; = 5(1"z + Tig1)-

For notational convenience, denote by B; the ball of radius r;, B;

the ball of radius 7;, and let

Ai = Bl N {(U — ki+1)+ > 0} .

Note that B;y; C B; C B;. Also, for all j we will use the notation

][ dz = R—"/ dz and ][ dy = R_q(”_l)/ du.
B; B; B; B,

Let ¢; be the cutoff functions on Bi so that ¢; =1 on B;y; and

2 91+3
5.1 Dy;| < = = .
(5.1) | g0|_7'i—ri+1 R(1 - o)

Then 4.3 implies

(5.2) ]g e ki)t do

2i+3
< _ — k. +
=R _0)][. (u kz+1) dz

B;

+ RHO-DL (y — k)Y dp+ R AL
B;
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Now, by 2.4 and 5.1,
—kin)td
]gm(u +1)" dp
< ]é- @i(u — kiy1) " du
1/q
(u— ko)) —q(n=1) ,( A.))1-1/
< (£ (wlu—ka)?)" du) (RO Du(a)Ye

7

< OMRL [D (il — ki)*)| do (R Du(4)) Ve
B;
< CRM'Y4 <][ ID(u - ki+1)+l i dzx
B;
+ ][ (u— ki+1)+ | D dx) (R_q(n_l)M(Ai))l_l/q
B;

< CRM' (]g D (u = kis1)*| do

B;

9i+3
- — k)T dz | (R7ID 1y (A4;)) 1.
R o, e ) x)( u(A)
Applying 5.2 we have

£ (= ki) du
B4

2i+4 P + p
R(1 - a)]é,-(u ki) de

+ R—n+q(n——1)][ (u _ ki+1)+ d,u

2

< C’RM”‘I(

)

Thus we have the following iteration inequality,
(5.3)
][ (u~ ki) " dps
Bit+1

< CMl/qﬂ (u—k;)*d
- (1-0)\Us wT ) aE

+ ]g (u—k)tdu+R™ ]AZ|> (R_‘l(”—l)'u(Ai))l—l/q'
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To estimate the quantity p(A;) recall that
A; = {u > k;11} N B;, and note that
ki — ki =k (1-270D) — g (1-27)
=927k (1-27")
= 2=+,

which implies
2~k < u — k; on A;.

Thus

(5.4) R y(4;) < 2+1f1 ]é (u— k)" dp
< 2ty Z

where

Y, = k—l][ (u— ki)t dz + k"lf (u— k;)* du.
B,’ B;
We estimate |4;| in the same manner, obtaining
(5.5) R™™ |4 < 21y,

Using 5.4 and 5.5 in 5.3 we obtain

(5.6)
Kt (u~kip1) " dp
Bit:
C M i k1 k)t d
< — |k~ — L.
= (1—o)< AR

1-1/q
n ’“—1]2 (u — k;)* dp + k—12z‘+1Yi> <2i+1Yi)

< CMl/q(12i_+2) ((1 4 k—12i+1) Y;') (2,~+1Yi)1—1/q
< C'Ml/‘l__Z_i_t[l__(k—l +27i) (2i+11/;) 1+a.

(1-o0)
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where a =1 — 1/¢ > 0. Following the same analysis for dz instead
of du we obtain

(5.7) k‘l]é (k) ds

2i+4 . . 1+a
< 1/g_~<  (1.—1 —i—1 21+1in )
<CM (1_0)(k +277) ( )
Combining 5.6 and 5.7, we have
9it4 . . 1+a
- 1/q -1 —i—1 i+1ly
(68)  Yin SCMYig—S (k7 +2 ) (273
i+4 N
< CMl/q____z_______ (2i+1}/i)1+
k(1 — o)
where k = min(1,1/(k7* + 271)). The recursion lemma of

[LU, lemma 4.7; p. 66] then implies that ¥; — 0, and thus

supu < k,
B, g
provided that
Yo=k 4 utde+Ek whdp
Bpgr Bg
25+a

< CMI/‘I e (22+a) —1/a
- k(1 — o) '

This is true if

M1/a9a+6+2/a 1/e
Kok > ¢ ][ utdz++ utdul.
(1 - 0) Bpg Br

Since k'/® < 1, the result follows. O

6. A supremum estimate for weak solutions. We will use
a different version of the Sobolev inequalities 2.4 and 2.5.

COROLLARY 6.1. Let Bg a ball of radius R in R™. Suppose
u € Wol’l(BR) and p 1s a measure satisfying 1.2, then there exists a
constant C = C(q,n) such that

1/q
(6.1) (R“’("'” / quu) < MYCR" [ |Dul do
Bp Br



196 WILLIAM K. ZIEMER

and
1/q
(6.2) (R‘" / ud da:> <CR™ [ |Dul do.
Br Br
Let u™ denote the positive part of u.

THEOREM 6.2. Let B C R"™ a ball of radius R < 1. Suppose
that u € WH1(Bgr) N L®(Bg) satisfies the inequality

(6.3) div A(Du)+p >0 in Bg

with A satisfying 1.6 and 1.7, and u a Radon measure satisfying 1.2.
Then for any € > 0 there exists a constant C = C(g,n, (a1 + a2)/¢)
such that

ut dz + R4 /

ut d,u) +e€
Bg

(6.4) sup |u| < C (R_"/B

R/2 R

Proof. Let € > 0 and R < 1. Fix a cutoff function n € C§°(Bg)
such that 7 =1 in Bgr/s, 7 = 0 on 0Bg, and 0 < 1 < 1 in Bg with
|Dn| < 4/R. Set ( =n(1—£)* and A, = {¢ > 0} = {u > ¢} C Bp.
Consider the weak formulation of 6.3 with test function (**~*u?, for
constants k, s and ¢ to be chosen later.

(ks —t) /A ¢ty D¢ - A(Du) dx

+S/A ¢kt~ Dy - A(Du) dxg/ ¢Fs =t dp.

€

Use that D¢ = Dn(1 — £) 4+ neu™2Du and 1.6 to obtain

ks—t—1,,s €
- ~ 5Dy A(D
(ks =) [, ¢*" (1= Z)Dy- A(Du)do
+ (ks — t)/A ¢k tutneu %(|Du| — a1) dz
+ S/As ¢*~ty = (|Dul| — ay) dz

S/ Cks_t’usdﬂ.
Ae
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Which implies that

/ Cks —t, s—1 |Du| dz </ Cks_tus d/l,
A
ks—t—1 s €
— = . d
ks t/ ¢ u)Dn A(Du) dz

+(ks—t)/A ¢t neu?(ay) dx

+ s/A ¢t ay) da.
Use 1.7 and that ¢/u < 1 in A, to obtain

(6.5)
S/ ¢* ™1 | Du| da

-1
< / Cks—tus d,u + a24(k8 ) Cks—t—lus dr
Ae R Ae

+(ks—t)/ cks=t=1y5 (g0~ 1) dar

€

+5/A ¢F 1 (a,) dz

< /A Cks—t—lus d,u+ (124(]{;29 B t) / Cks—t—lus dz

+ / CEs Lyt (a7 (ks — t + 5) da

ks—t— 1
A. ¢
ax4(ks —t) + al(ks —t+s) ks—t—1,_ s
+ N /s ¢ u®dzr.

*dp

Set w = ¢**~*u* and consider

/ |Dw| dz < 3/ ¢Fs=tys =t | Du| dz
A. Ae

+ (ks — t) /A ¢Cks=t=1y3 | D(C| dx
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< s/ ¢* =t |Dul dz
1
_ ks—t—-1, s/ = -1
+ (ks t)/AEC w(5 +ut [Dul) de
<(s+ks—1t) /A ¢F=1y "1 | Du| dz

+ (kslz_ t) / Cks-—t—l,us dr.

Then use 6.5 to obtain the energy type estimate
(6.6)
/ |Dw| dz

Ae

< _S_Hi—s—t</ Ck:s—t—Zus du

n 0124(]{/'5 —t— 1) 'Z;l(ks —t—1+ S) / Cks—t—2us dI)

+ (kS}Z_ t) / <k3~t——2us dr

s(1+k) ( /A CR 20 dp + (4ka1 :: 4 1)

1
: E/A ¢F 2y dl‘), fors>1,t>0, and k > 1/5.

Sobolev inequalities 6.1 and 6.2 imply

/a 1/g
(6.7) ( / w"dx) +(M‘1R“1(”'1) /A w"d,u)

< R~ /A \Dw| dz

with C' = C(n, q). Define v = (*u and set t = 23, so that tq = t+2.
Also, define a measure v by
dx du

dv = Rr(t+2 + Re(n—1)¢t+2’
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which is supported on A, = {u > £} N Bg. We combine inequalities
6.6 and 6.7 to yield

1/q
. %4 < *dv.
(6.8) (/AEU dl/) _C’s/AEv dv

where C' = C(g,n, (a1 + a2)/¢), since k will be chosen late r to be
qi—l + 2 and s > 1 will be used.
We now iterate on the inequality 6.8. Take s = 1 in the first

iteration,
1 1/q
—C—</qudz/) S/Aevdu.

Take s = ¢ in the second iteration,

1/1 . \VWa\
i q < .
C (C’q (/AE v dy) ) - /5 vy

Proceeding with s = ¢™"! in the m** iteration will yield

(6.9) K, (é)sm (/E ™ dl/> o < /AE vdv.

with the constants K,, and S, given by
m=1 71\ g m—1 ;
Kn = H ) , Sm= z 1/q .
j=0 \4 j=0

As m — oo the constants S;, — 4 and K, =+ K, 0 < K < oo.
Since K; > K, > ... > K we have, for all m, from 6.9

This then implies (with C replacing Q§T—)

(6.10) supv < C [ wvdv.
A. Ae
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On Bgj; we have that ( = (1 — £)*. Thus when u > 2¢, we have
¢ > 3. Set k=1t+2, and 6.10 implies

sup u < 2¥supu + 2¢
Br/2 Ae

<C (R_"/ wdz + R~ /A ud,u) + 2

and the result follows, noting that / udx < ut dz. O
A, Br
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