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S-INTEGER POINTS ON ELLIPTIC CURVES
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We give a quantitative bound for the number of S-
integral points on an elliptic curve over a number field K
in terms of the number of primes dividing the denomina-
tor of the j-invariant, the degree [UΓ : <Q], and the number
of primes in S.

Let K be a number field of degree d and MK the set of places of
K. Let E/K be an elliptic curve with quasi-minimal Weierstrass
equation

E : y2 = x3 + Ax + B.

If Δ = AA3 + 27B2 is the discriminant of this equation, recall that
quasi-minimal means that \NK/Q(A)\ is minimized subject to the
condition that A, B G 0 ^ . Let S C Mκ be a finite set of s
places containing all the archimedean ones, and denote the ring
of 5-integers by O5. Let j be the j-invariant of E.

In [11], Silverman proved that if j is integral, then

# { P G E(K) : x(P) € 0 5 }

can be bounded in terms of the field K, # 5 , and the rank of E(K).
More generally, Silverman proved that if the j-invariant is non-
integral for at most δ places of K, then that set can be bounded in
terms of the previously mentioned constants and δ. This is a special
case of a conjecture of Lang asserting the existence of such a bound
which is independent of δ. However, Silverman did not explicitly
compute the constants involved.

In this paper, using more explicit methods, we compute the de-
pendence of the bounds on the various constants. In particular, as
a consequence of Proposition 11, we have the following

THEOREM 0.1. For elliptic curves E/K of sufficiently large height,
the number of S-integral points is at most 2Λ0ndδ(j)3d(32Λ09)rδ^+s.
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For elliptic curves E defined over Q of sufficiently large height, the
number of S-integral points is at most 32 10n(32 109

Our method is to first bound the number of points in a set
defined in terms of local height functions, and then to relate the
number of elements in that set to the set we are interested in count-
ing.

This paper falls into three parts. Propositions 1-5 summarize the
necessary facts about height functions. Propositions 6-8 are various
counting results. Proposition 9 counts the size of Γs(e), Proposi-
tion 10 is a technical result, and the final Proposition combines the
previous results to count the number of 5-integral points.

We begin with some notation. Let dv = [Kυ : Qυ}. For a point
P G E(K), the canonical height of P is defined by

hκ[P) = i to

where hχ(k) = log Hχ(k) and

Hκ(k)=

The absolute canonical height is defined by h(P) = hκ{P)/d.

PROPOSITION 1. The canonical height satisfies
(1) h(P) = 0 if and only if P is a torsion point.

(2) h is a positive definite quadratic form on E(K) <8> K.

Proof These facts are well-known. See, for example, [10], chap-
ter 8. D

PROPOSITION 2. Let v e Mχ There exists a unique function λ
(also denoted λυ or λv,κ), λ : E(Kυ) \ {0} —> R which satisfies:
(1) λ is continuous.

(2)

(3) Let P,Qe E(KV) with P,Q,P±Q^0. Then

λ(P + Q) + λ(P -Q) = 2λ(P) + 2A(Q) + ^υ(F(P, Q))
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where

The function λ further satisfies

(4) Let L/K be a finite extension, w € ML a place over υ, P €
E(Kυ)\{0}. Then

(5) For any σ e Aut(Kυ/Q),

Similarly, for any a G Autκυ{E),

λ(P) = X(aP).

(6) Let m € Z, P € ^(AΓW), m P ^ 0. TΛen

A(mP) = m2λ(P) + ^ » (

(7)

(8) Let P e E(Kυ) with mP φ 0. Then

(9) For any P € £ ( # ) \ {0},

hκ(P) =

Proof For existence, uniqueness, (l)-(5), and (9), see [4], chapters
1, 3, and 4. To prove (6) for m = 2, let Q -> P in (3) and use (2)
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and the addition formula. Then (6) can be proven by induction on
m using (3) and the classical formula

\ — fm+l(P)fm-l(P)

(See [13].)
The distribution relations (7) and (8) do not seem to be in the

literature, though they appear in an unpublished letter of Tate to
Serre (as does (6)), so we briefly sketch a proof. Using (3), (6), and
the definition of fm and F, we have

TeE[m]

T)-\(P)-l-υ(F(P,T)j)-υ(m)

HT)-υ(m).

Therefore, this quantity c(m) does not depend on P, and both (7)
and (8) follow if we can show that c(ra) = 0.

We begin by showing that c(2) = 0. In (3), let P and Q be
distinct non-zero two-torsion points. If we add the six choices for
(P, Q), we obtain

Σ χ(T) + τi Σ v(F(P,Q)) = 0.
P,QeE[2]

P,Q,P-QφO

Now c(2) = 0, because

Δ = 24

P,QeE[2)
P,Q,P-QφO

Next, let m, n G Z with (m, n) = 1. Then B[mn] = E[m] Θ E[n],
so

λ(mnP) + c(mn) =
SeE[m] TeE[n]

= λ(mnP) + c(rn) + m2c(n).
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Hence, by symmetry

(m2 - l)c(n) = (n2 - l)c(ra) if (m, n) = 1.

Now, if m is odd, take n = 2 and use c(2) = 0 to get c(ra) = 0. Then
for any m, take n > 3 odd and prime to m to get c(m) = 0. D

The preceding proposition gives the formal properties of the local
height function λ. The following proposition gives inequalities for λ
and h whose proof depends on various explicit formulae for λ, which
can be found in [4], among other places.

PROPOSITION 3. For v e Mκ, let

II if v is archimedean,
a(v) — <

10 otherwise.

Then λ = λv has the following properties, where the constants are
absolute.

(1) LetPeE(Kυ)\{0}. Then

Hence, for P 6 E(K) and any set S C Mχ ;

hκ(P) > Σ dvλv(P) - hhκ{j) ~ 3d.
υes ^ 4

(2) Let P,Q e E(KV) with P,Q,P + Q^0. Then

K(P + Q)> mm(λυ{P), λv(Q)) + I min(0, v(J)) -
O

(3) Let P G E(K) be a point of infinite order. Then

h(P) > (24 144 972002)-*ϋ) max (h(j), i log NK/QAE/K

where AE/K is the minimal discriminant of E/K, and

+ φ{v e M°κ : υ(j) < 0}
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is essentially the number of primes in the denominator of j .
(4) Assume that v has been extended in some fashion to K. Let

P e E(K)\{0}. Then there isaQ e E(K) with mQ = P satisfying

m2

K(Q) > K(P) + — min(0,ί;(j)) - v(m) - 6m2a(v).
o

(5) Let P,Qe E(KV) with P,Q,P±Q^0. Then

2λ(P) + 2λ(Q) + I max(0, -v(j)) + 12a(υ)
b

~ 6

> 2λ(P) - 2\{Q) + -min(0,v(j)) - 18a(υ).

Hence, for P,QeE(K)\{0},

2h(P) + 2h(Q) + -h(j) + 12d > hi
6 \

> 2h(P) - 2h(Q) - ^h(j) -

(6) Assume that the Weierstrass equation for E with discrimi-
nant Δ has coefficients in Oκ. Let P £ E(K) \ {0}. Then

and

h(P) - ± 1.07.

Proof. Assume first that v is archimedean. We begin with (1) and
(2) in this case.

Choose an isomorphism E{KV) ~ C/(Z + rZ), with the point
P corresponding to u — u\ + U2T. We may take r in the usual
fundamental domain, so that Imr > \/3/2. Since we may replace
P by — P (because λ(P) — λ(—P)), we may further suppose that
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0 < uι < 1 and 0 < u2 < 1/2. If we write q = qτ = e2πiτ and
qu = e

2πiu, then \q\ < e'77^.

We have

λ(P) = λ{u) = l-B2(u2)v{q) + v{go(qu)),

where

Ό

(and B2 is extended to R by periodicity) and

n = l

We have

-0.0655 < λ(^) + \B2(U2) log |gτ| + log |1 - qu\ < 0.0711

from [12] and

ς τ |>min(ϊ;(i),0)-2.304

from [3].
We also know that B2(u2) > B2(l/2) = - i . Finally,

v(l - qu) > ~ log K r + - - logπ > -2.01.

Therefore,

λ ( P ) > ^ m i n ( t ; ( j ) , 0 ) - 3 .

This proves (1).
To prove (2), let Q correspond to z — Zχ+z2τ, with 0 < z\, z2 < 1.

By symmetry, we may assume that 0 < u2 < m i n ^ , 1 — z2). (If
this is not true, then switch P and Q, and then if necessary use —P
and — Q instead.) Then, using the above formula for λ, we have

-Q)-min(λ(P),λ(Q))
1

> - (B2(u2 + z2) — max(J52(^2), B2(z2))v(qr))
2

+ v(l - qu+z) - min(?;(l - qu),v(l - qz)) - 0.4.
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We now proceed further. First, we observe that

mm(B2(s + t) - max(£2(s), B2(t))) = ~ .

We also have

|1 - <lu+z\ < |1 - qz\ + \Qz\\l ~ frl < 2max(|l - qx

because |gz| < 1. Finally, we know that υ(qτ) > m i n ^ j ^ O ) — 2.304.
Put all of these together, and we have

- max(J32(u2), B2(z2))v(qr))

- qu+z) - min(i;(l - qu\ v(l - qz)) - 0.133

i(0min(0,v(j)) - 6 .

Next, suppose that υ is non-archimedean. In proving (1) and (2),
we may extend the ground field, so we may suppose that E has
either good or split multiplicative reduction. Let

E{Kυ) Ώ E*{Kυ) Ώ E^Ky) D ...

be the usual filtration of E{Kυ) (see [10]). For P e E(KV), let i(P)
be the largest integer i so that P G Ei(Kυ). (If P 0 E0(Kυ), set
i(P) z= 0.) Then from [4], theorems ΠI.4.3 and IΠ.5.1, we have

λ(P) = \B2{β{P)) max(0, -v(j)) + i(P)v(π)

where π is a uniformiser at υ, and

β : E(Kυ) -)- E(Kυ)/E0(Kv) -+ Q/Z

is a certain homomorphism. Since B2(β) > —1/12, this gives (1).
To prove (2), suppose first that either P or Q is in EQ(KV)

(suppose P, for simplicity's sake). Then β(P + Q) = β(Q), and
i(P + Q)> i(Q), so λ(P + Q)> X(Q).

On the other hand, if P, Q £ EO(KV), then

Q)-min(λ(P),λ(Q))

>l-(B2{β{P) + β{Q))

- min{B2(β(P)), B2(β(Q))}) max(0, -

> — min(0,v(j))
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which is actually a stronger inequality than that stated in the propo-
sition.

(3) can be proved by combining formulas from [3] and [7]. The
proof of lemma 2.2(a) of [3] shows that — log|g| > log | j(r) | —
2.304, and also that — log |ςr| > π\/3 > 5.44; therefore, — log |ςr| >
max(log|j(τ), 7.744) - 2.304. Then Proposition 2.3 (with e = 1/2)
says that if

max(\a\,\β\) < 1/44,

then
Xv(z) > l/24max(log|j(τ)|, 7.744).

Turning to [7], this says that in Lemma 2 of [7], if we take

c = — m a x ( l o g | j ( τ ) | , 7.744),

then the δ(c) in Lemma 2 of [7] equals 1/44. The constant M
in Lemma 3 of [7] then becomes 4 452 = 8100. The proof of
the Theorem in [7] with C = ̂  max(log | j(τ) | , 7.744) rather than
C = 1, and with R = δ(j), says that

h(nP) > — ( - log \Nκ/qAE/κ\ + max(log | j(τ) | , 7.744))

and so (remembering the factor of 1/144 mentioned at the beginning
of the proof), we have

h{P) > ̂ J^97m'2δU) m a x (\ l o§ \NK/QΔE/K\, h(j), 7.744) .

To prove (4), we take Q G E(K) satisfying rπQ — P so that λ(Q)
is maximized. Then for any T G E[m] \ {0}, we have

< λ(Γ) - - min(0, υ(j)) + 6a(υ)
8

from (2). Hence, from proposition 2, (8) and (7), we have

λ(p) = λ(Q) + E χ(Q + τ)

2

i(0 (j)) 62< X(Q) - — min(0, v(j)) - 6m2a(v) - v(m).
8
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To show (5), begin by recalling that

~υ(F(P, Q)) = 2λ(P) + 2λ(Q) - λ(P + Q) - λ(P - Q)

< 2λ(P) + 2λ(Q) + - ί max(0, -υ(j)) - 6a(υ)
JL Δ

We also can use (1) to show that

2λ(P) + 2λ(Q) + \ max(0, -v(j)) + 12α(v) > 0,
o

and therefore

< 2λ(P) + 2λ(Q) + 7 max(0, -
6

The lower bound estimate is only non-trivial if it is positive, and
so we may suppose that

λ(P) > λ(Q) - ^ min(0, υ(j)) + 12a(υ).

We also have from (2) that

λ(Q) > min(λ(P ± Q), λ(P)) + ^ min(0, v
O

If we combine those two, we may conclude that

λ(P ±Q)< λ(Q) - i min(0, t,(j

Then

^ , Q)) = 2λ(P) + 2λ(Q) - λ(P + Q) - λ(P - Q)

> 2λ(P) + 2λ(Q) - 2λ(Q) + J min(0,

> 2λ(P) + 2λ(Q) + ( ^ + £) min(0,

= 2λ(P) + 2λ(Q) + ± min(0, υ(J)) ~
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As for (6), [12] contains the proofs of considerably stronger state-

ments. •

Note that if x G K, then x is ^-integral if and only if

dυ max(0, -υ(x)) = hK{x).

We actually prove a stronger result than simply bounding the num-
ber of ^-integral points on E. We give a bound depending on e
for the number of points P on an elliptic curve whose x-coordinate
x(P) satisfies

> ehκ(x(P)).
vβS

Intuitively, such a point P is ^-adically close to 0 for some v £ S.
A more intrinsic measure of the ΐ -adic distance to 0 is given by

the local height function λ v (P), so we start by bounding the number
of elements in the set

Γ5(e) = {pe E(K) : £dυλ,(P) > ehκ(P)\ .

This bound will be independent of the choice of an equation for E.
Then we give an estimate for the discriminant of a quasi-minimal
Weierstrass equation, and use this to prove our main result.

Set r to be the rank of E. Recall that the equation y2 — x3 +
Ax + B with discriminant Δ = —16(4^43 + 27B2) is quasi-minimal
if hχ(A) is minimized subject to A, β G O#.

Let ξ : S -* R be a function satisfying ξv > 0 and Συesζυ — l
Let

Xυ(P) + ^- max(0, - υ ( j ) ) + 3a(v) > ^hK(P) for all v e s) .
24 αυ J

Because of proposition 3(1), we know that the left-hand side of this

inequality is always non-negative.

We have yet another notation before we can state our next theo-

rem. For any integer m > 1, let

Um)(P) - min h(P + mQ).
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We need to recall a quantitative version of

R O T H ' S THEOREM. Let F(T) G K[T] with degree n. Let
α i , . . . , an be the roots of F(T). There are at most 45ci elements
x G K satisfying both

h(x) > C2 max(/ι(αχ), h(a2),..., h(an), 1),

where N = [23041ogn] + 1 ; ci = iV- 1 + 8.5(iV- 1) log(5nΛ^(27V)!);

andc2 = 28(2N)\.

Proof See [2]. D

PROPOSITION 4. Zeί 1 > e > 0. Zeί m = [8/y/e\. Compute the
constants C\ and c2 from Roth's Theorem with n = 18m2. There are
at most 2ci (16/y/e) s+r points P G Γs(e, £) satisfying

Proof. Choose a Weierstrass equation for E/K with coordinates
x and y and discriminant Δ, and fix a 2-torsion point T 6 E[2).
Note that the field K(A1/6,T) has degree at most 18 over K. For
P, Q e E(K) \ {0}, define

We also assume that valuations in K have been extended to K in
some fashion.

Let m be as in the statment of the proposition, and write Γ =
Γs(e,£) Split Γ up into (at most) m r + 2 subsets according to cosets
in E{K)/mE(K). We may then look at those P G Γ which can be
written as P = mP'+R for a fixed i?. Taking R of minimal height in
its coset, we may assume that h^m\P) = /i(i£). By proposition 3 (4),
for each υ e S we may choose an R!υ G E(K) so that P = m(Pr+Rf

v)
(and hence miiζ = R) and

m2

A,(P ; + i ζ ) > λ v (P) + — min(0, i;^)) - v(m) - 6m2a(v).
o
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Note that for fixed JR, there are only m2 choices for R!v, so the
numbers in the set {φ(R'v,T) : v E S} all satisfy a single equation
over K of degree at most 18m2.

Now multiply the above inequality by dυ, add over υ E 5, and
use that P E Γ. We get

(l)
υes

> ehκ(P) - ( ^ + 1γ) hκU) - 3d - 6dv(m) - 6m2d.

We next eliminate some trivial cases. If P' — 0, then P = R.
If P' = B!υ for some υ E 5, then P - 2i?. If P' = - < for some
v e S, then P = 0, which is not allowed. Hence for the given R,
after discarding two possible points P, we may assume that Pf ^ 0
and P ; ^ ± i ζ for all i; E 5.

Now suppose that v e S. lϊ R!v Φ 0, then from proposition 2(2)
and proposition 3(3), we have

υ(φ(P',R'v)) -±mm(0,v(j

while if R'v = 0, then proposition 3(1) gives

λv(P' + R'v) < 2λv(P') - ± min(0, v(j)) + 3a(v).

Multiply by dυ, and add these inequalities over v E 5, and again
use proposition 3(1) to conclude

£ hκ(R') +
mR'=R

+ | - ) hκ(j) + 9d + 3m2d,

where the first sum on the right-hand side of the inequality is over
all R' satisfying mR' = R and S' is the set of υ € S with R'v φ 0.
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Hence, since h(R) = m2h(R')^ we have

(2) ]Γ dv\v(P' + R!υ) <2hκ{P') + 2hκ(R)
υβS

v£Sf

(2m2 + —\ hκ(j) + 9d + 3m2.

We now can apply Roth's Theorem to study how well the numbers
φ(R'v,T) e K with R!v φ 0 can be approximated by the numbers

Φ(P',τ) eK(A^6,τ).
We know that with at most 45Ci exceptions (where C\ is taken

from the statement of Roth's Theorem), either

Σ dvm&x(υ(φ(P',R'υ)),0) < 2.5hκ(φ(P',T))
v<ΞS>

or
h{φ{P\T)) < c2maχ(h(φ(R'v,T)),l),

where c^ is again taken from the statement of the theorem.
If we apply Proposition 3(5) to the first inequality, and note that

h(T) = 0, we have

(3) Σ dυv(φ(P\ R!υ)) < 5hκ(Pf) + hκ(j)
υeS' l

while the same proposition applied to the second inequality gives

2h(P') - h(j) - 18d < c2 (2h{R!) + h(j) + 12d + l ) .

We may use the facts that h(R) — m2h(R!v) and c2 > 2 to simplify
this inequality to

(4) Λ ( i ) < ! ( ^ + )

Now h is positive semi-definite, and P — mP1 + i?, so we have

? 2

2m2h(Pf) + 2h{R) > h(P) > '—h(Pf) - h(R).
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If we combine this with (1), (2), (3), and (4), we get either

< 7hκ(P') + 2hκ(R) + Am2hκ(j) + 51dm2

< ~h(P) + 3hκ(R) + 4m2hκ(j) + 51dm2

2

m2

2") < 3hκ(R) + 4m2hκ(j) + 51dm

4 / -
hκ(P) <! 7Γ \3h>κ(R) + 4m2hjζ(j) + 51dm2)

(using e — 14/m2 > 3e/4), or

h(P) < 2m2h(P') + 2h(R)

< c2m
2 (^- + h(j) + 30d + l)+ 2h(R)

2

< (c2 + 2)h{R) + —^hU) + 31dc2m

< 31dc2m
2(h{R)

with at most 45Cχ exceptions.
We also note that φ(Pf,T) determines P' up to ± 1 .
Note that the number of exceptions must be multiplied by m r + 2

to account for the initial choice of a coset in E(K)/mE(K). D

Next, we show that the elements of Γs(e,£) satisfy a type of
orthogonality relation with respect to the canonical height.

PROPOSITION 5. Let P,Q e Γs(e,ξ) with P ΦQ. Then

h(P -Q)>e min(Λ(P), h(Q)) - —h(J) - 9.

Proof.

hκ(P ~Q)>Σ dvλυ(P - Q) - ^hκ(j) - 3d
ves Z 4

> 2 dυ min(\υ(P), Xυ(Q)) - \hκ{j) - 9d
ves D

> Σξυeπήji(hκ(P),hκ(Q)) - £-hK(j) - 9d
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which is the desired result since Σζυ — l Π

We also need a bound on the torsion subgroup of E(K). For
K = Q, there is Mazur's deep result [5] that \E(K)toτs\ < 16,
and there are recent generalizations of this work by Kamienny and
Mazur to certain extensions of Q. However, lacking the general
result needed, we content ourselves with the following weaker but
elementary estimate.

PROPOSITION 6. \E(K)tOΐS\ < 32768(δ(j))3d where δ(x) is
|Mg?| + |{τ; G M^κ : v(x) < 0}| ; which is essentially the number
of primes in the denominator of x.

Proof. Let p\ = 2, p2 = 3, . . . be the sequence of rational primes,
and let ̂ i, ̂ 2, . . . be places of K lying over p\,P2, By assump-
tion, υn(j) > 0 for two integers n — ni, ri2 with 1 < n < δ(j) + 2, so
E has either good or additive reduction at those vn. Since prime-
to-pn torsion injects into the special fibre of the Neron model at vn,
trivial estimates for the number of points over finite fields yields

-pn torsion| <

(where we have used the fact that for additive reduction, the special
fiber has at most 4 components). Hence,

I^WtorsI < 16(pniPn2)
d < 32768(<KJ))M,

where the last inequality uses the bound pn < 2nlogn. D

Of course, it is not difficult to greatly improve the bound given in
the Proposition, but we are content to give a bound with an explicit
dependence on d and δ(j).

The next tool is essentially the result known as "reduction to
simultaneous approximation" (see [11], for example). There is a
slight added complication because the local height functions might
be negative.

PROPOSITION 7. |Γs(e)| < 45max^ Γ^ ( f > £ ) , where the max-
imum is taken over all functions ξ : S —» M satisfying ξv > 0 and

Proof. For P e Γ s(e) with hκ(P) > 0, let

ΦΛP) = 4-
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We know that φυ(P) > 0 by proposition 3(1). Using the definition
of Γs(e), we have

Yφυ(P)> Σ^dvK(P)
υes h{F)

Therefore, if we write [x] for the greatest integer less than or equal
to x, we have

Σ
2ψv(P)s

>ΣίmPh_Λ>

so we may choose integers aυ(P) satisfying

and

υes
If we set ξυ = aυ(P)/s, then P G Γs(e/2,ξ). Note also that if

hκ(P) = 0, then P G Γ5(e/2,f) for any choice of ξ. We have

therefore shown that Γs(e) is contained in the union of Γs(e/2, ^) for

those <̂  which have the form ξυ — aυ/s for some function a : S —>• Z

satisfying av > 0 and Σί es αϋ — 5. There are exactly P/JΓ/) such

functions α, which gives the desired result. D

We state the next counting result in an abstract fashion. We
have chosen this method of presentation to clarify the role that the
various constants play in the theorem.

PROPOSITION 8. Let Γ be a finitely generated abelian group of
rank r. Let t = #ΓtOrs Let h : Γ -> R be a ''distance function"
which satisfies:
(1) h(P) > 0, and h(P) = 0 if and only if P e Γ t o r s.

(2) h(qP) — q2h(P) for all positive integers q.

(3) h(P ±Q)< c(h(P) + h(Q)) for a fixed constant c > 1.
Define h^m\P) = min g G Γ h(P + mQ). Let W be a subset of Γ and
consider the following two conditions on W:

h(P -Q)>A min(/ι(P), h(Q)) - B for all P,QeW,

(*) P - Q 0 Γ t o r s
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where A < c.

(**) h(P)<Ch{m)(P) + DforallPeW.

Let

λ = min{/ι(P):P€Γ,P£Γtors}.

Then for any δ > 0,

If in addition, W satisfies (*), then for every δ > 7 > 2B/A, we
have

( \δ\ ίΠcA\r/2

#{PeW:δ> h(P) > 7} < t (log^J ^ J

// we then ask also that W satisfy (**); then

> 2B/Λ} < t (.og

Proof. This is essentially proved in [11], Lemma 1.2. D

PROPOSITION 9. For any elliptic curve E/K, the set

Γ 5 (e) = <Pe E(K) :PφO and Σ dvK(P) > ehκ(P)
I υes

has at most

10nd(δ(j))3d {^J-J

elements.

Proof. We essentially use Proposition 8 to bound the size of Γs{e, ξ)
and then finish by using Proposition 7.

To apply Proposition 8, begin by noticing that the constant c
may be taken to be 2, and t < 327685(j)3rf. We have A = e (note
that A < c), and B = 5/24/ι(j) + 9, from Proposition 5. Using the



5-INTEGER POINTS ON ELLIPTIC CURVES 281

remaining part of Proposition 8 requires breaking Γs(e, ξ) into three
pieces. Let

Wι = [P e Γs(e,ξ) : Λ(P) < ±h(j) + ^

where m and C2 are taken from Proposition 4. Then we know that
n = 18m2 < 1200/6, JV < 20000/e1/3, and a rough estimate gives
ci < 3.5 1010/6V2 and c2 < 28 (4OOOO/β1/3)4oooo/βV3i

Note that W3 is non-empty only if the rank of E is at least 1, so
in bounding the size of that set, we may assume r > 1. Proposition
4 now says that

\W3\<2Cl ( H ) <7 10 1 0 (^)

Next, for P, Q G W2, P φQ, Proposition 5 gives

h(P -Q)>e min(/ι(P), ft(Q)) - -^h(j) - 9,

while by definition, every P eW2 satisfies

We now have condition (**) of Proposition 8, if we set

51m2dc2 4000dc2

and

(h{j) + 1) < (h(j) + 1).
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Therefore,

Finally, for the non-torsion points P £ E(K), we have the lower
bound for h(P) given by Proposition 3(3), namely

h(P) > (24 144 972002)""*ω max(Λ(j), 1).

Hence, we may apply Proposition 8 to

€ E{K) : h(P) < ^-

(a set which contains Wi), we have

) -< 32768,0)

(
on \ r /n iπ9

—\/244 144 972002) < 32768δ(j)3d — ^ -
We may finally combine all of these to get the bound

s+rδ(j)

Now we can obtain the bound

by applying proposition 7. D

We are nearly in a position to prove our main result bounding
uniformly the number of 5-integral solutions to a quasi-minimal
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equation for an elliptic curve. But first, we must study how far a
quasi-minimal Weierstrass equation can fail to be globally minimal.
We adopt the notation that Δi, Δ 2 , . . . denote the discriminants of
the Weierstrass equations (1), (2), etc.

PROPOSITION 10. A quasi-minimal Weierstrass equation

(1)

for E/K satisfies

y2 = x3 + Ax + B

< l o S

6log\Dκ\

d(60d2\og6d)d

d(d-l)/2

Proof The obstruction to finding a Weierstrass equation

= x3 + a2x
2

(2)

which is globally minimal over 0χ is given by an ideal class AE/κ G
Pic(Oχ) satisfying AE/K £ ^K/K- Furthermore, if a G AE/κ is an
integral ideal, then there is an equation (2) with αz G Oχ and

(Δ2) = al2AE/κ.

(See [10]). Minkowski's theorem now says that we can find an inte-
gral ideal a in the class AE/K satisfying

r2

Hence, there is an equation (2) with α̂  G Oκ

< π 6

Next, the standard substitutions

NK/QAE/K

X = 36χ + 3al + 12α2

Y = 216y + 108αiX + 108α3



284 ROBERT GROSS AND JOSEPH SILVERMAN

transforms the equation (2) into an equation

(3) Y2 = XZ - 27c4X - 54c6

with C4, Cβ G Z[αχ, . . . , a^] and

Δ 3 = 6 1 2 Δ 2 .

Thus,
I AT A ^ ^12rf 7^6 I ΛΓ Λ
\I\lκ/Qίλ3 < Ό Uκ yVK/Q&E/K

Finally, replacing X and Y with u~2X and u~sY respectively for
some unit u G O^, we get a new equation with discriminant Δ 4

which satisfies
Δ 4 - u 1 2 Δ 3 .

Therefore, all we need to show is that for any Δ G O^ and any
n > 1, there is a unit u G O£ so that

hκ(unA) < log

This is in [8] Proposition 2(b), save that the second term on the
right hand side of the inequality is not given explicitly. However,
from the proof, one sees that it is less than

n

where {u\,..., ut} is any basis for O^/torsion. Now, following the
argument in [9], equation (1), we can choose a basis u i , . . . ,ut so
that

d(d-l)/2

lJ\Rκ<{-^\ RK.'_2_y

On the other hand, [1] shows that

1
Λ r ' - 30rf2log6d

if a is not a root of unity, and therefore

1
ui) >

60d2log6cf
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Therefore,

t t

Σhκ(ui) < t(60d2log6d)t'1 Hhκ(ui).
* = 1 2 = 1

D

PROPOSITION 11. Let

y2 = x3 + Ax + B

be a quasi-minimal Weierstrass equation for an elliptic curve E/K.
Let e > 0 be a constant. Suppose that

max(/i*:(j),log NK/QAE/K^

>6d(60d2log6dW-^J max^^ogl^l,!).

Then the set

\PeE{K) : ]£4max(0,-φ(P))) > ehκ(x(P))\
[ υes J

contains at most

points. (If K — Q ; ί/ien ί/ie 5(j) 3 d factor may be replaced with a
simpler constant.)

REMARKS. Note that for any given field K, there are only finitely
many elliptic curves E/K with bounded \ogNκ/Q\AE/κ\ and hκ(j),
so the above estimate will apply for almost every elliptic curve over
a fixed field K.

It would be interesting to produce similar bounds to those above
that depend only on d and not Dχ

Taking e = 1 gives precisely the 5-integral points. Thus,

\{P e E(K) : x(P) e Os}\ < 2 10ndδ(j)3d(32 - 109
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for all but finitely many E/K. In particular, we may take K = Q,
replace the δ(j)3d term with 16, and conclude that for all but finitely
many elliptic curves E/Q, we have

\{P G E{Q) : x(P) G Z 5 } | < 32 10n(32 109

Proof. We assume that E/K satisfies the hypotheses of the propo-
sition. Let

Tx = \P G E(K) : > ehκ(x(P))\ .
Jυes

Let Δ = — 16(4A3 + 27B2) be the discriminant of the equation. For
any P G Γ^, we know from Proposition 3(6) that

υes

- \hκ(j) - \hκ(Δ) - l.OΊd.
ό ό

Now Proposition 10 and the assumptions in the theorem give

ΣdvK(P)>ehκ(P)-\hκ(j)

- i | > o g

d(d-l)'

^=\ 2 \(Rκ

- l.OΊd

> ehκ(P) - 4ma,x(hκ(j), log

and therefore

Γx CT S(e/2)U I P E E(K) :h(P)

2 / 1
< - max ί h(j), - log NK/QAE/K , 1

6 \ CL

But we know that

Γ, r < lθndδ(jf
32 10'

9 \ rδ(j)+s
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and we can apply Proposition 8 to conclude that

G E(K) : h(P) < ~ max (h(j), \ log \NK/QAE/K\, l

and so

The factor of δ(j)3d arises solely from the estimate on \E(K)toτs\,
and so if K = Q, it may be replaced by 16. D

We thank the referee for many helpful comments and suggestions.
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