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In this paper we establish various results involving con-
ditional Wiener integrals, E(F|X), for very general con-
ditioning functions X. Most related results in the liter-
ature, including the case when the conditioning function
X is vector-valued, then follow as corollaries of this more
general theory. A simple formula is given for converting
these generalized conditional Wiener integrals into ordi-
nary Wiener integrals and then this formula is used to
evaluate E(F|X) for various classes of functionals F. Fi-
nally these results are used to obtain a generalized condi-
tional form of the Cameron-Martin translation theorem.

1. Introduction. Let (C|0,T], F*,m,) denote Wiener space,
where C[0,T] is the space of all continuous functions z on [0, 7]
vanishing at the origin. Let F(z) be a Wiener integrable func-
tion on C[0,T] (i.e., E[|F(z)|]] < oo) and let X(z) be a Wiener
measurable function on C[0,T]. In [13], Yeh introduced the con-
cept of conditional Wiener integrals. He defined the conditional
Wiener integral of F' given X as a function on the value space of
X and derived a Fourier transform inversion formula for comput-
ing conditional Wiener integrals. Using this formula for the case
X(z) = z(T), Yeh [13, 14] obtained some very useful results includ-
ing a Kac-Feynman integral equation and a conditional Cameron-
Martin translation theorem.

In [4], for certain functions F', Chang and Chang, using Yeh’s
inversion formula, evaluated the conditional Wiener integral of F
given X(z) = (z(t1),... ,z(t,)) where 0 < t; < tp < ... < t, =T.
In [8], the current authors obtained a very simple formula for the
conditional Wiener integral of F' given X (z) = (z(¢1),...,z(tn)).
In particular we expressed the conditional Wiener integral directly
in terms of an ordinary (i.e., nonconditional) Wiener integral. Using
this formula it was relatively simple to generalize the Kac-Feynman
formula and to obtain a conditional Cameron-Martin translation
theorem involving vector-valued conditioning functions.
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In this paper we consider much more general conditioning func-
tions. In particular they need not depend upon the values of z at
only finitely many points in (0,7]. A major thrust of this paper is
to develop a useful formula to convert these generalized conditional
Wiener integrals into ordinary (i.e., nonconditional) Wiener inte-
grals and then to obtain the corresponding Cameron-Martin trans-
lation theorem for these generalized conditional Wiener integrals.
We also use this simple formula to compute the generalized condi-
tional Wiener integral for various functions F'(z) on C[0,T]. Most
of the results in [4, 8, 13, and 14] then follow as special cases of
the results obtained in this paper.

2. Preliminaries and definitions. Let 7 be an infinite dimen-
sional subspace of L,[0,T] with a complete orthonormal basis {«;}.
Then the corresponding stochastic integrals

(2.1) fyj(x):/OTaj(t)d:c(t), i=19,...

form a set of independent standart Gaussian variables on C[0,T]
with

(2.2) Bla(ts(@)] = [ as(s)ds = 5,00

For each n € N let H, be the subspace of H spanned by
{oa,... ,an}, and let X, : C[0,T] - R* and X : C[0,T] — R be
defined by
(2.3) Xo(z) = (n(2), ..., M(2), Xeolz) = (11(2), 22(2), - - ).

If B™ denotes the o-algebra of Borel sets in R*, then a set of the
type

I={zeC[0,T): X,(z) € B} = X;'(B), Be B"

is called a quasi-Wiener interval (or a Borel cylinder). It is well
known that

(2.4) my(I) = | Kn(€)dE,

where

(2.5) Ka(&) = (2m)F exp {—% ifﬁ} .
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Let F, be the o-algebra formed by the sets { X, !(B) : B € B"}, and
let F be the o-algebra generated by U2 ;| F,,. Then, by the definition
of conditional expectations (see Doob [5 [ ] Tucker [10] and Yeh [12])
for each F' € L,(C[0,T], my),

u(B) = /X gy F@)ma(de) = /X gy B (d2)
:/EF:L‘ )| Xa(z) = &) Py, (d)

= [ BE@I(@) =&, j=1,... ,n)Px,(d), B € B",

where Py (B) = my(X;1(B)), and E(F(z)|X,(z) = &) is a Le-
besgue measurable function for f which is unique up to null sets in
R".

Since {F,} is an increasing sequence of o-algebras of Weiner mea-
surable sets, for F' € Li(C[0,T], my), {E(F|F,)} is a martingale
sequence. Thus, F |E(F|F,)| < E|F| for every n, and so by the
martingale convergence theorem, lim F(F|F,) = E(F|F) almost

surely and for each A € U2, Fp,
(2.7) /A (F(z)|F)my(dx) —hm/ E(F(z)|Fn)my(dz).

From this and (2.6), it follows that for every B € U3, B",

28) [ B(F@)h() =&, j=12...)Px.(dd)
= hm/ z)|yi(z) =¢5, j=1,... ,n)PXn(dg),
where
(2.9 Py, (d8) = ﬁ{ ~} exp(—€2/2)dg; }
P (d€) = ﬁ{ ~% exp(—£2/2)dg;} -

In (2.8) we used the convention that if B € B", then B € B"+*
by identifying B and B x R* in B*** for k = 1,2,.... Thus if
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B € U2 B", then there exists N € N such that B € B" for all
n > N, and hence by the martingale property

(2.10) / B(F(@)l(2) = &, j =1,2,...) Pxo ()
_/ I'Y] =&, 7=1,... ,n)Pxn(df), foralln > N,

from which (2.8) follows.

In the next section we develop quite simple formulas for con-
verting the generalized conditional Wiener integrals of the types
B(F(2)|Xn(z) = &) = B(F@)y(@) = &, j = L...,n) and
E(F(z)|v(z) = &,7 = 1,2,...) into ordinary Weiner integrals
which can often be computed explicitly. It then turns out that
all the conditional Weiner integrals that occur in [4, 8, 13, and 14)]
are special cases of conditional expectations given in this paper.

3. Useful formulas for conditional Wiener integrals. Let
M, {a;}, Hn and {7;(x)} be as in Section 2. Define projection maps
P and P, from L,[0,T] into H and H,, respectively, by

(3.1) =Y (h,o;)a(t
j=1
Z (h, az)a;(t

For z € C[0,T] and € = (£1,&,,...), let

(3.2)  z,(t) = /OT Prliog(s)dz(s) = i’yj(x) /Ot a,(s)ds,

where Ijg 4 is the indicator function of the interval [0,¢]. Similarly,
define

(33)  7oolt) = [ Pliog(s)dals) = iwc) [ es(s)as,
t) = ifj(an Io)-
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We note here that since {v;(z)} is a sequence of i.i.d. standard
Gaussian random variables, the series z,(t) converges m,-a.e. z(see
Shepp [9, p.324]). Since £(t) is the evaluation of the random vari-
e}'ble Too(t) for vj(z) =&, j=1,2,..., €oo(t) converges P,_ - a.e.

£
Our first theorem plays a key role throughout this paper.

THEOREM 1. If {z(t), 0 < t < T} is the standart Wiener pro-
cess, then the processes {z(t) — zoo(t), 0 < t < T} and v;(z)
are (stochastically) independent for 7 = 1,2,.... Also, {z(t) —
zn(t), 0 <t < T} and vj(x) are independent for j =1,... ,n.

Proof. For each j, using (2.2), (3.1) and (3.2)

Bl (@)elt) = 2w} = [ aleds = 33, [ ay(s)ds =0

Since both v;(z) and z(t) — z(t) are Gaussian and uncorrelated,
it follows that they are independent. The second claim follows in
similar manner. (|

COROLLARY 1. The processes {z(t) — z(t), 0 < t < T} and
{Tx(t), 0 <t < T} are independent, and so are {z(t) — z,(t), 0 <
t <T} and {z,(¢), 0 <t <T}.

The following theorem is one of our main results.

THEOREM 2. Let F € L,(C[0,T), my). Then

(3.4)
E[F(ﬂ?)l’}’](x) = éj’ Jj= 1’2""] = E{F(:I: — Too +Eoo)]’ and
EF@)y(e) = &, 5 =1,.... ,n] = E[F(z — 7 + E2]

Proof. Since z — z, and z, are independent processes, and 7;(z)
and x — z are independent by Theorem 1, we may write

E[F(z)lvi(z) =&, 1 =1,2,...]
= E[F((z — o) +x00)|7j($) =&, j=12,...]
= E{Eo[F((y — Yoo) + Too)|71i(z) =& 5 =1,2,...1},
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where y is a standart Wiener process independent of z. Thus, we
have

E[F(z)ly(z) =&, i =1,2,...] }
= y{F((y - yoo) + foo)} = E[F(l‘ — Teo T+ foo)]a

as Too = Eoo under the condition v; = ¢&;, j =1,2,.... The second
formula of (3.4) follows by the same reasoning. |

COROLLARY 2. Let F € Li(C[0,T], my). If H = L[0,T], then
E[F(z)l(z) =&, 1=1,2,...] = F({w)-
Proof. This follows from (3.4) by the fact that if # = L,[0,T],

then z(t) = [y Ijoq(s)ds(s) = 221(05, Lj0,9)75(7) = Zoo(2) for my, -
a.e. T. 0

COROLLARY 3. Let F € L,1(C[0,T),my). Then for every B € B",

/X,TI(B) F(z)my,(dz) = /B E|F(z — z, + &) Px, (d€).

The above corollary is a simple consequence of the second formula
n (3.4). In addition Theorem 4 on page 114 of [2] is a special case
of Corollary 3 above with B = R".

REMARKS.

(i) For each partition 7 = 7, = {t1,... ,¢,} of [0,T] with 0 = ¢y <
t < ...<t, =T, let X;: C[0,T] - R* be defined by X,(z) =
(z(t1),...,2(ts)). In [8], the current authors considered vector-

valued conditional Wiener integrals of the type E(F(z)|X,(z) = £)
for F € L,(C[0,T],m,). We note that these can be rewritten in
the form

(3.5) B(F(z)|X,(z) =€) = E(F(z)|z(t;) =&, j=1,... ,n)
(F(z)lw( J) = a(tji) = @ &1, i=1,...,m)

( )/ ;(t)dz(t E 5’Ji,j=1,...,n)

where & = tp = 0 and

(36) O.’j(t) = I[tj_l,tj](t)/\/tj - tj._l, j = 1, cee N
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Since {a;(t), ... ,a,(t)} is obviously an orthonormal set of functions
in Ly[0,T], the vector-valued conditional Wiener integral
E(F(z)|X,(z) = €) is a special case of the general conditional
Wiener integrals of the type E(F(z)|Xn(z) = &) considered in
this paper. Thus the conditional Wiener integrals that occur in
(4], [8], [13] and [14] are all special cases of those of the type

E(F(z)|Xn(z) = €) for appropriate n and o, ... , 0.

It is also interesting to note that for each z € C[0, T] the polyg-
onal function [z] defined by

2Bt (o) - w(ts ),

[2](2) = z(t;-1) + ——

tj~1 Ststj, ]= 1, ,n
has another representation, namely
[z](t) = 2n(t), 0<t<T

where the a;’s are given by (3.6) and z,(t) is given by (3.2). The
formula in [8], p.385, corresponding to (3.4) above is

E(F(2)|X+(z) = €) = E[F(z — [a] + [£])]

where for £ € R™, [é] (t) is the polygonal function

[El(t) = &1 + —t—‘j‘—(fj —&1), tia St<t;, j=1,..

tJ t] 1
=€n()

where the o;’s are given by (3.6) and £, (t) is given by (3.2).

(i) Thanks to the referee’s suggestions, this paper has gone
through a number of improvements. The expressions given by (3.2)
and (3.3) were suggested by the referee. This in turn, strengthened
Theorems 1 and 2. Another suggestion made by the referee was the
possibility of generalizing Theorem 2 to other Gaussian processes.
This question is perhaps best handled by using the representation
of a Gaussian process using Wiener processes; see [7] and example
3 below.
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We close this section with some examples which illustrate that
formulas (3.4) are indeed very useful and easy to apply. In partic-
ular, the third example deals with the Ornstein-Uhlenbeck process
to show that our formulas can be applied to other useful Gaussian
processes.

T
EXAMPLE 1. For z € C[0,T] let F(z) = / 7%(t)dt. Then using
0
(3.4) we obtain

E [/OT 22()dt| X, (x) :g‘]
.y [ /0 " (2(t) = za(t) + fn(t))zdt}
= [ B[@) ~ () + G0)? + 26:0) (1) — 5 (0)]

Since = — z,, and z, are independent by Corollary 1, Efz,(t)(z(t) —
T,(t))] = 0, and using (2.2) and the fact that E{z(s)z(t)] = min{s, t},
we obtain

E{/()TxQ(t)dt{Xn(m):f} =/0T {t+ A0 Zﬂ2 }

In particular, if n = 1 and a(s) = 1/V/T, we see that

E [/OT 22 (t)dt| X1 (z) = 5] =F [/OT z*(t)dt|z(T) = f}
dt

_/{+€_2t3_ﬁ

which agrees with the results in [4], [8] and [13].
EXAMPLE 2. For z € C[0,T] let F(z) = exp {fOT a:(t)dt}. Then

E [exp {/()Tm(t)dt} | X0 () :E]
_E [exp { | " (@(t) = za(t) + En(t))dtH
— exp {/()Tgn(t)dt} E [exp {/OT(a:(t) _ xn(t))dtH |

T2 &7
-5 "3
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In particular, if we choose the complete orthonormal cosine sequence

a;(t) = /2/Tcos[(j — 1/2)nt/T), j = 1,2,..., on [0,T], then it
is well known (see Shepp [9], p.325) that the corresponding z,(t)
converges to z(t) uniformly in ¢ with probability one, and for each

u € C[0,T],

Xz:/ {/ a;(s) ds/OTaj(s)du(s)}dt=/0Tu(t)dt

Thus

Jim £ [exp { | ’ (t)dt} X (z) = Xn(u)} — exp { | Tu(t)dt}

as expected. Since the orthonormal cosine sequence given above is
complete on [0, 7], Corollary 2 can be applied to get

Blew{ [0t} byto) = 00 i =12,

= exp {/()Tu(t)dt}
for a.e. u € C[0,T).

ExAaMPLE 3. Consider the Ornstein-Uhlenbeck process y(t) with
mean zero and covariance function R(s,t) = o2 exp{—/|t—s|} where
B > 0. If we take 0 = § = 1 for convenience, then y(¢) can be
expressed in terms of the standart Wiener process z(t) (see p.414
of [7]),

(3.7) y(t) = etz(e*), 0< t < T.

Suppose F'(y) is an integrable function of y. Let 7 = {0 = o, t1,. .. ,
t, = T} be a partition of [0, 7). Then, the conditional expectation

E[F(y)ly(tj) :Ej: J=0,1,... 7n]

can be expressed as a non-conditional expectation by utilizing (3.7).
Since ety(t) = z(e*) and z(-) has independent increments, we write

E[F(y)ly(t;) =&, =0,1,... ,n]

= E[F(y)leby(t;) — e¥y(t;_1) = €¥& — e"1&1, 5 =0,... ,n]
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where y(t_;) =&_; = 0.
Define (y,)(t) by

Wa)(t) = e [etf-lyuj_l) ;

2t 2t—1

e —e
th]‘ _ e?tj_l

(efiy(t;) — et"'ly(tj—l))]

fOI'tj__l Stgtj, ]:1, ,
Similarly, define (&,)(t) by

2t 2tj_ 1

e —e
eth . e?tj_l

-

E)(t) =€ [6”'%:’—1 + (e¢; - etj_lgj—-l):l
fortj;lgtgtj,j—l n.

Then, (yn)(t;) = y(t,) and (&) (t;) = &; at each t; € 7. Further-
more, (y,) and y — (yn) are independent processes as one can easily
check using the covariance function of y. Thus, we conclude that

E[F(y)ly(t;) =&, 1=0,1,...,n] = E[F(y — (ya) + (&)))-

4. Conditional expectation of functions involving stochas-
tic integrals. Using the same notation as in section 3 above, for
h € L,[0,T] let

B

hy(t) = Pah(t) =3 (h, o)y () and

<.
ll
-

(4.1)

)

hieo) (t) = Pooh(t) (h, o)y (2)

<.
I
-

Then, we have the following:

LEMMA 1. Let h € Ly[0,T]. Then

n

(42) [ h@hon(@de = [ (o)t = henll? = 3 ()"
j=1

and

(4.3) 1B — hml1? = [[BI12 — [|hm)lI?.

Obviously, the above formulas hold when n = oo, and ||h —
hisoyl] = 0 if H = L[0, T).
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Our next theorem gives an interesting relationship involving h,
h(n), ¢ and z, that is very useful in computing conditional and
ordinary expectations of functions involving the stochastic integral

Jy lt)dan(2).
THEOREM 3. Let h € Ly[0,T). Then for each x € C[0,T]

T
(4.4) / £)dzn (1) / o / iy () dzn (£)
0 0
T
The formula also holds for n = co if we consider/ h(t)dzoo(t) =
0
Z ) (B, aj).
Proof. Using 3.1, 3.2, 4.1 and the fact that the a;’s are orthonor-
mal, it is quite easy to show that for each z € C[0,T], each of the

stochastic integrals in 4.4 equals the expression

n

S(hyog) [ gt ().

i=1

COROLLARY 4. Let h € L,[0,T]. Then
T 1
45) B e~ [ 100} =exo {GlInn ).

Proof. By 4.4 and a well known Wiener integration formula

lexp (= [ s (0]
_p [exp {_ [ b (t)dm(t)}]

~1/2 [*° u?

= (27) /_OQ exp{—||h,(n)|lu} exp {——2~} du
= e {Sllhew 12}

= €Xp 5 (n) .
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THEOREM 4. Let h € Ly[0,T] and assume that

Fz)=f [ | ’ h(t)da:(t)}
is in L1(C[0,T], my,).

a). If h is a linear combination of {cu,...,0,}, say h(t) =
cioq(t) + ...+ cpon(t) on [0,T), then

(4.6) B [ f [ | ! h(t)d:c(t)] X (z) = 5] = f(crbr+ ..+ Cat).

b). If{h,0,...,a,} is a linearly independent set of functions in
L,[0,T), then

47 E [f [ | Th(t)dz(t)] X (a) =E]
= {2 (AP — [[heo )7

N u—/OTh(t)dEn(t) 2
J LS zrih—h<n>u2) -

Proof. a).In this case h(,)(t) = h(t) and so by 3.4, 4.4 and 3.2,

B 1| Hoyasto)] 1ot =4

=E Tf (/OT h(t)d{z(t) — z.(t) + fn(t)}H

—5lf| /OT(h(t) = hw (8))da(t) + /OT h(t)dg‘(t)”

— 5 |s| [ nodg]|
=1 | a0

= flets + ...+ cnén).
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b). In this case we use 3.4, 4.4, and a well known Wiener inte-
gration formula to obtain

B |7 || 10aso)] 10 =
=8 7| [ hoyatalo) - 20 + &)
=& 1| [ 00 - hy @)z + [ 00|
= 20 [T 1 (1= ol | HOGED) expi-a?/2)dn

O

In Theorem 4 above the two extreme cases occur when h = q;
for some j or when h is orthogonal to all the a;’s.

COROLLARY 5. Let h, F and f be as in Theorem 4. Then

a B[ | [ wown)] X0 =€ - se)

while if {h, o, ... ,an} is an orthogonal set of functions in L[0, T},

E[f[/OTh()dx ] )= = EH (t)dx(t)H
e e O L e g

Proceeding as above we obtain the following generalization of
formula 4.9.

COROLLARY 6. If {¢1,... , Pm, @1, ... ,an} is an orthonormal set
of functions in Ly[0,T] and if

P = 1| [ au0ast...... [ bult)isto)
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is in L1 (C[0,T),my,), then
T 2
E(f[oqﬁl t)da( /¢m t)da( ] ()—5)
u2
Y%
2

ﬁ[27r]—1/2} Rmf(ul,... exp{ i }du

T
Our next corollary follows from the observations that / (h(t) —
0
hin)(£))dn(t) = 0, and (h — b)) (m (£) = 0.

COROLLARY 7. Let h, F' and f be as in Theorem 4. Then

E [ f [ /OT h(t)d{z(t) - mn(t)}} X (o) = {}

= 5|1 | [ 140) - b)) 13,0 = §
= 1] [[100) - h (@)t |

— [2rllh — heo P 1/2/wf<u>exp{—ﬁw}du.

Many interesting examples of conditional Wiener integrals can be
obtained as special cases of the following theorem.

THEOREM 5. Let g € L1[0,T]. Then

(4.10)

oo { [ s(oets)is) 1xoto) =

= exp {}i:l&j(g,ﬂj) + %/OT [/T g(t)dtrds - %fj(g,ﬂj)z} :

i=1

Proof. Using integration by parts it follows that
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/OTg(s)ﬂc(s)ds = /OT [/fg(t)dt] dz(s)

and that

/oT {/sTg(t)dt} aj(s)ds = /OTg(s)ﬁj(S)dS = (9:8).

Hence using (3.4) we obtain

Bl { [ atoteras} .0 =]
= fow{ [ | [ st0a] dtats) = 2.0+ £}
= exp {Zf [ | st aj<s)ds}
ool [ st st
-3 te) | [ ot aj(s>dsH
~ exp {jzi:lgj(g,ﬂj)}
exp { [ [ [ st g(g,ﬂj)ag(s)} dx<s>H

= exp {;mg,ﬁj) s [ { [ oyt - ]é(g,ﬂj)aj(s)} ds}

B

-E

from which 4.10 follows. O

COROLLARY 8. Let g(s) = 1 and let the o;’s be given by 3.6.
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Then

COROLLARY 9. Let n =1 and ay(s) = 1/v/T. Then

P [exp (I " als)als)ds  o(7) = s]

Y {% /OT oty + % /oT [/sTg(t)dtr ds — 51? UOT tg(t)dt} 2} :
E :eXp {/OT Sx(S)ds} |z(T) = 4 — exp {%_2 ) %} |
and

E :eXp {/()Tx(s)ds} \2(T) = g] — exp {%5 + g—i} .

5. Translation of generalized conditional Wiener integrals

The Cameron-Martin Theorem [3], [11] states that if zo(t) =
t

h(s)ds for all t € [0,T] with h € L,[0,T}], and if T} is the trans-

0
formation from C[0,T] into itself defined by
Ti(z) =z + zo for z € C[0, T,
then for any Wiener integrable function F' on C[0, T'] and any Wiener

measurable set [’

61) [ Fa)mudy) = [, F@+ a0z, 0)ma(d)

where

(5.2) J (20, z) = exp {—%th - /OT h(t)dw(t)} .
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In particular, if I' = C[0, T, then 5.1 becomes:
(5.3 EIF(y)] = BIF(c + 7)J (36, 2)]

In [14], Yeh gives a conditional version of 5.3 which states that

BIFG)V(T) =€ = B |FO)| | du(t) =¢]

= E[F(z+xz¢)J (20, z)|z(T) = E—zo(T)] exp {_1302(77:) 4 §a;OIET) } .

Our next theorem is a generalized conditional version of 5.3.

t
THEOREM 6. Let h € Lo[0,T] and let zo(t) = / h(s)ds for
0

t €[0,T]. Let F € Li(C[0,T],my) and let the a;’s be as in Section
2. Then

(5.4) E[F(y)| Xa(y) = €]
= E[F(z + 20)J (%0, )| Xn( + o) = &]

- exp {/OT h(t)dé:;z(t) - %Hh(n)||2}

where J(zg, x) is given by 5.2 and h(,(t) is given by 4.1. The result
holds for n = oo as well.

Proof. By 3.4 we see that
(5.5) E[F (y)|Xa(y) = & = E[F(y — yn + &))-
Using 5.3 and noting that (z + zo)n = Zn + (Z0)n, we have

(5.6)
E[F(y — yn + &)] = E[F(z + 0 — 2 — (Z0)n + &) J (%0, 7)].
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Next we rewrite J(zo,z) in the form

(5.7)
T(ao,2) = exp { ~ S 1hl1P}

- exp {- /0 ! h(t)d(z(t) — 2 (t) + E,(t) — (xo)n(t))}

|- [ h)ao)

exp{ [ HOIED - (a(0) .
Using 4.1 we see that

68 [ h 0= [ (et = 1Ay

Since z,(t) and z(t) — z,(t) are independent processes on [0, 7]

T
by Corollary 1, exp {— / h(t)d:zn(t)} and
0

F(.’r—f-l'o — Tp — (Zl?o)n +§:L)
T -
coxp{ = [ B ~ 200+ E0) ~ @)l0)
are also independent. Thus using 5.7, 4.5 and 5.8,
(5.9)

E[F(SL‘ +zg— Ty — (xo)n + fn)‘](xO’ x)]

-

=F F($+$o_$n_(x0)n+§n)

- exp { - /0 ’ R(t)d(z(t) — zn(t) + En(t) — (xo)n(t))} }

oxp {31+ Sl IR+ [ HOGED ~ ol
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Therefore, by using 5.9 and 3.4 we obtain

E[F(CK + Ty — Ty — (xO)n + g;l)J(:Em SL‘)]

— 5 ([Pt ae (- [ HOdeo) )| 1Xata+ 20 =€)
exp{——||h||2+/ dfn()—lllhm)lﬁ}

= E ([F(z + 20)J (o, 2)] | Xa(z + 20) = £)
exp [ HO)E - 3o}

This together with 5.6 and 5.5 yields 5.4. The case n = oo follows
by the martingle convergence theorem. O

REMARK. By choosing the a;’s as in 3.6, we see that Theorem 4
on page 391 of [8] is a Corollary of Theorem 6 above.
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Professor Robert H. Cameron (1908 - 1989).
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