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We prove that if X is an infinite dimensional Banach
lattice with a weak unit then there exists a probability
space (,X,p) so that the unit sphere of (L;(Q,%,pu)) is
uniformly homeomorphic to the unit sphere S(X) if and
only if X does not contain 7 ’s uniformly.

1. Introduction. Recently E. Odell and Th. Schlumprecht
[0.S] proved that if X is an infinite dimensional Banach space
with an unconditional basis then the unit sphere of X and the unit
sphere of [; are uniformly homeomorphic if and only if X does not
contain [ uniformly in n. We extend this result to the setting
of Banach lattices. In Theorem 2.1 we obtain that if X is a Ba-
nach lattice with a weak unit then there exists a probability space
(Q, X, ) so that the unit sphere S(L;(Q2, X, 1)) is uniformly home-
omorphic to the unit sphere S(X) if and only if X does not contain
[Z, uniformly in n. A consequence of this -Corollary 2.11- is that
if X is a separable infinite dimensional Banach lattice then S(X)
and S(l;) are uniformly homeomorphic if and only if X does not
contain [ uniformly in n. Quantitative versions of this corollary
are given in Theorem 2.2 and Theorem 2.3. A continuous func-
tion f : [0,00) — [0,00) withf(0) = 0 is a modulus of continuity
for a function between two metric spaces F' : (A,d;) — (B, ds) if
d2(F(a;), F(a)) < f(di(ai,as)) whenever a;,a; € A. Theorem 2.2
says that if X and Y are separable infinite dimensional Banach lat-
tices with My (X) < oo and My (Y) < oo for some g,¢q' < oo then
there exists a uniform homeomorphism F': S(X) — S(Y) such that
F and F~! have modulus of continuity f where f depends solely on
q,q', My(X) and My (Y). Here My(X) is the g-concavity constant
of X and will be defined below.

Central in defining these homeomorphisms is the entropy map,
considered in [G] and [O.S]. We refer the reader to [B] and its
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references for a survey of some results concerning uniform homeo-
morphisms between Banach spaces. In particular it is interesting to
note Enflo’s result that [; and L; are not uniformly homeomorphic
[B] while their unit spheres are. Also we refer to [L.T] for facts
related to the theory of Banach lattices.

After this work was done, we learned that Professor N. Kalton
proved the same result using complex interpolation theory.

Notation. Let us start by recalling some definitions and well known
facts. A non negative element e of a Banach lattice X is a weak unit
if e Ax =0 for z € X implies that x = 0. Every separable Banach
lattice has a weak unit [L.T, p. 9]. A Banach lattice is order con-
tinuous if and only if every increasing, order bounded sequence is
convergent. By a general representation theorem (see [L.T, p. 25])
any order continuous Banach lattice with a weak unit can be repre-
sented as a Banach lattice of functions. More precisely: .
1. there exist a probability space (2,%,u) and an ideal X of
Li(Q, %, p), along with a lattice norm [|-|| on X so that X is

order isometric to (X, ||-]| %)
2. X is dense in L1 (2, T, p) and Leo (2, T, ) is dense in X.
3. Ifll < Ifllg < 201fllo for all f € Loo(R2, X, ).

Moreover X* = {g : Q—R : ||g||z. < oo} is isometric to X*,
where

lollz. = sup { [ fodus Il <1}

a,ndifgef* and f € X then
ﬂﬁ=/MW-

If X is a Banach lattice which is not order continuous then X

contains ¢q ([L.T, pages 6-7]).
A Banach lattice X is g-concave if there exists a constant M, < co

such that
n 1
()
=1

® > ux,-uqf <M,
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resp. p-convez if there exists MP < oo so that

(&)

forallneNandz; € X ,1 <7< n.

M,(X) is the smallest constant satisfying (%) and MP(X) is the
smallest constant that satisfies (%x).

Given a Banach lattice of functions X, the p-convexification X ®
of X is given by

(%)

< m (z nziup)%

X® ={f:Q—R:|fPP € X}

with 1
L= NLFPI

The space X is a Banach lattice with MP(X®) = 1
([L.T, p. 53)).

We will also need the following result. If X is r-convex and s-
concave, for 1 < r,s < oo then X is pr-convex and ps-concave
with

3 =

MPT(X(P)) < (MT(X))

and

(See [L.T, p. 54].)

We will use standard Banach space notations, BaX = {z € X :
llz|| < 1} will denote the unit ball of X and S(X) = {z € X :
l|z|]] = 1} the unit sphere of X. If h is a real function on 2, then
supph = {w €  : h(w) # 0} is the support of h. If B C €, then
Bh(w) = h(w)xp(w) where xp is the indicator function of B.

2. The main result. We now state the main result of this work.

THEOREM 2.1. Let X be an infinite dimensional Banach lattice
with a weak unit. Then there exists a probability space (2, X, 1) so
that S(L,(Q, 2, p)) is uniformly homeomorphic to S(X) if and only
if X does not contain Uy uniformly in n.

Our proof of Theorem 2.1 will yield two quantitative results:
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THEOREM 2.2. If X and Y are separable infinite dimensional
Banach lattices with My(X) < 0o and My(Y') < oo for some q,¢' <
oo then there exists a uniform homeomorphism F : S(X)—S(Y)
such that F and F~' have modulus of continuity o where o depends
solely on q,q', My(X) and My (Y).

THEOREM 2.3. If X and Y are both uniformly conver and uni-
formly smooth separable infinite dimensional Banach lattices then
there exists a uniform homeomorphism F : S(X)—S(Y) such that
F' has modulus of continuity f where f depends solely on the modulus
of uniform convezity of Y and the modulus of uniform smoothness
of X, and F~! has a modulus of continuity g depending solely on the
modulus of uniform smoothness of Y and the modulus of uniform
convezity of X.

The proofs will involve a sequence of steps similar to those in
[O.S]. We begin with a simple extension of Proposition 2.8 of [O.S].
Recall that X is the p-convexification of X.

PROPOSITION 2.4. Let X be a Banach lattice of functions on a
set ) and let 1 < p < co. Then the map

G, : S(XPHY—S(X)

giwen by Go(f) = |f|Psign f is a uniform homeomorphism. Further-
more the moduli of continuity of G, and (G,)™" are functions solely

of p.

Proof. Clearly G, maps S(X) one-to-one onto S(X). Let f and
g be in S(X®) with 1 > § = ||f ~ gllxw = llIf - glPllk- As in
[O.S] we shall show that there exist two functions H and F such

that
H(0) < ||Gp(f) — Gy(9)ll < F(9)

where F(§) = 2(1 — (1 — 65)7) + 6”1 + 6" and H(8) = 576”. The
proposition then follows.
Let

Qy = {w € Q :sign f(w) = signg(w)}

and
Q- = {w € Q :sign f(w) # signg(w) }.
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We then have:

IGp(f) = Gp(g)ll = Ill| f17 sign f — |g? sign g]]|
= 717 = lglPlxa, + (P + 19/") xa_-

But a®? — b* > (a — b)? and a® + VP > 2'"P(a + b)P fora > b > 0.
Thus,

1Go() = Gylo)ll 2 ||uf| ~ 191 X0, + 5171+ loPxe-

1f1 = 191" xa, + 2,,1(|f|+|9|)”>m_

2,, -1
=2'77||f — gl
=2'P\|f - gll%-

So we obtain H(6) = z=70" as a lower estimate. For the upper
estimate we have:

1Go(f) = Go(a)ll = |IIf 17 = 19| xas + (I + |9")xa_ |
< ire = lgfPixa, | + (£ + l9P)xa_|-

First we note that since

(1P +19P)xa- < (If1+ 19])Pxa- < |If — 9f xa,

we get
(£ + 1g17)xa_|| < I1f = 6l = &7

Next we estimate || || f|? — |g|?| xa.||- For this purpose we split {2,
into ) and 2 where

Q) ={w e |f(w) < ggw)] or |g(w)| < gqlf (W)}

and
Q; =Q, ~ Qi

andg=1- 5.
Note that if C = (1 — ¢)7? then

LfIP = 1glIxar < CIf — gI”-
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Indeed,
Clf—glP —IglP +|fIP>Clg—qglP —|g/°P =0

in case |f| < q|g| (the proof is similar if |g| < q|f]).
Thus

Ixar [LfIP = 19|l < Clixa,lf — 9P|

< Cllif - gPl
= Cllf - ol
= CoP

= (1-q)7&".

Since (1 — ¢)™” = ¢!, we obtain
e 17— lgPPll < 57

Finally we have on Q2 :

NP =19l Ixez | < (L= )IFP + gl
<2(1 - (1-67)).
So .
F(6)=2(1—(1—67))+ 671+ 67
and as p > 1, F(0)—0 when §—0. |

Throughout the rest of the paper, X will denote a Banach lattice
with the representation as a lattice of functions on (€2, £, u) satisfy-
ing the conditions mentionned in the introduction. The next step in
proving Theorem 2.1 will be to produce a uniform homeomorphism

FX : S(Ll(Q,E,,U,))——-)S(X)

in the case where our lattice X is uniformly convex and uniformly
smooth. In order to do this we need first to define the entropy
function E(h, f).

Let h € (Loo(p))* and define E(h,-) : X —[—00, 00) by

B(h, ) = [ hlog|fldu
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for f € X, (we use the convention that Olog0 = 0) and more
generally,

E(h, f) = E(|R],|f])

if h € Loo(p).
The entropy map was considered in [G] and in the sequel we use
arguments of both [0.S] and [G].

PROPOSITION 2.5. Suppose X is uniformly conver. Let h €
(Loo(p))™ and set

A= sup [ hlog|f|dp.
f€BaX

Then —log2 < A < ||h||,, and if h # 0 there exists a unique f €
S(X)* so that A = E(h, f). Moreover supp f = supp h.

Proof. First we note that A < [|h]| . To see this it suffices to
observe that

A= sup hlog|fldu
feBaXt

< sup [ A|fldp
f€BaXt+

< sup |Allell fllz,
f€BaXt

< sup |[hlleollfllx
f€BaXt+

< lloo-

Also A > —log?2 since xo/2 € Ba(X)™*. Next let (f,) C (BaX)?*
be such that E(h, f,) > A — 27" Since X is uniformly convex, by
passing to a subsequence, we can suppose that f, converges weakly
to f € (BaX)*. Let (u,) be a sequence of “far-out” convex combi-
nations of f,, such that (u,) converges to f in norm [M], thus u, =
Z?ﬁ;,lﬂq cifi where p; < py < -+ < pp, <---¢; 20, ?2;:‘-{-1 ¢ =1
and |jun — f|lx—0 as n—oo0.

We next note that if (¢g;)"; € BaX, and (d;); C (R)* with

i=1 di =1 then

E (h,f:digZ) > idiE(h,gi).

i=1 =1
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Moreover if B = supp h and Bg; # Bg; for some 1, j then
E (h, Zdigi> > > d;E(h, g:).
i=1 =1

This follows from the strict concavity of the logarithm function.

Therefore
lim E(h,u,) = A

n—o0

CLamM. E(h, f) = A.

Note that
l|n — f”lq(u) < ”un - f||X -0

and so in order to prove the Claim, it suffices to prove the following
lemma:

LEMMA 2.6. Let A € R h € LE (1), (u,) € L (1) and suppose
up—>f in Li(u). Then

/ hlog undu—s) implies / hlog fdu > M.

Proof. By passing to a subsequence we may assume that u,, — f
a.e. Thus (logu,)™ — (log f)~ a.e. and so

/ h(log f)~dp < lim inf / h(log un) " dy

by Fatou’s lemma. Therefore

(%) limsup [ —h(logu,) du < /——h(logf)“du.

n—00

On the other hand, one has also the inequality:

(k) limsup [ h(logu,) du < /h(log ftdu.

n—00

Indeed, fix ¢ > 0. Since 0 < (logu,)™ < u,, and (u,) is uniformly
integrable, there exists 6 > 0 so that u(A) <  implies

for all n,/ h(log u,)tdu < e and Ah(logf)+du <e.
A
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((log f)* is integrable since 0 < (log f)* < f.) Now h(logu,)™—
h(log f)* a.e: So by Egoroff’s theorem, there exists a set C with
u(C) < 4 such that

h(logu,)*—sh(log f)*

uniformly except perhaps on C. More exactly, for € > 0, there exist
n(e) € N and a set C with u(C) < é such that for any n > n(e) we

have

sup |h(logu,)™ — h(log f)t| < e.
wece

Thus
[ B1ogun)*du < [ 1h(ogun)* - h(log f)*ldu+ [ h(log f)* dy
= [ Ih(togun)* — h(log f)*ldu
+ [ In(logun)* — h(log f)*ldu+ [ hlog f)*du
<2%4e+ / h(log f)*du.

S0
limsup [ h(logu,)tdu < /h(log f)Tdu.

n—00

Now adding (x) and (x*) yields
A< [ hlog fdu,

which proves Lemma 2.6. W

Note that since A > E(h, f), we get E(h, f) = A, proving the
Claim. Now we prove that f is unique. Indeed, let f # g with
E(h,f) = E(h,g) = X and we may assume that ||f|| = ||g|| = 1.
Thus by uniform convexity ”%-‘1” < 1 and so %rﬂ cannot maximize
the entropy, and so

A= 3 @0+ Eua) < B (nT32) <

DN =

a contradiction.
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Let now B = supp h. In order to obtain supp f = B a.e consider
first g = Bf in what preceeds and note that E(h,g) = E(h, f) to
get f = Bf a.e. Then observe that trivially supp Bf C B a.e, while
if the previous inequality was strict, then there exists a set A C B
with p(A) > 0 such that fi4 = 0. Thus

—-OO‘:-‘E(h,f) 2 E(h7XQ/2) = —10g2;

a contradiction. Hence supp f = supp Bf = B. O

Thus under the assumption that X is uniformly convex we can
define
Fx : S(L1 (1)) () Lo ) —S(X)*

by Fx(h) = f where f € S(X)* is such that

B(h,f)= max [ hloglgldu= Ex(h).

g€(BaX)t+

We then define
Fx : S(Ly (1)) ) Leo (1) —S(X)

by Fx(h) = (signh)Fx(|h]).

We shall show that Fx is uniformly continuous, and thus extends
to a uniformly continuous function on S(L;(z)). To do so we will
need a proposition similar to Proposition 2.3.C of [O.S]. The proof
is nearly the same, adapted to function spaces.

PROPOSITION 2.7.  Let hy,hy be in S(Li(p))t N Loo(p) with
[lh1 — halls < 1. Let 2y = Fx(hy), and 2 = Fx(hs). Then

1+ T2

1
>1—|lhy — hal|f.

Proof. Let =1 — 2¢. We need to show that

T1+7T2
2

2 < ||h1 — ha|2.

We may assume ¢ > 0. Define 7 = z; + €z2 and 73 = 25 + €x;.
Then
Supp Z; = supp Z = supp h; U supp h2 = B,
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and o
Ty + T9 T+ Zq 1
5 < 4 5 +e=1—-¢.
With this we can prove that:
1 —_ —
(%) e < |log(l —¢)| < S{E(h1, 71) — B(h1,22)}
Indeed, since z7 > z;, we clearly have:
E(h,55) > B(hy,2) > B [ hy, L5222
B - 2(1—¢)

since é%t—% € BaX and z; maximizes the entropy. And

il -+ Iy I + T9
E 2\ =F + |log(1 —

> 2 B(hn, 1) + 5 B(h,75) + log(1 — €)].
Similarly we have

() o< [log(1 — )| < 3{Blhs,T) ~ B(ha, 1)}

Then by averaging (x) and (x*) we get

e < E[E(hl,éc‘]) — E(hy,55) + Elhs, 75) — E(hy, 7).

So
1 — —
e < 1 /B(h1 — hs)(logz1 — log z3)dpu
< 1/ b1 — ho 1og2ldu.
4 /B T
But _ .
I
log —=| < log - B
og@ < log~ on
for ~
il _ X1 + EXg Ty + EXg

1
<z
£

T; To+exy e(ry+elzy)
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and similarly
zz 1
— < -
T £

Since log z < %, we finally get
1 1
< =||h1 — hal|1—.
€= 4|| 1 2ng

Hence .
2 < |lh1 — ho|l?

PROPOSITION 2.8. Let X be uniformly conver. Then
Fx : S(Li(1)) [ Loo () —>S(X)

18 uniformly continuous and hence extends to a uniformly contin-
uous map Fx : S(Ly(p))—>S(X). Moreover the modulus of conti-
nuity of Fx depends only on the modulus of uniform convexity of
X.

Proof. Recall that X is uniformly convex if and only if

r+Yy

x(e) = inf {1~ |25 s lall = ol = 1, lle = wll > ¢} > 0.

We first observe that F'y : S(L1(u))t—S(X) is uniformly contin-
uous.

Indeed, by Proposition 2.7, if h; and hy are in S(L;(1))" N Leo ()
and “hl — hg”l S 1 then

|

1-—

Fx(h1) + Fx(h2)
2

>1—|lh — holl}

or
Fx(h1) + Fx(hs)
2

1
< |lh1 — ho||Z.

So if ||Fx(hy) — Fx(hy)|| > € then ||h; — hg|| > (dx(€))? Thus
there exists n(e) = (dx(¢))? so that ||hy — hy|]| < n(e) implies
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|Fx(h1) — Fx(hs)|| < €. Letting n(0) = 0, the function 7 is continu-
ous and strictly increasing on [0, 2]. So 1 has an inverse g depending
only on the modulus of uniform convexity of X, and

1Fx (h1) — Fx(he)ll < g(llhs — hel)).
For the general case let hy, hy in S(L;(1)) N Lo (1) and set
= Fx(hi) = signh; - Fx(|hi)
for : = 1,2. Then
ey — z2ll < [|Fx(Pu]) — Fx (IRl + lIxp (Fx (|h]) + Fx (Ih2))Il

where
D = {w € Q : sign hy (w) # sign ha(w)}.

By what we observed in the beginning of the proof,
1 Fx (|la]) — Fx (lh2)) I} < g(e)

whenever
llPa] = [halll < [h1 = el <e.

Our next step is to estimate || xpFx(|hi|)||, for 2 =1,2. To do so,

we note that
De|h,|
IxpFx ([P )I| = IDFx (b))l < |[[Fx(Jha]) = ( |DC:hllll>“

We are then lead to estimate

D°hy D°h, “ D¢h, l
hh——— < h Df¢
V| S [P e P ey
Dcthy
= ||Dhq|| + 1 D°hy — —————
1Dl 2% = e

We first get that
| Dl = [IDImalll < ID(Jha] + [haDI| < [1h1 = kel < &;
and, since ||hi|| = ||Dh1 + D°hy]] = 1 and ||Dhy|| < €, an easy

computation yields
D¢h,

D =)

< |Dhaf < e.
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So Uh1 D1 H < 2¢ and thus

1Dkl
Fx([h]) - (%) N

< g(2¢).

IDFx(|h )l <

Similarly [|DFx (Jhal)| < g(2¢). Hence [|Fx (h1) —~ Fx (IhaD)| < 9(e)+
29(2¢).

Therefore Fx extends uniquely to a uniformly continuous map,
that we still denote Fx, from S(L,(p)) to S(X), and the modulus of
continuity of Fx depends only on the modulus of uniform convexity
of X. 0J

ProPOSITION 2.9. Let X be uniformly conver and uniformly
smooth. Then Fx : S(Li(p))—S(X) is a uniform homeomor-
phism. Moreover (Fx)™!: S(X)—S(L1(n)) has modulus of conti-
nuity depending only on the modulus of uniform smoothness of X.
Furthermore (Fx)™'(z) = |z*| -  where z* € S(X*) is the unique
supporting functional of x.

Proof. Our goal now is to show that the map Fx previously de-
fined is invertible and that (Fx)~! has the described form and is
uniformly continuous.

CramM 1. Let h € S(L1(p)) N Leo(p). Then g = Fx(h)™!
S(X*) where - denotes the pointwise product.

Note that supp Fix(h) = supp h and we define Fx(h)™! - h to be
0 off the support of h. Assume Claim 1 for the moment.

For z € S(X), define G(z) = |z*| - =, where z* is the unique sup-
porting functional of z. Let h € S(Li(1)) N Le(p). Since
sign Fx (h) = sign h,

/F |FX )ldp = /Ihldu:L

Thus from Claim 1 it follows that
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Hence
G(Fx(h)) = |Fx(h)[* - Fx(h) = h for any h € S(L1(1)) () Loo(

Furthermore G is uniformly continuous. Indeed, the support func-
tional z +— z* is uniformly continuous since X is uniformly smooth,
and since G(x;) = |zf|-z; i = 1,2 we have

1G(z1) — G(z2)|l = lll21] - 71 — |&3] - 2]
< a1l - (21 = z)ll + [[(lz1] = |23]) - 22l
< lzr = 22|l + ll27 — 25l-
Thus G is uniformly continuous. Moreover since the modulus of
continuity of z +— z* depends only on the modulus of uniform

smoothness of X, the same is valid for G. Thus G(Fx(h)) = h
for all h € S(L1(w)).

CLAIM 2. G is one-to-one.

It then follows that G = (Fx)~!. We now prove Claim 1.

Proof of Claim 1. We will follow the path of [G]. Early work of
[L] had as an objective to factorize elements of S(l;)*. Let h €
S(L1(1t)) N Loo(ps) and suppose z = Fx(h). We can assume that
h € S(Li(p))" N Loo(p). Then suppz = supph = B a.e. and z €
S(X)*. Let k € X* be arbitrary, then

+k

) > 1
oo > E(h,z) /hog +k||

So writing z + k = z(1 + £) on B yields
E(h,z) > E(h,1) + / hlog(1+ kz~")dpu — log ||z + k|-
B

This gives:

/B hlog(l+ kz~)du < log ||z + k||

< log(|l=]| + [|%]])
= log(1 + [Ik]})-
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So

) J, hlog(1 + kz™)du < |1kl

We see that on B, kz™! is finite y-almost everywhere. Let
on = {w € B : k(w)z }(w) < n}

and X, = Xo, then x, / xB, pointwise y-a.e; and since ¢ < log(1+
t) + 312 holds for all ¢ > 0 we have for 0 < s < 00

s /B hx Ykxndp
< /Bhlog(l + sk xn)dp + —;-32/1;k2(x”1)2xnhdu
< /B hlog(l + skx™")du + %szrﬁ
< s||k|| + %32712 by (%).
Thus dividing by s and letting s go to 0, we obtain for alln € N
[ b~ kxadu < k)
and therefore by the monotone convergence theorem,

/. ha™ kdu < K.
B

Now let g = hz~!. The previous equality yields ||g|lx+ < 1. On the
other hand

X*-

1= [ hau] =| [ o-ad] < zllxlgl

So ||g]|x+ = 1 which proves Claim 1. O

Proof of Claim 2. Let h = |z}| - z; = |z}| - 2 be a member of
S(Ly(p)) with zf(z;) = 1,z; € S(X) and z} € S(X*) for 1 =1,2.
We first note that supph = suppz; a.e for ¢ = 1,2. Indeed supp h C
supp z; a.e is clear, and in case the inclusion is strict let us consider
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B|z;| where B = supp h. We then note that ||B|z||| < 1 by uniform
convexity. Also

*I(B = *|Blzldp = *|z|d,
=*|(Blal) = [ |o"|Bleldu = [ |o*|loldy
= / |h|dp = 1, a contradiction.

Also supp z¥ = B since X* is uniformly convex. Now as in [G] we
observe that there exists a measurable function 6 of modulus one so
that z3 = z}. Indeed define 6 = 22 on B and § = 1 on B°. Then

1

zl|lx = 1.

[ 1kli6ldn = [ 1zillz3ldu < 3]

P
Similarly, [ |h||0~|du < 1. So
J 1R8]+ 167} < 2.
And since t +¢7! > 2 for t > 0 we get
[ 1n161+ 167" Ydu > 2 [ Ihldu = 2.

Thus |0] + |#~!| = 2, but this cannot happen unless |f| = 1. Thus
|z3| = |z%|. Now suppz; = supph a.e. and h = |z}| - z; = |z}| - 2.
yields that z; = z, a.e.

We are now ready to give a proof of the main result of this work.

Proof of Theorem 2.1. Suppose thatX contains [ uniformly in
n. Then S(X) is not homeomorphic to S(L1((f2, %, u))) for any
measure space ({2, Z, u). Indeed this follows, as in [O.S], from Enflo’s
result [E] that the sets S(I%),n € N cannot be uniformly embedded
into S(L,).

For the converse assume that X does not contain /3 uniformly in
n. Then X must be order continuous since X does not contain cp
[L.T]. Then the proof goes as in [O.S]. By a theorem of Maurey and
Pisier [MP] X must have a finite cotype ¢’. Thus X is g-concave,
in fact for all ¢ > ¢’ ([L.T, p.88]). Renorm X by an equivalent
norm for which M,(X) = 1 and such that X has the same lattice
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structure (see [L.T, p. 54]). Then the 2-convexification X? of X
in this norm satisfies

My (X®) =1 = M?*(X®@)

([L.T, p. 54]). This implies that X is uniformly convex and uni-
formly smooth ([L.T, p. 80]), and so

Fxe : S(L1(p)—S(X®)
is a uniform homeomorphism by Proposition 2.9. Therefore
Gg o FX(z) : S(Ll(ﬂ,))—)S(X)

is a uniform homeomorphism by Proposition 2.4. O

REMARK 2.10. [O.S]. If S(X) is uniformly homeomorphic to
S(Y) then BaX and BaY are uniformly homeomorphic.

COROLLARY 2.11. If X is a separable infinite dimensional Ba-
nach lattice then S(X) and S(l;) are uniformly homeomorphic if
and only if X does not contain U7, uniformly.

Proof. By Theorem 2.1, S(X) is uniformly homeomorphic to
S(Ly(u)) for some probability space (2, X, u) where L;(u) is sep-
arable. By standard representation theorems either L,(u) = [; or
Lq(u) = (L1[0,1] ® l1(1))1 where I is countable. So S(X) is uni-
formly homeomorphic to S((L1[0,1] @ !,(I))1). Then one can define

H : S((L1[0, 1] @ Li(I))1) —S((lh & Li(I))1)

as follows: Let F' be a uniform homeomorphism between S(L,)
and S(l;). (Such homeomorphism exists by [0.S].) If (g9,z) €
S(L1[0,1] @k (I))1 then define H(g,z) = (|lgl|F (i) ) for g # 0
and H(0,z) = (0, z). It is easily checked that H is a uniform homeo-
morphism and now, since I is countable, I ®!, () = l; which proves
the Corollary. O

REMARK 2.12. In [R], Y.Raynaud already obtained that if the
unit ball of a Banach space E, embeds uniformly into a stable Ba-
nach space F, then E does not contain cy. He also proved that if
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F is supposed superstable then E does not contain {7 uniformly.
Since L, is superstable, we could get one direction of Theorem 2.1
in the separable case using the result of [R].

REMARK 2.13. If X is g-concave with constant 1, then X®
satisfies
My (XP) = MA(XP) = 1,

([L.T, p. 54]) and as we noted before, X(? is uniformly convex and
uniformly smooth ([L.T, p. 80]). We then proved that

Fx@ : S(L1(n))—S(X®)

is a uniform homeomorphism with modulus of continuity of Fiy(
depending only on the modulus of uniform convexity ) (¢) of X
(which in turn is of power type 2, i.e for some constant 0 < K <
00, Ox@(e) > Ke? ([L.T, p. 80])) and the modulus of continuity
of (Fix )™ ! depending only on the modulus of uniform smoothness
px@(T) of X® (which in turn is of power 2q i.e. for some constant
0< K <00, pxo(r) < K% [L.T, p. 80]).

We first observe that X and Y must have weak units, since they
are separable [L.T, p. 9]; and are order continuous since they both
don’t contain c¢p. In fact, since ¢ < co and ¢’ < 00, X and Y don’t
contain 7. So, by Corollary 2.11, S(X) and S(Y) are uniformly
homeomorphic to S(L;). Let X be X endowed with an equivalent
norm and the same order, for which M,(X) = 1, and let Y be Y
with an equivalent norm and the same order, for which My (V) = 1.
With the previous notations used throughout this work, we have
the following diagram:

S(X) u? S(X) (Gx2)~ S,(X@)) (F)’((Z))~

S(Ly) X2, s(v@y £22, g(7) 2 §(v)

where v is a uniform homeomorphism from S(Y) to S(Y) with a
modulus of continuity a depending solely on My (Y), and u™! is a
uniform homeomorphism from S(X) to S(X) with a modulus of
continuity f depending only on M,(X).
Let

F=voGyyoFppo (FX@))-l ° (GX,2)—1 ou™t,



30 F. CHAATIT

then F' is clearly a homeomorphism and
Fl=uoGgy0Fge o (Fym)™ o (Gyy)  ov™

Let b,c,d and e be respectively the modulus of continuity of
respectively Gy 2, Fp, (Fx@)™, (Gx2)™'. b and e are functions
solely of 2 by Proposition 2.4 while ¢ and d are functions of ¢’ and ¢
by Proposition 2.9, Proposition 2.8, and Remark 2.13 above. Then
the modulus of uniform continuity « of F' is of the form @ = aoboco
doeo f and is a function solely of g, ¢, My(X), My(Y'). Note that the
modulus of continuity of F'~1 is also given by aobocodoeo f. O

Proof of Theorem 2.3. The proof is exactly the same as in Theo-
rem 2.2 with the only difference that F' = Fy o (Fx)™!. Indeed we
have now the diagram:

S(x) B s(Ly) B s(v).
We then let F = Fy o (Fx)™! and use Proposition 2.9 to get that

the modulus of continuity of F' depends solely on the modulus of
uniform convexity of Y and the modulus of uniform smoothness of

X. O
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