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WEIGHTED HADAMARD PRODUCTS OF
HOLOMORPHIC FUCTIONS IN THE BALL

JACOB BURBEA AND SONG-YING L1

Weighted Hadamard products of holomorphic functions
in the unit ball B of C" are studied, and are used to es-
tablish multiplier theorems for spaces of such functions
on B. An interesting feature of such a product of two
holomorphic functions f and g on B is that it is holomor-
phic on the unit polydisk U"™. Moreover, if, in addition,
f belongs to the Hardy space H!(B) and g belongs to
the Bloch space B(B), then the non-weighted Hadamard
product of f and g belongs to BMOA(U"™), the space of
holomorphic functions in U" with bounded mean oscilla-
tion on the tours (0U)". Refinements of this result, as
well as new charaterizations of spaces of multipliers of
holomorphic functions in B, are also established.

1. Introduction. Hadamard products, their properties and re-
lated coefficient multipliers problems for spaces of holomorphic func-
tions on the unit disk, are well-known and they have been studied by
many authors (see, for example, [5] and the references therein). In
the higher dimensional extension of such a study [7, 8] one encoun-
ters with several natural, and quite interesting, questions concern-
ing multi-index coefficient multipliers problems and the properties
of weighted Haramard products of holomorphic functions of several
complex variables. In this paper we shall address these questions in
their higher dimensional setting by obtaining new charaterizations,
some of which were unexpected, of spaces of multipliers of holomor-
phic functions in the ball, and in so doing we also extend and refine
previously established results.

Before describing these characterizations and their background
we need to set up some basic notation which shall also be used
throughout the entire paper. By H(2) we denote the space of all
holomorphic functions on a domain Q in C*. For z = (21, -+, 2,) €
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Ca= (o, - ,0n) € L7, we let
Z=(Z1, " ,Zn), 2% =20 o
lal =1+ 4 an, =l
9% = oyt -+ 99, ; =0/0z; (1<j<n),

V=0, ",0), R=> 20, D=1+R,
7=1

and

'Z,oo = llgjaé);lzj", ”Z“ = {Izll2 4o !Zn‘2}1/2.

Moreover, if also, £ = (&, - ,&,) € C* we then let

ch: (216-17"' 7Zn€n); <Z7€> 22121'}'"'27157“

and thus ||z||* = (z,2), and |z - £] < |€|e]l2]|. With this notation,
B =B, ={z € C": ||z|| < 1} is the unit ball in C*, U = By is
the unit disk in C, and thus U™ = {z € C" : |z|e < 1} is the unit
polydisk in C*. We also let S =S5,, = 9B, and T = 5;.

Let Q be a complete Rheinhardt domain in C*, i.e. z € ) implies
z-& € Qforevery £ € U, and let f € H(Q). Then there exists a
unique power series, respresenting f, i.e.

[(2) =) aaz®, (2€9Q)

with normal convergence in €2, and with

ta = aa(f) = {°F(O} /ol (a € ).

It follows that the space H(Q) and, in particular, the spaces H(B)
and H(U™) may be regarded as spaces of multi-index sequences
{an}, a € Z%. For ¢ > 0, we consider the multi-index sequence
{wa(q)} of positive numbers (weights), defined by

a!T'(n + q)
L(n+q+|al)

wa(Q) =

(€ Z).

Let X and Y be two vector spaces of multi-index sequences. A
multi-index sequence {)\,} is said to be a multiplier from X to Y if
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{Aaaa} € Y whenever {a,} € X. The set of all multipliers from X
to Y is denoted by (X,Y). A multi-index sequence {)\,} is said to
be a g—multiplier, ¢ > 0, from X to Y if {A\qwq(g)as} € Y whenever
{as} € X. The set of all g—multipliers from X to Y is denoted by
(X,Y),. In general, however, (X,Y), is not equal to (Y, X),, but
it is so only when n =1 and ¢ = 0, in which case w,(gq) = 1. The
question of finding multipliers in (X,Y) when X and Y are sub-
spaces of H(B) has been considered and studied by several authors
(see, for example, [7, pp. 118, 416], [8] and the references therein),
and this is so, especially when n = 1, where more complete an-
swers can be found. Indeed, recently, Mateljevic and Pavlovic [5]
have shown that for n = 1, B(U) = (H*(U),BMOA(U)),, where
B(B) and H'(B) are the familar Bloch and Hardy spaces, respec-
tively, of functions in H(B), and BMOA(U") is the space of func-
tions in H(U™) with bounded mean oscillation on the torus 7™.
The question of extending this result to n > 1 was treated by Shi
[8] who was able to only establish that B(B) = (H(B),Y), with
Y = B(U™) N {No<p<coH?(B)}, where B(U™) is the Bloch space of
functions in H(U™). In this paper we shall address this higher di-
mensional question and thereby bridging the gap between the strik-
ing result of Mateljevic and Pavlovic when n = 1 and Shi’s result
for n > 1. In particular, it will be shown, amongst other things,
that, in fact, B(B) = (H*(B), BMOA(U")), (see Theorem 5.7) for
every n > 1.

In light of the above question, we found it natural and quite in-
teresting to study the problem of g—multipliers in its higher dimen-
sional setting n > 1 and for any ¢ > 0. In so doing we were also able
to provide extensions and refinements of previous results. A key role
in this study is played by the so-called ‘weighted Hadamard products’
with weights w,(q), @ € Z%, of functions in H(B). The ¢g-Hadamard
products (f * g), of two fuctions f € H() and g € H(Q2), where
2, and €, are circular neighborhoods of 0 € C", is defined as

(f *9)q Z wal(q aa(g)z"

and thus (f * g)g = (¢ * f)4- And interesting feature of the product
(f*g), with f and g in H(B) is that it is lying not only in H(B) but
also in H(U™), i.e. H(B) C (H(B),H(U™)), (see Proposition 3.2).
The reverse inclusion is also true, i.e. H(B) = (H(B), H({U")),.
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Indeed, if g € H(2) where Q is a circular neighborhood of 0 € C*,
and if (f * g), € H(U") for every f € H(B), then we specialize
to f(z) = (1 = (2,6))" "9 2 € B, where ¢ € B. This implies
that the power series Y, a,(g )f 2° has, for every £ € B, a normal
convergence in z € U™. In particular, g € H(B) as asserted. When
n =1 and ¢ = 0, the g—Hadamard product reduces to the classical
Hadamard product of two holomorphic functions on the unit disk,
which was also used in the recent work of Mateljevic and Pavlovic
[5]. The higher dimensional product has been also studied by Shi
[8] when ¢ = 0. In this paper we study these products in the more
general setting of n > 1 and ¢ > 0, and in so doing also extend and
refine the results of Shi as well as those of Mateljevic and Pavlovic.

The paper is organized as follows. In Sections 2 and 3, we intro-
duce some relevant spaces of holomorphic functions on U™ and on
B, and establish several preliminary results which will be needed
in the remaining parts of the paper. In particular, we discuss the
spaces Ab = AP(B),q > 0,0 < p < co and the crucial generalized
mean Lipschitz space £(U™). In Section 4, we use duality argu-
ments to identify the spaces (47, H*(U™)), (see Theorems 4.1, 4.2,
4.3 and 4.4). A significant refinement of these identifications, when
p = 1, occurs in Section 5 which contains the main results of this
paper (Theorems 5.1, 5.2, 5.6 and 5.7). In particular, we show that
B(B) = (A,, L(U")), = (A;, BMOA(U™)), which implies the result
of Mateljevic and Pavlovic [5], as a special case, when n = 1 and
q=0.

For two complex-valued functions f and g on a nonvoid set A, we
use the notation f ~ g on A to mean that there exists a positive
constant ¢ so that ¢ [g(A)| < |f(N)] < ¢|g(N)] for every A € A.

2. Prerequisites and preliminaries. To deal efficiently with
Hadamard products, it is convenient to introduce some further no-
tation and recall some function theoretic concepts. We let dv =
dv™ denote the usual volume Lebesgue measure on C* and we set
dA = 7 'dv). For u € C*, we let D, = (V, %) and thus

= Zuj(?], —Du = Zﬂj??—j, R = Dz-
Jj=1

By H (M, M,) we denote the class of all holomorphic mappings from
a complex manifold M; into another complex manifold M;. Let
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be a bounded domain in C*, and let u € C*. The Kobayashi-Royden
metric F2(z,u) for Q at z € Q in the direction of u is defined by

F(z,u) = inf{|a| : a € C\ {0},
af'(0) =u, fe€ HU,Q), f(0) =2z}.

In particular, F is holomorphic decreasing, i.e. if ¢ € H(Q,Q;)
where ; is a domain in C™, then for any z € Q and any u € C*,

F (#(2), 64(w)) < FR(2,u)
where ¢.(u) = (Dy¢)(z) € C™. Let f € H(Q) and z € Q. We

define
(Qaf)(2) = max{(Qaf)(2,u) : u € C" \ {0}},

where

(Qaf)(z,u) = D)) u € C"\ {0}.

Fi(z,u) ’
The Bloch-norm || f||s) of f € H(Q) is defined by
11|50 = sup{(Qaf)(z) : z € 2}

The Bloch-space B(Q) of Q is defined as B(Q) = {f € H(Q) :
| flls@) < oo}. In particular, (B(Q),|| - ||ls)) is a Banach space,
provided constant functions are identified with zero. The small
Bloch space By(Q) = {f € B(Q) : lim,,50(Qaf)(z) = 0} is a closed
subspace of B((2).

PROPOSITION 2.1. For ¢ € H(Q,Q) and f € H(Y,), fod €
H(Q) with (Qaf ©8)(2) < (Qa,f)($(2)) for each z € 2, and

1f o ¢lls@ < I lls@)-
In particular, f o ¢ € B(Q) whenever f € B().
Proof. Let z € Q and u € C* \ {0}. Then

(Qaf 0 8)(z,u) = 'D}’; E’ji()z)l _ |(D¢;§(Q (u¢)(z))l_

If ¢.(u) = 0, then (Qafo@)(z,u) = 0 < (Qn, f)(8(2)). If ¢.(u) #0,
then

0 &)z u) < Lo ()] i
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Thus
(Qaf o ¢)(2) < (Qaq, f)(4(2))

as desired. Moreover,

[|f o ¢lls@) = sup{(Qaf o $)(2) : z € 2}
< sup{(Qa, f)(¢(2)) : 2 € 2}
< sup{ (@, £)(w) : w € M}
= | f @),
and the proof is complete. O

Let €2 be a complete Rheinhardt domain in C*, and let f be a
function on Q. We define f*(2) = f(z)) and f¢(z) = (£ 2) for any
€eU". If \is a scalar with |A| < 1, we also write fy for fy; where
1=(1,---,1) € T". Clearly, f* and f¢, £ € U, are functions on
Q such that f*, f € H(Q) if also f € H(Q2). It is also clear that

fe € H(Q) for each £ € U™ whenever f € H(Q2). Moreover, we have:

PROPOSITION 2.2. Let €2 be a bounded complete Rheinhardt do-
main in C*, and let f € B(Q). Then, f* and fe, £ € U", are in
B(Q) with || f*|lsw) = I flla@) and || fella@) < I flls@)-

Proof. The assertion concerning f* is obvious from the definition

of || - ||s@)- The assertion concerning f; follows from Proposition
2.1 by taking ¢ € H(Q,Q) as ¢(2) =& - z, z € 2, and the proof is
complete. O

PROPOSITION 2.3. Let f € B(B) and £ € B. Then f; € B(U™)
with || fellswn) < || f|lsB)-

Proof. Let ¢(2) = £€-2, z € U*. Then ¢ € H(U", B). By
Proposition 2.1, fe = fo¢ € B(U™) with || fe||lswn) = || f o ¢llswn) <
|| flls(B), concluding the proof. O

Let u € C*. A simple, and well-known computation, shows that

FY"(2,u) = max ]

n
1<5<n 1 — 2] 2e U

and

z € B.

5, v L= 2P ull® + (2, w) P}
el = - ’
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It follows that for f € H(U™"),

"lﬁ(QUnf)( ) < max {(1 - [%)(8:) (=)}

1<5<

= (QU”f)( )’ z € Un’

and so

1

Il < sup max (1= |5 @ 1} < 1w
In particular, defining

1£lls = sup >_(1 =121 (2) + n2;0; £ (2)]
2€U™ =

we deduce that

1£lls = 1O + I llswn)-

Accordingly, we may express the Bloch space B(U™) as the space
{f € HU") : ||fllg < oo}, in which case B(U™) is a Banach space
with the norm || - ||s. Moreover, By(U™) is the B(U™)-closure of the
holomorphic polynomials in z € C".

In a similar fashion (see [2]) one also shows that for f € H(B),

1£llscm) ~ sup(1 - [ RIAAMIG] = sup(1 - I2IHI(RF) ()],

and thus B(B) = {f € H(B) : ||f|ls < oo} where
1£lls = 1£(0)] + sup(1 — 111V (@)

In this case B(B) is a Banach space with the norm || -||5, and By(B)
is the B(B)-closure of the holomorphic polynomials in z € C*.

We let § : Z — Z, be defined by §(m) = max(m,0),m € Z. For
a=(ay, - ,0n) € Z%, we define §(a) = (6(an), -+ ,6(an)) € Z%
and m(a) = [T}_,{; : @; # 0}. In particular, 7(0) = 0 and m(a) =
a;---apifa; #0forall 1 <j<n. Wealso let mo(2) = 2%,z € C*.
Let z = (zl,---,zn) € C',andlet 1 < j < n Welet z5 =
(71, ,2i-1) € U7V if j > 1 and 29 = (zj41, - ,2,) € C*7
if j < n. In particular, (z(;),z%) € C*'ifn > 1, and if f is a
function defined in a C*-neighborhood N (z) of z then f(z), - 29)
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is a function defined on N'(z) = {A € C : (z(j), A, 2¥)) € N™(2)}.
Of course, N™(2) = N\ (2), f = f(zy), ,29)),j=1, when n = 1.
Let 2 be a complete Rheinhardt domain in C*, and let f € H(Q)

with
f(2) =Y a.z* (2€9),
where a, = a,(f),a € Z7. We define

(D"f)(2) = Y m(a)aaz’@D

o

and, for s € C,

(D°)(2) = (1 + [al)aaze.
Note that D™ is a differential operator of order n with D' = d/dz
and that D™ = (14+R)™ for any m € Z. Moreover, if o = Re(s) > 0,
then

(D~*f)(2) = ﬁ /0  Heta)e e dt,

By H*®(U™) we denote the Hardy space H®(U") = {f € H(U™) :
Ifllo < oo}, where ||fllc = sup{|f(z)] : 2 € U"}. This is, of
course, a Banach space with the norm ||-||. Another Banach space
that we shall consider is the space BMOA(U™) = {f € H(U™) :
I fll« < oo}, the space of functions in H(U™) with bounded mean
oscilation on the torus T™ (see [4, p. 238] when n = 1) normed by

171l = (£ + 1 f13soa) %, f € H{U™), where

1 IBmoa
A=z =162 | du(z)
= sup D" f)(2)|? — . :
ceun Jur ( ()] (Jl;‘[l 11— 2;€;]? "

The closure in BMOA (U™) of the holomorphic polynomials in z €
C” gives rise to the space of functions in H(U™) with vanishing mean
oscillation on 7™ and is denoted by VMOA (U™).

To proceed, we introduce two new sectional subspaces of
BMOA(U™) and VMOA(U™). For f € H(U"), we define

1£1i2s = FO) +
2O lsB0 )

sup sup | |9;f(2) —
j=1(2¢),2@))eUn-1 7€U JU ? |1_’sz|2
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and we set SB(U™) = {f € H({U") : ||fllse < co}. The closure in
SB(U™) of the holomorphic polynomials in z € C* is denoted by
SBy(U™). It is clear that SB(U™) and SBy(U™) are closed subspaces
of BMOA(U™) and VMOA (U™), respectively. Moreover, SB(U") =
BMOA(U™) and SBy(U™) = VMOA(U™) when n = 1. Next, for a
continuous function f on U™, 0 < 7 < 1, and (2;,2%) € U™,
1 < j < n, we define

My (r, (z(]-),z(j)) : f) = sup {If(z(j),r)\,z(j))l : A E T}.

We now consider a generalized mean Lipschitz space L(U™) =
{f € HU") : ||fllc < oo} where

I£1Zz = If( )’
+) sup / MZ (7, (25, 29) : 8; f) (1 — r%)2rdr.

j=1(2(j),2))eun-1

Equipped with the norm || - ||z, £(U") becomes a Banach space.
Moreover, using the subharmonicity of |0;f|, f € H(U™), on U™
and the Lebesgue dominated convergence theorem, one shows easily
that the holomorphic polynomials in z € C* are dense in L(U™).
Also, as is well-known, H*(U™) c SB(U™) C BMOA(U™) C B(U™)
and SBy(U™) C VMOA(U™) C Bo(U™), with the inclusions being
continuous. We now prove:

PROPOSITION 2.4. The space L(U™) is continuously contained in
SBy(U™), with ||fllsg < ||fllc for each f € H(U™).

Proof. Let f € HU™), z € U",7 € U and 1 < j < n. Then,
using polar coordinates

LS

1 =7zl

_ 1/01 /T ’a]f (z(j)’r)‘_’z(j))r'd)\') (1 —7‘2)7‘d7‘
M

|1 — rAT|?
/ ol (r, (z(j), z(j)) : Ojf) (/T 11— r)\?|_2ld)\|> (1 —r®)rdr

™
1 rm. .,
7 Jo
1 )
= / MZ (r, (z(j),z(J)) 0, f)(1 = r?|7)) 7 (1 = r?)2rdr,
0
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and thus

/U Ic?,f(z)l?(l — 'Zjlz)(l - lTI?)dA(Zj)

11— 27

< / z(]), (’)) : ij) (1 —r?)2rdr.

This implies that || f||ss < ||f||z and hence £L(U™) C SB(U™). Since
SBy(U™) is the closure in SB(U™) of the holomorphic polynomials
in z € C* and since these polynomials are dense in L£(U™), the
desired result follows and the proof is complete. O

3. Some prerequisites on the unit ball. Let do be the nor-
malized surface measure on S = 0B and let, for ¢ > 0, dv, stand for
the probability measure on B, defined by
1 F(n +q)

I'(q)
As ¢ — 0%, du, tends, in the weak* limit sense, to do which is

also denoted by dvy. For 0 < p < oo and ¢ > 0, we let LY be the
quasi-Banach space L?(dv,) with the quasi-norm || - ||, 4, defined by

g = { [ 17Pavg)

For two dv,-measurable functions f and g such that fg € L} o

define
Yg = / fgdv,.

Clearly, (, )q also serves as the inner product of Lg. When g > 0, the
space AY = LINH(B) is a closed subspace of Lf. The limiting space
A} is identified in the usual way as the Hardy space H? = HP(B)
of functions in H(B). In particular, for f € H(B),

”f”p,O = sup Mp(r7 f)
0<r<1

dvg(2) = (1= llzl®)*dv(z) (2 € B).

with

My, 1) = Wloo = { [ 2Pt}
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and Af = H? = {f € H(B) : || fllp0 < 00} may be identified in
usual way as a closed subspace of L. Note also the identity

1o ={ [ 107 Pt}
([ 15Atstr}” 7 € 1B

where dy,(r) = (r"~}(1—-r)?"!/B(n, q))dr is, for ¢ > 0, a probability
measure on (0,1). Here B(n,q) = I'(n)['(¢)/I'(n + q) is the usual
beta function of n and ¢ > 0. The above identity is also correct
when g = 0; in fact, for f € H(B), limg_,o+ || fllpe = || fllp,0-

In this paper, unless stated otherwise, we assume that ¢ > 0 is
fixed. If f,9 € H(B), then (f,g,), exists for every 0 < r < 1,
and we define the g—pairing (f,9)q as (f,9)q = Um_1-(fr, 9r)q,
whenever the limit exists. Obviously, (f,g)q = (f,9), whenever
fg € A;. We let P, denote the orthogonal projection of L? onto A2.
The latter is a functional Hilbert space on B with the reproducing
kernel K,, given by

Ky(2,6) = (1-(2,6)" " (5,£€ B).
In particular, for any z € B,

(Pof)(2) = (£, Ky 2))g (€LY

or

2) = [ Kz )dvg(€).

As is well-known (see, for example, [2]), P, extends to a continuous
projection of L? onto A?, 1 < p < oo, with norm m,(p) satisfying
mg(2) = 1 and my(p) = m,(p') where p’ = p/(p — 1). In particular,
the dual, with respect to the g—pairing, of Af is isomorphic to A{I".
We also consider the space I'; = ['y(B) of functions f in A2 such
that

1£llsq = sup {|{f, 9)q| : g € A2 with [|gll1, <1}

is finite. Evidently, Iy is a Banach space of functions in H(B) with
the norm || - ||.q, and it serves as the dual of A} with respect to
the g-pairing. In particular, A%° C I’y C A? for every 0 < p < oo,
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and f € I'y if and only if f € H(B) and there exists a constant
¢t > 0 so that |(f, )] < cfllglliq for every ¢ € H(B). More-
over, one shows easily that I'y = P,(Lg°), where for f € P,(Ly),
I £llsq = min {[|fllocg : € L, P,(f) = f}, and thus P, is a con-
tinuous projection of L® onto I'; with norm 1. As is well-known
(see, for example, [3]), I'y may also be identified with the space
BMOA(B), the space of functions in H(B) with (non-isotropic)
bounded mean oscilation on S. Moreover, for ¢ > 0, the space I,
is independent of g, i.e. I'y, = I'y,, with equivalent norms, for any
¢1,¢2 > 0 (see [2]). In fact, I';,¢ > 0, may be identified with the
previously mentioned Bloch space B(B), and one can show (see [2])
that for any f € H(B)

1£lls ~ sup(1 — [|2]1*)°*|D* £ (2)|
z€B

for each s > 0.
We shall also consider the familar Lipschitz space A; = Ag(B),
s > 0, of functions f € H(B) so that there exists an integer m > s
with
S llm,s = sup (1= [l [D™ f(2)] < oo

Evidently, A, is a Banach space of functions in H(B) with norm
[l - |llm,s which is independent of the integer m > s, provided
constant functions are identified with zero. Moreover, using the
methods of proofs found in [2] one can show that the dual of AP,
0 <p<1, g >0, with respect to the g—pairing, is isomorphic to
A(m+q)1/p-1)- In particular, for every ¢ > 0, any of the equivalent
norms ||| - |||m,s of As is equivalent to the the norm || - ||, defined by

£, = sup {7, 9)ol : 9 € HB), lgll ass o < 1}

By C(B) we denote the Banach-algebra of all continuous func-
tions on B with the norm || - ||, and by A(B) we denote the clas-
sical ball-algebra C(B) N H(B). Naturally, A(B) may be identified
as a closed subspace of C(B) as well as of A® = H®. Moreover,
Ay(B) C A(B) for each s > 0. We also let M = M(B) be the
Banach space of all finite complex measures p on B with the total
variation norm [[ully = [ |du|. For u € M, we define

(kat)(2) = [ Kq(2,€)du(e) (2 € B),
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and we let Q, = Q4(B) = {kq(n) : p € M}. It follows that Q, C
H(B) and that k, is a linear operator of M onto §,. We equip Q,
with the norm

1fllt.g = inf {[lull : p € M, ko(u) =7} (f € Qy),

and thus €, is a Banach space. In particular, k, is a continuous
linear operator of M onto 2, whose norm, since k,(dv,) =1, is 1.

Before proceeding with some preliminary results, we make a sim-
ple remark concerning pu € M. Recall that for any measurable
mapping ¢ of B into B, the induced measure pg) = po ¢~ is the
unique measure in M such that

/(fo ¢)dp = /fdu(¢)

for all f € C(B), and thus, |u(B)| < |lp@llt < ||/A||:f In particular,
@) lls = llulls if p is also non-negative. For £ € U, ) denotes
the induced measure (4 where ¢(z) = 2-&, z € B. One then verify
easily that

[kq (l‘)]é = kq(ﬂ(&))

for every ¢ > 0.

PROPOSITION 3.1. Let f € H(B), ¢ > 0,5 >0, and £ € U".
Then
(i) [ fellpg < I llp.g for any 0 <p < oo;
(i) [ felleg < N llgs
(i) | fella, < I1fla,s
(iv) If also f € Qq, then fe € Qq with || felltq < [ fllt.q;
(v) Ifalso f € AP, 0 <p < oo, then

lim || f¢ = fllp.g = 0.

§—1

Proof. To prove (i), we observe that the case p = oo is trivial, and
so we assume that 0 < p < co. Let £ = (r;e®, --- r,e),6; €
R,r; > 0 with 7 = max{ry,---,r,} < 1. It follows from the
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subharmornicity of |f|? on B that

Mfellzg = [1£(€ - 2)Pduy(2)
- / If(r121€, -+ | Tozne®)[Pdug(2)
- / 1f (1121, > Tnzn) Pdug(2)
= [ 15/na, o firazn) Pdvo(2)duq(a)
< [ 15z Pdun(z)) ()
= [ M2( 3, £)dv, ()
= II£12,

which is the desired result. To prove (ii), we may, of course, assume
that f € I';. In particular, f € Al and by (i) for p = 1, also,
fe € A}. For g € H(B), (fe,;9)q = (f, 9¢)q, and thus

1fellvg = sup {|{f, e}l : 9 € H(B), llgllng < 1}.
But, by definition, and (i) with p = 1,
(£, 9)al < fleallgellig < 1Flleallgllng:

It follows that || fell«q < ||fll«q as desired. To prove (iii), we may
assume that f € A,. In particular f € A(B) and so (fe,g)o =
(f, ge)o for any g € H(B). It follows that

1 fella, = sup {I{£, ge)ol : 9 € H(B), gllnjnraro < 1},
and hence, by definition, and (i) with p =n/(n + s),¢ =0,
1(f5 9ol < NI flla, llgelln/nts),o-
This means that || f¢]|la, < || f|la, and (iii) is proved.

To prove (iv), we assume that f € Q,. It follows that f =
kq(p) for some p € M, and thus, by the preceeding remark, fe =
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(kq(1)]e = kq(pe)) € Q. Moreover, again by the preceeding remark,
we have

1 fllt,q = inf {[lull : w € M, f = ko(p)}
> inf {[|ull : p € M, fe = [kq(p)]e}

inf{“,ulh tpEM, fe= kq(ﬂ(&))}

inf{”u(g)llf THEM, fr= kq(ﬂ(ﬁ))}
inf {||v]ly : v € M, fe = kg(v)}
= || fellt.q5

and the proof of (iv) is complete.

Finally, we prove (v). If f € A?, 0 < p < oo, and { € "
then, as £ — 1, f¢ — f almost everywhere on B ( pointwise on
B and, when ¢ = 0, also almost everywhere on S), and so, by
Fatou’s lemma, || f|lp,q < limg 1| fellp,q- But, by (i), limea|| fellp,g <
| fllp,q @and thus limg_1 || fellp,g = || fllp,q- It follows from a well-known
stronger version of the Lebesgue dominated convergence theorem
that lime_,q || f¢ — fl|p, = 0, and the proof is complete. O

2
2

PROPOSITION 3.2. For f,g € H(B) and any 0 < r < 1, we have

(£ %9)r2) = (Frr92)a = [ F(rO)g(z-Ddvy (&)

for every z € U™. In particular, (f *x g), € H(U").

Proof. Since 0 < r < 1 and z € U", f, and g% are in H(B), and
hence the above integral is absolutely convergent. In particular,

F(ré)g( Zaa(f ag(g)r'®led 2

and term by term integration with respect to dv, is allowed. Thus,
using the orthogonality of the monomials 7, o € Z7, and the fact

that B
walg) = (Tas Tabg = [ €€ duy(€)

we conclude that

[ 15019z Ddun() = T aal$aa(9)r2)* = (7 + 9)(r2),
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and the proof is complete. 0

PROPOSITION 3.3. Let 1 <p,s,t < oo withl +t 1 =pl 451
and let f,g € H(B). Then (f * g); € H({U™) with H(f * §)glltg <
| fllp.qllglls,q- Moreover, if also t = oo, i.e. if s =p' =p/(p—1),
then [|(f * 9)alloo < | fllpallglleq- In particular, (f * g)g € H®(U™)
szeAP andgEAP

Proof. That (f * g) is in H(U™) is a special case of Proposition
3.2. To prove the inequality, we let 0 < r < 1 and z € U™. We also
leta=tbl=pl—-tltandc!=s5'1-¢t"1 Thenl<a,bc< oo
with a='+b7'+c™! = 1. By Proposition 3.2 and Holder’s inequality

I % 9)a(r2)| < [ 17(rE)llg(z - B)ldug(&)
= [15(re)pOret1/]g(z - ) /21, ¢)

< ([l ®r1 00 I”dvq(f))

(/ s0Pan (@) ([ lotz-DPdue)

If t < 0o, then by Proposition 3.1(i),

1+ el < 17 Ilaliel [ 1otz - P17 e Pavg(©))
It follows from Fubini’s theorem and Proposition 3.1 that

“(f * g)q THt,q —= “f”p,q“g”s q?

and since this is true for any 0 < r < 1, the desired result follows

when ¢ < oo.
When ¢ = 0o, we find, using Proposition 3.1(i), that |(fxg)4(rz)| <

| fllpallgllpq and so [|(f * g)glleo < ||flp,qllgllprq- This concludes the
proof. O

LEMMA 3.4. Let g € H(B) and define T,(f) = (f * 9)q- Then
T, is a linear operator of H(B) into H(U™). Let 0 < p < oo and
let Y =Y (U") be a functional quasi-Banach space of functions in
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H(U™), and assume that Ty(A%) C Y. Then T, is a continuous lin-
ear operator of Af into Y, i.e. there exists a non-negative constant
cg = co(A},Y) so that ||(f * g)glly < c4l|fllp,g for every f € A

Proof. The fact that T is a linear operator from H(B) into H(U™)
is a trivial consequence of Proposition 3.3. To prove the remaining
part of the lemma, we assume that Tj is a linear operator of A}
into Y = Y (U™) and we shall show that T} is closed. To this end
we assume that fy — f in A% and Ay = Ty(fy) — h in Y, and
hence we must show that T,(f) = h. Fix z € U™. By assumption,
he(2) = h(z). Similarly, by Proposition 3.3, |((f — fx) * 9)q(2)| <
1fi = Fllpallglly.g = 0, # = p/(p — 1). It follows that

HT,(1)} (2) — h(2)]
S (f = fi) ¥ 9)a(2)| + [ha(2) — h(2)] = 0,

and hence T,(f) = h, and the proof is complete. O

To proceed, we introduce two special holomorphic functions on
the unit disk U. For a € C and m € Z., (a), stands for 1 if m =0
and a(a+1)---(a+m—1)if m > 0. Let a,b,c € C,A € U and

define (@)
. (a
F(a,b;c: \) = A LAAL LS
@hie: )= 2 O
and -
GasV) = 3 (m+ 1)+ Dy
m=0 m.

As is well-known the hypergeometic function F'(a, b;c : -) satisfies
the Gauss formula F(a,b:c: ) = (1-A)**YF(c—a,c—b;c: \).
Moreover, if Re(c) > max(0, Re(a), Re(c)) then we have the Gauss
theorem, namely F(a,b;c: 1) = ['(c)['(c — a — b)/T(c — a)T'(c — b).

Fora € R,q > 0 and z € B, we define

Ing(2) = [ 11 = (2,61 dvy(€).
It follows that

Iog(2) = F(a/2,0/2n +q : ||,
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and thus I,,(2) = (1 — ||2]1*)""" *Ly(ntq)-a,e(2). Moreover, for
2 € B,I,4(2) 2 I,4(0) =1 and , I,4(2) < 27%if a < 0, and
Lo(2) € Ly1) = T'(n+ ¢(n + ¢ — a)/ {T(n+q—a/2)}? if
n+¢q > a > 0. These arguments establish the first two parts of
the next proposition. The proof of the third part may be found in

[2].

PROPOSITION 3.5. Let a,b € R and ¢ > 0.

(i) Ifa<n+gq, then I,4(2) = 1, 2 € B, with 1 < I, 4(2) < 27%f
a<0 and
L(n+q¢)T'(n+q—a)

1< Ih4(2) < {T(n+q—-a/2)}

when a > 0;
(ii) If a > n+q, then I, 4(2) ~ (1 — ||2]|?)~(¢"~9, 2 € B, with

I'n+q)l'(a—n-q)
{T'(a/2)}? ’

(iii) If @ > b, then Gop(X) = (1 — N)~@OF(A), XA € U, where F
is in the Lipschitz class Ay—y(U) with F(0) = 1.

1< (1= o) "0 q(2) <

PROPOSITION 3.6. Let f € H(B),0<p<o00,qg>0, and§ € B.
Then:

@) £ < SIf(2)PIE (2, E)PKy(E,€) " dvy(2) with equality if
and only if f is constant on B;

(i) £(O)] < {Ko(& Y7 | fllpa with equality if and only if f =
MK, Y for some constant ) € C.

Proof. We first prove (i) when £ = 0. In this case, since |f|P is
subharmonic on B, we have

FOF < [1f(/rn)Pdvm) = 1750

for any 0 < r < 1, with equality if and only if f is constant on B.
This gives the desired result when ¢ = 0. When ¢ > 0, we integrate
both sides of the above inequality with respect to the probability
measure dv,(r), 0 < r < 1. This gives

FO)F < [ 17(n)Pdvy(n)
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with equality if and only if f is constant on B. This establishes (i)
when £ = 0. For any other £ € B, we replace f by f o ¢ where ¢ is
a holomorphic automorphism of B with ¢(0) = £, and thus

OF < [ 1£(e(m)Pduy(n)

with equality if and only if f is constant on B. This proves (i) by
observing that

K4 (#(0), 0(0))dug(n) = |Kq(2(n), £(0))[*duvg((n))

for each n € B.
Finally, (ii) follows from (i) by replacing f with f {K,(-,€)} %7,
and the proof is complete. O

We shall also need the following identity for H? = HP?(B) func-
tions. Its proof appears in [1].

PROPOSITION 3.7. Let 0 < p < oo and f € H(B). Then

I£180 - 1FO)F
= 2 [ RADPU Pl log pord(2).
~on s g|| ™

This proposition leads to the following lemma:

LEMMA 3.8. Let 0<p <2 and f € H(B). Then

P [ 0= )M RAdr < F = SO

Proof. Let g = f — f(0) and use Proposition 3.7. This gives

lotgo =5 [ Hog (122 Plgtre)paoe)) ar.



254 JACOB BURBEA AND SONG-YING LI

By Hélder’s inequality, with 2/p > 1 , and Proposition 3.1(i)

[IRg(r)Pdo(e)

Ry(ré)
g(ré)

RY(r) oy o ving oy V7 110 -2
<{ [ B pgopas] ol

r p/2
s“wﬁpIR“OH( Ww@ﬁ |

l9(r&)|Pdo(£)

(€)

It follows that
gl o > P /1 1logle(r Rg)dr > p* /1 l(1 — rYM2(r, Rg)dr
=5 Jo r o PV —" Jor L ’
and the proof is complete. O

In the next section we shall show, by duality methods, that
(A2, H(U™))g = Ansg)(1/p-1), 0 < p < 1; (42, H®(U™)), = AP/(-1),
1 < p < oo; (AP, H®(U")), = O and (Aj, H*(U™)), = T,. The
latter result means that (A}, H*(U"))y = BMOA(B) and
(A}, H®(U"))g = B(B) for every ¢ > 0. A significant refinement,
and an extension in the case ¢ > 0, is provided in Section 5. There
it will be shown that, in fact, for any ¢ > 0

B(B) = (A,},L:(Un)) (43, VMOA(U"))q
:(A;,BMOA(U"))qz( )q (43, ")q.

In particular,
B(U) = (H'(U), B(U))o = (H'(U), Bo(U))o = (H'(U), VMOA(U))o

when n = 1 and ¢ = 0, which is the result of Mateljevic and Pavlovic
[5], mentioned in the introduction.

We conclude this section by establishing the following inclusion
relationships.

PROPOSITION 3.9. Let s >qand 1 <p< (n+5s)/(n+q). Then

A} C Q, C A2, and the inclusions are continuous.

Proof. To prove A; C §2,, we assume f € A; and z € B. Since
9(z) = (g, Ky(-,2))q for every g € A2, a simple density argument
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shows that also f(z) = (f, K,4(, z))¢. In particular, f = k,(u) where
dp = fdvg, and thus f € Q with || f||+,4 < || f]|1,4, Which is the desired
result. To prove the inclusion Q, C A?, we assume y € M and use
Holder’s inequality and Fubini’s theorem to obtain

Ika(Wlise = [ 10kq() (2)1Pdes(2)
<l [{ [ 1Koz, €)Pdvs(z) | au(e)
= 14 [ Tnsais(©)lus(©)]
Since n + s > (n + q)p, Proposition 3.5(i) shows that
Intqps(§) < ¢,

1 —
where ¢ = ¢(n,p, q,s) = {F(ﬁzﬁﬂﬁxﬁggg”)} /p, for every £ € B. It

follows that ||kq(1)|lp,s < |||+, and the proof is complete. |

PROPOSITION 3.10. Let 0 < p < 00, 0 < s < min(p,1),0<r < 1
and f,g € H(B). Then

1(f * 9)grllpg < (1= T)—(nﬂ)(l—s)/s”f“p,q”gns,q-
In particular, A} C (AP, AP), whenever 1 < p < oo.
Proof. Let h = (f * g), and £ € U". By Proposition 3.2,

hre) = [ (e 2)g(rz)duy(2),
and thus
[A(r*6)] < (| F:ll1.q
where .
F(z) = f(z-§)g(z), z¢€B,
i.e. F'= feg*. Since F € H(B) we have, using Proposition 3.6(ii),
[ Frlloo < (1 - 7'2)_(n+q)/s”F”s,q7

and so by Proposition 3.1(i), since 0 < s < 1,

IF g = [ 1E |l dv,

< IFlles *IEx 113 q

r2) —(n+q)(1-s)/s

_<_ (1 - ”F”s,Q'



256 JACOB BURBEA AND SONG-YING LI

It follows that
(1 = )09 p(rg)
<IIFlse = [ l9@I1f (= - &)l duy(2),

and thus by Minkowski’s inequality, with p/s > 1, and Proposition
3.1(1),

(1 =790 ([ h(re)pany(e))

< (191" ([ 15z Pany(©)) ™ any(z
< 111l

concluding the proof. O

A special case of the last proposition, namely when n = 1 and
g = 0, appears also, as the main result, in Pavlovic [6] with a
different proof. Moreover, the particular inclusion A; C (42, A?),
for 1 < p < oo, may also be deduced from Proposition 3.3 with
s = 1, and thus ¢t = p. For m > 1, this inclusion is not quite
sharp. Indeed, by Propositoin 3.3 with s = 1 and t = p = oo,
A} C (AP, H®(U™)), C (AP, AP),.

4. Multipliers of A? into H*(U™). In this section we identify
(AP, H®(U™))q for 0 < p < co. Some parts of these identifications

appear, with different proofs, also in Shi [8] when 1 < p < oo and
g=0.

THEOREM 4.1. Let 1 < p < oo and g € H(B). Then g €
AP,pf = p/(p— 1), if and only if (f * g); € H®(U) for every
f € AL, Equivalently, (AP, H®(U™)), = A?.

Proof. The inclusion A? C (AP, H*(U™)), is a special case of
Proposition 3.3. To prove the converse we assume that g € H(B)
and that (f+g), € H*(U") for every f € AP, and invoke Lemma 3.4.
It follows that there exists a constant ¢, > 0 so that
I(f * 9allo < cqllfllp,g for every f € AP Let 0 < r < 1 and
f € Ab. By Proposition 3.2, (f * g)¢(r1) = (f, gr)q and so

f:972al = 1(f % 9)a(rD)| < I(f * 9)glloo < coll fllp.a-
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It follows by duality that ||g,|lprq = |lgfllpq < ¢ for every 0 <

r < 1. In particular, g € A{I" with ||g|lpq < ¢4, and the proof is
complete. O

The cases p = 1 and p = oo of the above theorem are contained
in the following two results:

THEOREM 4.2. Let ¢ € H(B). Then g € Ty if and only if
(fxg)qg € H®(U™) for every f € A,. Equivalently, (A;, H®(U™))q =
Ty. In particular, (H', H*(U"))o = BMOA(B) and (A}, H®(U")),
= B(B) for every q > 0.

Proof. To prove the inclusion I'y C (4, H®(U")),, we assume
that ¢ € Iy and f € A;. Let z € U". By Proposition 3.2,
(f *9)q(2) = (g, f2)q, and since Ty is the dual of A} with respect to
the g—pairing, we conclude, using Proposition 3.1(i), that

|(f % 9)a(2)] < llgllall Fz 110
< Nlgllsall f g = llgllegllfllq

It follows that (f * ), € H=(U™) with [[(f * 9)gllee < I/lI1llgll-a:
as desired.

To prove the converse, we assume that g € H(B) and that
(f *g)q € H®(U™) for every f € A}, and apply Lemma 3.4. Thus,
there exists a constant ¢, > 0 so that ||(f * g)qllec < €| f]]1,4 for ev-
ery f € A]. Let 0 <7 < 1and f € A;. It follows from Proposition
3.2 that

[(£:97)al = [(f * 9)q(r1)| < NI(f * 9)glloo < €qll fll1q-

Let s,t € (0,1) with max(r, s) < t. A direct computation gives

(fag: - g;>q = <frt‘1 - fst-lvg:>q

and so
|<f7 gr — 9;>q, < Cg”frt—l - fst“lnl,q-

It follows from Proposition 3.1(v) that the g—pairing (f,¢*), =
lim,_,1-(f, g7), exists, and thus |(f, g%)s| < ¢4/ fll1,q for every f €
Ay. This implies that ¢*, and therefore also g, is in the dual (A))*
of A} with respect to the g—pairing. Since I'y = (A;)*, we find that
g € Ty, and the proof is complete. 0
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THEOREM 4.3. Let ¢ € H(B). Then g € Q, if and only if
(f x 9)g € H®({U™) for every f € AP(= H°°) Equivalently,
(A2, H2(U™) =0,

q

Proof. To prove the inclusion Q, C (A, H*(U™)),, we assume
that g € 2, and f € AP. Let z € U™. By Proposition 3.2,

(f *9)a(2) = [ £(€)g(z- Bdug(€),

and since g € 2, there exists a measure ;1 € M such that g = k,(u).
It follows from Fubini’s theorem and from the reproducing property
of K, that

(f*9)q / [ / FO)K,(z- &, n)dvq(ff)] du(n)
= [ [ Oz 7,0)du6)] dur)
= [ 1(z-mdp(n),

and 50 |(£%9)o(2)] < [Ifloallillt, of (£*0)allee < llloogllilly. This
means that ||(f * ¢)glloo < || fllcollgllt,e» and the desired inclusion

follows. To prove the con;erse we assume that g € H(B) and that
(f * g)g € H®(U") for every f € A, and apply Lemma 3.4. In
particular, there exists a constant cg > 0 so that ||(f * g)¢llec <

Coll flloo,g for every f € A. Let 0 <r < 1and f € AP, and define

1) = [ 1©)9(rE)dvy(&).

Since, by Proposition 3.2, H,(f) = (f * g)q(r1) we deduce that
|He(F)] < II(f * 9)glloo < ¢gllfllooq- It follows that H, is a contin-
uous linear functional on A% with norm ||H;|| < ¢,. In particular,
H, is a continuous linear functional on the ball-algebra A(B) with
norm ||H,|| < ¢,. Since A(B) is a subspace of C(B), H, has a
norm-preserving extension H, to C(B). It follows from the Riesz
representation theorem that there exists a unique measure u, € M

with (sl = [|H, || = | H;|| < ¢, so that

= [ 1@du (&)
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for every f € C(B). Since |||t < ¢, for every 0 < r < 1, we
deduce that there exists a sequence {ry} C (0,1) with 7, — 1 so
that ., converges in M to a measure u € M. It follows that fIrk
converges to H, where

A() = [ 1@adu(e)

for every f € C(B). In particular, limy_,o, Hy, (f) = H(f) for every
f € A(B), and thus upon taking f = m,, o € Z7, we obtain

Jim H,(re) = [ € du(e).

laf

Since, however, H,, (7o) = aa(9)7) wa(q) we deduce that

Edu(®) (aeZ}),

Q
Q
—
Q
N
Il
£
E-\'—‘
]
~
—

It follows, since
1 —a
Kq(2,8) = z%E,
=O=2 50

a

that g(z) = [ K,(2,€)du(§), 2z € B, or that g = k,(u) with p € M,
i.e. g € Q,. This concludes the proof. O

Finally, we now deal with the case 0 < p < 1.

THEOREM 4.4. Let 0 < p < 1 and g € H(B). Then g €
Antqyasp-1) if and only if (f x g)g € H®(U™) for every f € Ab.
Equivalently, (A%, H*(U"))q = An+q)1/p-1)-

Proof. Let s = (n+ q)(1/p — 1). Assume that g € A,,f € A}
and z € U™. By Proposition 3.2, (f * g)4(2) = (g, f3)4, and since A,
is the dual of A? with respect to the g—pairing, we deduce, using
Proposition 3.1(i), that

(f * 9)a(2)] < Ml9lla,ll FZllp.a < Nglia N7 llog = llglla, | fllpq-
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It follows that A, C (AE, H*(U"))s- To prove the converse, we
assume that g € H(B) and that (fxg), € H®(U") for every f € AP.
Invoking Lemma 3.4, we infer the existence of a constant ¢, > 0 so
that [|(f * 9)gllec < cgl|fllpq for every f € AP Let 0 < 7 < 1,
0 <t,t <1land f € AJ. Then

[(fer 97)al = I(F * ) (rta )] < coll Fllp.as

and by Proposition 3.1(v)

(1> 97)a = (ft2r 97)al < M grllnslifer = fiallpg = 0,

as t; — to. Consequently, the g—pairing (f, g;), exists with

1(£97)al < coll fllng

for every f € AP. It follows from duality that g; € As and ||g;[|a, <
¢, for every 0 < r < 1. Equivalently, g, € A; and ||g;|[a, < ¢, for
every 0 < r < 1. In particular, using Proposition 3.1(iii), g € A
and ||g||a,s < ¢, and the proof is complete. O

5. Multipliers of A} into £(U"). In view of Theorem 4.2, we
have B(B) = (AL, H®(U™)), C (AL, BMOA(U"))q C (A;,B(U"))q,
provided ¢ > 0. The main purpose of this section is to show that
(A;, [,(U"))q = B(B) for any ¢ > 0. This will be accomplished by
showing that (AJ, B(U”))q C B(B) and that B(B) C (4}, E(U"))q

(see Theorems 5.1 and 5.6 below) for every g > 0.
We first prove the following, and rather crucial, theorem:

THEOREM 5.1. For any q > 0, we have (A;,B(U"))q C B(B).

Proof. Let g € H(B) and assume that (f * g), € B(U™) for every
f e A;. Since, for example, B(U™) is continuously contained in
A%(U™) = L*(U™)NH(U™), B(U") is also a functional Banach space
of functions in H(U™). We can therefore invoke Lemma 3.4 to infer
the existence of a constant ¢, so that

I(f * 9)glls < ncyl| fll1,e
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for every f € A;. Equivalently, for A = (f x g), with f € A,} we
have

sup Z (1 = |2] ) h(2) + nz;0;h(z)| < negl| flle-

ZEU" .

In particular, for 0 <r < 1,

(1 _ TZ) i |h(r1) + nrd;jh(rl)| < ncg||f||1,q,

and thus
(1= 72) IDA(r1)| < ¢l fll1q-

Fix b>0and £ € S and let f = Gpyq-3((-,7E)). It follows that for
neunr

Bn) = (f < 9)n) = [ 9z )Gnsgs ((2,78)) duy(2)
= Y (lo] +1)’aa(g)(rén)",

and thus
h(n) = (f * 9)(n) = D°gre(n).

In particular,
Dh(rl) = D**1g(r%¢).

Moreover, using Proposition 3.5(iii), we find that Gpiq4-s(A) =
(1 = N)~(+etd) (X)), X € U, with F € Apygrb(U). Let ¢o = [|F|co-
It follows, again from Proposition 3.5(ii), that

1fllLe < colntgrsg(ré) < (1 — r?)*
with ¢ = ¢oI'(n + q)T'(b)/ {T((n + g + b)/2)}. Accordingly,
(1 =)D g (r’€)| < ccy

for any £ € S and 0 < r < 1. This implies ||g||s < o0, or g € B(B),
and the proof is complete. O

We also establish the following crucial estimate:
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THEOREM 5.2. Let f,g € H(B), h = (f*xg)o and 1 < k < n.
Then

/(: MOQO (T, (.Z(k), Z(k)) . Dk (6kh)) (1 - 7'2)3d7"
<4270 7 = fFO)1Follg — 9(0) I3z

for all (z(k),z(k)) € U ! where Dy = 1+ 2,0x. Here 6,1 = 0 if
n>1 and611:1.

Proof. Without loss of generality, we may assume that f € H(B).
We fix 2 € U", and we let A\ € U". By Proposition 3.2, h € H(U™)
and

hx-2) = [ 13- )g(z- E)do(e)
= [ £ gg(2)do (©).
It follows that
Mdeh(2-2) = [ F(2- €)0rgel(2)do E),
and so, by differentiating with respect to A,
Didih(r-2) = [ 0ef (V- €)Bege(2)do (€).
Letting F = f — f(0), G = g — g(0) and Hy = Dy0xh, we arrive at
H()-2) = /S B F () - €)0Ge(2)do (£).
It follows from Proposition 2.3 that
[H(3-2)| < [ [llonF (- )18:Ge(2)| dore)
< (1=1aP)" [ IlIOF (- &)l Gellandor(€)
< (1=12) " Gl [ (ElOF (- )l do(€),
and thus

(8- 2)I(1 = %) < IGllacw) [, Il 1P (A- €)]dor(E),
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we now specify A € U by taking A\, = 2 and Aj=1forj#k 1<
J < n. This gives

(1 - 7‘2) ‘Hk (Z(k), Z,%, Z(k))l
< llGl|B(B)/S|€kl IakF(f(k),Zkfk,f(k))'da(ﬁ)

and thus

(1-71*)My (r2, (2(ky, 2®) : Hk)
[ (|

1
< Z
< THGHB(B)/

where for any £ € S, Fi¢ is a function in H(U) defined by

Fiey(w) =F (f(k); |§k|w,§(k)) , weU,

and R, is the one-dimensional radial-derivative R, given by R; =

wd—‘fu—. We now use the fact that any & € S can be represented as

£ = (£¢) where & = (€n),€W) € Bpoy and &P = 1~ [|€']]* =
L= [l€m 1> = 1E® . In particular, for £ € S, Figy = F whenn = 1.
It follows that

/OIM; (rz,(Z(k)’z(
<16t | 52 { [ [Rarier (i)
<26l | 0 [ |Refier ()

261, /01 1;7" {/B"‘l (/0 |R1Fery(re®)] gg) dv§"_1)(§)}2dr

17
= 2HG||?3(B)/O

s Hy)(1 - rz)srdr

ko)
~
N—

da(§)}2 dr

1-r

do(&)}
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and thus, using Minkowski’s inequality and Lemma 3.8 with n =1
and p=1,

1
'l 1/2 o 2
_<_2HGH%(B){/ . [/0 ;(I_T)Mlz(r,le(f'))dT] dvy 1)(5')}

2
<261 { [, I1Fer - Fer@lhods ()}

For n = 1, the last integral reduces to ||F' — F(0)|1,0 = [|F|l1,0- On
the other hand, when n > 1, Proposition 3.6(ii) shows that for any
é € S, ”F({/)(O)”l,o = IF(ﬁ’)(O)l S ”F(gr)”l,o and so

/B 1”F ) — Fien (0)||,0dv{" 1 (€")

= 2/3 . ||F(f')||1,odv§"—1)(§r)
s (/ [P (€ lfkle"’,f"”)l )d (n=1) (g1)

=2 [ |F(©)ldo(¢)
= 2||Fl1,0-

It follows that
/01 MZ(r%, (2, 2®) + Hy)(1 = r*)Prdr
< 2417 P12 ol Glls)
and hence
/01 M2 (r (z(k),z(’“)) : Hk) (1 —r)dr
= 2/ M2 z(k),z(k)) Hp)(1 = r?)3rdr
< 4% 6"‘IIFII1,0||G||B(B)-

This completes the proof. O
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At this stage we wish to show that B(B) C (A}, L(U™))o, i.e.
to show that the estimate on h = (f * g)p in the last theorem will
eventually lead to A being in £(U™). To accomplish this we require a
Hardy-Littlewood type estimate for functions in H(U). Toward this
end we first establish the following simple lemma. For 0 < z,y < oo,
we let m(z) = min(z, 1) and €(z,y) = [m(m(y)/z)]"! - 1.

LEMMA 5.3. Let fe HU),0<p<o0,a>0and0<n<r<
1. Then
Mpy(r, f) < My(r,Df)

and

r* My (r, f) = 2P My (n, f) < 2°@P)(r — n)* My (r, D).

Proof. Let z € U and 0 < s < 1. Since Df(rz) = d(sf(sz))/ds,
we deduce that

rf(r2) =nf(n) = [ Di(s2)ds
and thus
Irf(rz) —nf(nz)| < (r—n) sup [Df(sz)|.

n<s<r

If p <1, then it follows from the Hardy-Littlewood maximal theo-
rem that

rPM2(r, f) — P M2 (n, f) < (r — )P M2 (r, D).

If, on the other hand, p > 1 then Minkowski’s inequality applied to
the above identity gives

TMP(T, f) - UMp(Ua f) < (T - n)MP(Ta Df)
It follows that for any 0 < p < oo
rm®) M;n(p) (r, f) — n™® M;n(p) (1, f)
< (r —n)"PMP (r, Df).

The first inequality of the lemma follows from this inequality by
letting 7 = 0. The second inequality follows by raising the inequality
to the power a/m(p), and the proof is complete. O
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PROPOSITION 5.4. Let f € H({U), 0 < p < 00,a,q >0 and let
- /O M, DF)(1 - 1) dr
and .
- /0 M2 (r, f)r*(1 — )" dr.
Then K(f) < cKo(f), where c = c(a, q,p) is constant given by
2(a+q)

c(a,q,p) = — {21/q26(w)/q +4. 23<a+q)e(a,p)/q} .

Proof. Let § = 2~ [1+e(@p)l/a and define rp, = 1-6™, m=0,1,---
Then

=3 [ M e =
m=0""Tm

Tm+1

< Z M2 (Tm1, F)re / (1= r)=ldr

m

(1-149) Z My (Tms1, f)Tm107™

m=0

(1= 69 (Jy + Jy + J3),

»-er—‘»Ql»—l

where

Ji= My(ry, f)rg,  Jp =209 Z My (rm-1, )16,

m=1
and
o0
J3 = Z {M:(Tm-}-la ) — 2€(a’p)Mg(T"‘—1’ f)rfn_l} 6%
m=1
By Lemma 5.3,

Ji < My (r1, f) < My(r1,Df)
_ate (/1(1 - r)““*ldr) M (r1,Df)

7'1

.|_<>,

S (r,Df)(1 —r)*** tdr

a+q

< / ME(r, Df)(1 - 1)+ Ldr,
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and so

Also,

Jy = 2€@P)§T N MO (1, f)rZ 57T

m=0

< 9¢(a.p) 59 io: (

m=0 Tm

gam
M (r, £)ro(1 = r)r~dr ) T qu)éqm

Tm+1

= 2¢(ap) qadq/ M (r, f)r*(1 —r)?dr,

d th
and thus 460

Jo < 9fler) L2
1—469

K(f).
Similarly, again by Lemma 5.3,

o0
J3 < 29PN (rpy = 1) M2 (Pgr, DF)ST™

m=1

= 2(eP)§=0(1 = %)% 37 M2(ryyr, Df)SHO™
m=1
a—q Tm+1
< 2ePse(1 - 7) “+§Lq 23/ M (r, DF)(1 = r)*+o~4dr

m=1 Tm
52)a

(a,p) —(2a+q)
< 229 (g 4 g)3 S

/M“( ,Df)(1 = r)2+a=dr,

and so
(1 4%

S 0]

Js < 26(a,P)(a + q)—(2a+q)
It follows that

(1 - 2P57) K (f)

< (=80 + )
( )(1 __5q) e(a,p 5(1 __52)a
S q6 <1 + 2 ( )62a+q(1 _ 6a+q)> KO(f)a

and so

K(f) < 0% 7Y ‘;‘ q {21/q26( ap)/q 4 4. 23a/q23(a+Q)6(a,p)/q} Ko(f),
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as desired.

In the next two results, we let
cp = 3+ 23701, /on(1 4 210),

LEMMA 5.5. Let f € Al(= H'), g € B(B) and h = (f * g)o-
Then h € L(U™) with
ik = A0z < callf = f(O)l10llg — 9(0)l|n(B)-
In particular, B(B) C (A}, L(U™)),.

Proof. Fix an integer k, 1 < k < n, and use Proposition 5.4, with

= oo and a = g = 2, for Sh(zw), -, 2%) € H(U), (2x),z¥) €
U™!. Note that by Proposition 3.2, h € H(U™). It follows, using a
change of variable, monotoneity and Theorem 5.2, that

[ M2 (7, (2 0xk) (1 = r2)2rdr
- 3/ M2, (v, (2, 2¥) : B4h) (1 — r%)r%dr
< 9/ 2 (1 (2, 2 )  kh) r3(1 — r)dr
< 9¢(2,2, )/ (29, 2) : Dy(Buh)) (1 - r)3dr
< 9¢(2,2, 00)4 7% IIf FO)ollg — 9(0)lz5) -

Consequently,

lIh = h(0)IIZ

n 1
B kz;l( ?’g)pEU 1 -/0 Mozo (T, (Z(k), Z(k)) : akh) (1 - 7'2)2Td7'
=1 (2(k),% n-

< n32277 (1421 || = F(0)II3 0 lg — 9Oz »
O-

and the proof is complete.

THEOREM 5.6. Let ¢ > 0,f € A}, g € B(B) and h = (f * g),-
Then h € L(U™) with

lh = R(0)|lz < callf — F(O)|l1,qllg — 9(0)|lcm)-
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In particular, B(B) C (A}, L(U™)),.

Proof. By Lemma 5.5 we may assume that ¢ > 0. For0<r <1
and z € U" we have

(fr2 * 91'2)0 / fr2 91‘2 (5)

and thus .
h = % gr)od.
/0 (fr * gr)ody,(r)

where dy, is the previously defined probability measure on (0, 1).
It follows from Lemma 5.5, the triangle inequality, and Proposition
2.2 that

1
I = hO)lle < [ 1I(F * gr)ollcdvy(r)
< an [ 1 = SO)lsollg- — 9O llseardra(r)

< callg - (0 M/Hﬂ £ O)llodvy(r).

The desired result now follows by observing that ||f. — f(0)|10 <
lfy7 — f(0)|l1,0, and that

15 = fO)lha= [ e = FO)lsodua(r)
0

Finally, we prove the following result which was alluded in the
previous sections.

THEOREM 5.7. For any q > 0, we have
B(B) = (A;(B),L(U"))q = (A;(B),VMOA(U"))q
= (A;(B),BMOA(UH))Q = (A}I(B),BO(U"))q
= (Ay(B), B(U”))q .

Proof. Using Proposition 2.4, Theorem 5.1 and Theorem 5.6, we
have

B(B) C (A;,E(U"))q C (A;,VMOA(U"))q
C (A;,BMOA(U"))q C (A;,B(U"))q c B(B)
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and
1 1
B(B) C (Aq,L‘(U"))q c (Aq,VMOA(U”))q
1 1
c (4, BO(U"))q C (Aq,B(U"))q c B(B),
concluding the proof. O
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