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For any two line bundles on a smooth curve, there are
so called Wahl maps, that can be viewed as generaliza-
tions of the ordinary Gaussian. These maps govern var-
ious properties of the projective embeddings of C, like
for example the first order deformations of the projective
cone that smooth the vertex. In this paper we investi-
gate these maps from the point of view of the intrinsic
geometry of C, by applying an approach of Voisin for the
case L = N = K.

1. Introduction. Consider a smooth projective curve C and
two line bundles L and N on it. It is well known that there is a
linear map, given by section multiplication

μ:H°{C,L)®H°(C,N) —> H°(C,L + N).

We define the module of relations of L and N, denoted R(L, N)> to
be the kernel of μ. The Wahl map, or Gaussian map

ΊL,N:R{L,N) —> H°(K + L + N)

(where K denotes the canonical line bundle on C) is defined by
making sense of the expression 7z,,J/v(5>ί) =: sdt — tds. These maps
have attracted increasing attention since WahΓs basic observation
that they relate to the deformation theory of the projective cone
over C ([W88]). In fact, if L is a very ample line bundle on C
the cokernels of 7 / ^ - 1 , for i positive, are dual to the first order
deformations of the projective cone which smooth the vertex. Prom
this it follows, for example, that if C is the hyper plane section of
a (projective) K3 surface, then jκ,κ is not surjective. This was
proved from a deformation theoretic point of view by Wahl, and
along different lines by Beauville and Merindol ([BM87]).
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314 R. PAOLETTI

This circle of ideas has led to the question of the behavior of
ΊK = Ίκ,κ on a general curve. In fact, this map being onto implies
that the general canonical curve is not the hyperplane section of
a smooth surface. Ciliberto et al have proved, using degeneration
methods, that for a curve with general moduli ηκ surjects ([CHM]).
Mukai then observed ([M87]) that if C is a smooth curve lying on a
K3 surface and such that the class of C generates Pic(C), then on
C there are minimal pencils for which the adjoint line bundle is not
projectively normal. Voisin has then generalized this observation
into a new conceptual approach to the problem ([V]). Namely, she
shows that if C is a Petri general curve for which JK is not onto,
then on C there exist complete linear series of dimension one and
minimal degree such that for all of these the adjoint line bundle is
not linearly normal. In other words, if A is a minimal pencil and
7# is not surjective the multiplication map S2H°(C,K — A) —)>
H°(C,2K — 2A) can't be onto. Then she shows that this cannot
happen on a general curve, thereby proving surjectivity of 7^ in this
case. Her proof uses two very different arguments in the odd genus
case and in the even genus one.

At the same time, there has been growing activity concerning the
problem of the surjectivity of 7L,ΛΓ, for arbitrary line bundles L and
N on C. This more general question has been explored, among
others, by Bertram, Ein and Lazarsfeld ([BEL89]), and by Wahl
([W88],[W89],[W90],[W]). The first three authors have found con-
ditions on the degree of L involving the Clifford index of the curve
that guarantee surjectivity of JK,L- Wahl has found other condi-
tions, and he formulated a conjecture to the effect that JK,L is onto
as soon as deg(L) > 2g+ some suitable constant. More generally,
he has posed the question of finding a geometric interpretation of
the failure of ^L,N to surject, and of the resulting stratification of
the Picard group of C in terms of the corank of 7L,ΛΓ The object
of this article is to show that even for these more general Wahl
maps one can still interpret the failure of 7 ^ to surject in terms
of the existence of pencils of small degree for which suitable section
multiplication maps are not surjective.

Before describing the results, let me recall that W^(C) denotes
the subvariety of Pic^(C) consisting of the line bundles L on C
satisfying deg(L) = d and h°(L) > r + 1. Then the main theorem is
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THEOREM 1.1. Let C be a general curve of genus g > 8 and L
be a line bundle on it. Then
(i) Ifg = 2s anddeg(L) > 3s, orifg = 25+1 and deg(L) > 35+3

andjκ,L is not onto, then section multiplication H°(K — A)<g>
H°(L — A) —y H°(K + L — 2A) is not surjective, for general
A e W}+2.

(ii) Suppose that L is chosen generally and that deg(L) > 35 + 10
when g — 2s or that deg(L) > 35 + 6 when g = 2s + 1. Then
the above multiplication is onto, for a general choice of such
an A.

From the theorem it immediately follows

COROLLARY 1.1. Let C be as above.For a general line bundle L
on C with the above lower bounds on the degree, jκ,L is onto.

Furthermore with a little argument one also obtains

COROLLARY 1.2. Let C be a general curve of genus g > 8 and L
be an arbitrary line bundle on it, of degree > 55 + 12 if g = 2s or
> 55 + 8 when g = 25 + 1. Then jκ,L is onto.

REMARK 1.1. To obtain Corollary 1.2 from Corollary 1.3, one
shows that if JK,L is onto for a general line bundle of degree rf, then
it is onto for an arbitrary line bundle of degree d + g + 2. In a
private communication, Jan Stevens recently showed with a more
sophisticated argument that this can be improved to d + g.

The same attack can be applied to Wahl maps of the kind 7L,ΛΓ,

with L and N any two line bundles on C. In this direction I prove
the following

THEOREM 1.2. Let C be a general curve of genus g > 8 and L, iV
be two line bundles on it. Then
(i) assume that deg(L) > 35 + 5 if g = 2s + 1 (resp., >3s + 4if

g = 2s), and that deg(iV) > deg(L) +g - 1. Then if L and N
are chosen general ηL,N is onto.

(ii) if L and N are arbitrary and deg(L) > 5s + 7 if g = 2s + 1

(resp., > 5s + 5 ifg = 2s) and deg(TV) > deg(L) + g — \,then

ΊL,N is onto.
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Corollary 2 and Theorem 2(2) should be compared with the sim-
ilar results obtained in [BEL89].

The paper is organized as follows. In the first part, Voisin's point
of view is applied to the situation at hand. Specifically, in §1 we
explain the relation between gaussian maps of type ΎK,L a n d section
multiplications H*(C,K-A)®H*(C,L-A) —± H°(C,K+L-2A),
for A a pencil on C. In particular, it is shown that the proof of the
first statement of Theorem A follows from the surjectivity of

φ : 0 H°(K + L-2A)® Λ2H°(A) —> H°(2K + L)

given by the composition of id®jA,A with section multiplication.
The surjectivity of φ is dealt with in §2.

In §3 a degeneration argument is used to show that the above
multiplications are surjective on the general curve, thereby obtain-
ing a surjectivity statement for ΎK9L under suitable conditions on L.
The proof is given by an induction on the genus.

In §4 these results are extented to the case of the Gaussian maps
7L,JV and in §5 an application to higher Wahl maps is given.

Acknowledgments, I wish to express my thanks to my advisor,
Robert Lazarsfeld, for his patient guidance and many very helpful
remarks, and for pointing out several mistakes in the first draft
of this paper, and to Jonathan Wahl for providing me with useful
information about the deformation theoretic aspect of the problem.

2. A basic commutative diagram. As before, consider a
smooth projective curve C and a line bundle L on it. If A is any
other line bundle on C and V C H°(A) is a pencil of sections of A,
then we have a commutative diagram

(1)
H°{L -A)® H°(K -A)® A2V -2-+ H°(L + K-2A)® A2{V)

Ί Ί
R{L,K) - ^ H°{2K + L)

where a is section multiplication, and β((s ® t) ® (u\ Λ U2)) = (s
uι)®(t-U2) — (s U2)®(t'Uι), while δ is the composition of id®ηA with
section multiplication (observe that A2V C Λ2H°(A) C R(A,A)).
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Recall the following facts about the varieties Wd:
(i) Wd is a connected subvariety of Picd(C);

(ii) for any curve C,dim(WJ) is at least equal to the expected
dimension expressed by the Brill-Noether number ρ(r, rf, g) =

(iii) if C is Petri general, than dim(VFJ) = ρ(r, rf, g) and Wd is
smooth off Wd

+ι.
In particular it follows that, if C is general and ρ(r + 1, d, g) < 0,

then Wd is a smooth irreducible variety of the expected dimension.
Let us assume in what follows that C is a Petri general curve.

Then dim(W}+2) = 2 when g = 2s and = 1 when g = 25 + 1;
by the above in both cases W}+2 is smooth and irreducible, and
nondegenerate in Picr f(C). For any nonempty open subset U C
W}+2 let us define

Rv =: Q)H°(L -A)® H°(K - A) ® WA

A£U

Sv =: φH°(L + K-2A)®WA

Aeu

where WA = Λ2H°(C,A). We then have a commutative diagram

I
and we clearly have:

REMARK 2.1. Assume that φ above is surjective. Then if y^N

is not onto, not all multiplications H°(L — A) <8> H°(K — A) —>

H°(L + K - 2,4), for A e W}+2>
 c a n b e surjective.

We can say more:

PROPOSITION 2.1. Let C be a Petri general curve of genus g > 8
and L be a line bundle on it Suppose that φ is surjective.
(i) Assume that deg(L) > 3s if g = 2s, or that deg(L) > 35 -f 3

if g = 25 + 1, and that L φ K is general. Define U =:
{A e W}+2\h°(K + A - L) = 0}. Then if ΊK,L is not onto the
multiplications H°(L -A)® H°(K - A) —> H°(L + K-2A)
are never surjective, for any A G U
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(ii) Ifηκ is not surjectiυe, then S2H°(K -A) —> H°(2K - 2 A)
is not surjectiυe, for any A £ }

REMARK 2.2. In (i), the condition on deg(L) implies that
deg(K + A — L) < g and so, for a general choice of such an L, U will
be a nonempty open subset of W}+21 *^e complement of U consists
of those points at which the dimension of H°(C, L — A) jumps up.
In (2), H°(K — A) has constant rank on W}+2. Also, (ii) is the
content of ([V, Lemma 10]).

Proof. For (1), for a general choice (Au... , An) £ U x x U
where n is sufficiently large

®H°(K + L- 2Λ) —* H\2K + L)

is onto. On the other hand, since H°(2K + L) and H°(K + L - 2A)
have constant rank on U, if one of the above multiplications is onto
for some A e U the same is true for the general point of U. So if
the statement was false a general choice of (Λi,... , An) would yield
a composition of surjections

0 : -2A ) -> H°(2K + L)
ι=l i=l

and then ^KL would be onto. For (2), use the same argument with

3. Surjectivity of φ. As we have seen, we are led to the ques-
tion of the surjectivity of

(3) φ : 0ff°(tf + L - 2A) —> H°(2K + L).
Aeu

We'll prove:

THEOREM 3.1. Suppose that C is a Petri general curve of genus
g > 8 and that L is a general line bundle on C, with deg(L) >
2deg(Λ), and let U C W2s+2 be open and nonempty. Then φ is
onto.

Proof. The following argument is an adaptation of Voisin's. We'll
study the kernel of the dual map

(4) φ : Hι(Tc - L) —• ®Hι(2A - L)
Aeu
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given by φ*(u) = ΘΛGVK1 U ' RA, where RA € H°(2A + K) denotes
the ramification divisor of the morphism ΦA_ : C —> P 1 associated
to the pencil A. Choose a double cover TΓ : C —> C ramified along
a general B G |2L|. We then have the basic isomorphism

(5) π.Oό ^OCΦ L-1

(6) Kό~π*(Kc®L)

and so

H\C,Tό)~ Hι (C, Tc-L)@ H1 (C, Tc - 2L)

Hence we can interpret u G Hι (C, TQ — L) as a first order deforma-
tion of C. It is easily checked that the natural cup product map

(7) H\C,TC-L) —>Yiom{H\C,Kc + L),H\C,Oc))

is a component of the period map of C\ it is furthermore still in-
jective, because its dual is given by section multiplication H°(KC +
L) ® H°(KC) —> H°(2KC + L) and this is surjective because
deg(2K + L) > Ag + 2 and by a theorem of Mark Green. So to
prove the theorem it is sufficient to show that any u 6 Ker(<̂ >*)
maps to zero under the morphism in equation 7.

Observe that, since L is non-torsion, the pull-back map π* :

Pic 5 + 2(C) —> Pic25+4(<5) is injective. Hence n*(W}+2(C)) C

Pic 2 s + 4 (C) is a smooth subvariety, isomorphic to W}+2{C). D

LEMMA 3.1. π*(Wg+2) is an irreducible component ofW^+iiC).

Proof. Clearly π*(W}+2(C)) C W£S+4(C). By Brill-Noether theory
[ACGH84] the statement will follow if we show that, at the general
point oΐ π*(W}+2(C)) the Petri homomorphism

(8)
μπ.{A) : H°(C, π*(A)) ® H°(C, Kδ Θ π*(-A)) —> H°(C, K~)

has corank equal to the dimension of W/

5

1

+2(Cί) Assume first that A
is globally generated. From (5) and (6) one has that (8) splits as
the direct sum of

(9) μA : H°(C, A) ® H°(C, K - A) — * H°(KC)

(10) vA : H°(C, A) <g> H°(C, K + L - A) —• H\C, Kc + L)
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and (9) is the Petri homomorphism of A, which by the assumption
on C has corank equal to dim(W/

s

1

f2(C))3 while the base point free
pencil trick applied to A, together with the fact that Hι(K + L —
2A) = 0, show that (10) is a surjection. So the proof will be com-
plete if we show that the general point A G W]+2{C) is a globally
spanned line bundle on C. Consider first the case g = 2s. Then
d\m(W}+ι(C)) = 0 and each B G W}+1(C) is spanned, because
ρ(l,d,2s) < 0 Vd < s + 1. Also, if P G C and B G W}+ι(C)
then it is easily checked that β + P 6 W«+2 (C)> and that the base
point locus of B + P is {P}. Hence we get a finite family of (dis-
joint) copies of C in W}+2 (C)> o n e f° r e a c h element of W5

1

+1. If
A G W/

s

1

f2(Cf) is not globally generated and P is a base point of A,
then B = A — P e W}+1(C), i.e. A lies on one of these curves.
Hence it is clear that the lemma holds in this case. As to the case
g = 2s + 1, it is easy to see that all A G W}+2{C) are globally
generated. D

Let's now return to the proof of Theorem 3.1. Suppose u G
Ker(</>*), so that for all A G U we have A RA G Hι{2A - L). Since
H°(2A - L) = 0, i ί H 2 ^ 4 - £) h a s constant rank on W7+2(C), and so
we actually have u - RA = 0 in fΓ^C, 2A - L), VA G W}+2{C). This
has the following deformation theoretic interpretation. First of all,
observe that the first order deformation of C induced by u induces
a first order deformation of Pic2s+A(C). Next we have:

CLAIM 3.1. Suppose that u G Ker(</>*); and that A G W}+2(C).
Then τr*(A) deforms together with its sections along the first order
deformation induced by u.

Proof of the Claim. By Brill- Noether theory, a line bundle N
on C deforms together with its sections along the first order defor-
mation induced by ξ G Hι{C,T~) if and only if ξ annihilates the
image of the Wahl map JN,K--N which maps the kernel of the Petri
homomorphism of TV to H°(C,2Kg). Suppose first that A is base
point free. Applying the base point free pencil trick to A we get_
that

Now ηL^κ L split as the direct sum of maps a\ : H°(C,K +

L - 2A) C—> H°{C,2K + 2L) and α 2 : H°{C,K + L - 2A) —±
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H°(C, 2K+L), where a2 is given by multiplication with RA There-
fore, since u RA = 0 u annihilates the image of α 2 . Because
Hι(K + L) = 0, it also kills the image of αi, and the Claim fol-
lows in this case. If g = 2s and A e W}+2

 ι s n o t spanned than A
has exactly one base point P, and A — P € W}+1. Now we apply
the base point free pencil trick to A — P, and this yields an exact se-
quence 0 -+ #°(C, KC+L+P-2A) -» H°(C, A)®H°(K+L-A) -»
^ ( C , K+L-P) and since the latter space injects into H°(C, K+L)
we obtain

Now i^0 (C, KC + 2P- 2A) —* H° (C, 2 # c + L) is given by cupping
with RA, and so the statement follows in this case also. D

This proves following:

COROLLARY 3.1. The first order deformation of Pic2s+4(C) asso-
ciated ton e Keΐ(φ*) contains a first order deformation ofW}+2(C).

Observe that given an inclusion of algebraic manifolds Y C X and
a first order deformation of X containing a first order deformation
of Y there is a commutative diagram

where ux G Hι(X, Tx) and uy G H\(Y, Tγ) are the extension classes
of the two first order deformations.

On the other hand, we have the isomorphisms

H°(X, Ωl

pic2S+Hd)) - H°(C, K + L)φ H°(C, K)

3p5r2.+4,rO - H\C, Oc) Θ H\C, -L)
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and so we get the following commutative diagram

(11)
H°(C,K + L) —2-> H1 (C, Oc)

J

For the proof of Theorem 3.1 we are then reduced to:

LEMMA 3.2. In diagram (11) we have ba = 0 and ed is injective.

Proof, b is the composition

H°(Kδ) —> H°(Kc) M. H°(Ω^).

Hence the first assertion follows, because the first map above is
just projection along H°(K + L). Next observe that ed is the com-
position

H\Όc) -» H

where the last map is injective by [FL81]. D

This completes the proof of the Theorem. D

REMARK 3.1. Since H°(C, Kc - A) has constant rank on
we apply this argument to the case L = K. With respect to the
proof in [V], dealing with W}+2 rather than W}+1 in the even genus
case avoids the hypothesis L — K and simplifies the argument.
However, this is done at the numerical cost of dealing with pencils
that are only next to minimal rather than minimal in the case of
even genus. In other words, when the above theorem is applied to
the particular case L — K and g = 2s we only get that if ηκ is not
onto then Kc — A is not projectively normal, for A G W}+2, rather
than for W}+ι(C). In spite of what I was erroneously claiming in a
first draft of this paper this does not imply the stronger numerical
statement that Kc — A is not projectively normal, for A G
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4. Surjectivity of 7/C,L Referring to diagram 2, we have shown
that under appropriate conditions the map φ is onto. It follows
as remarked in §2 that if jκ,L is not onto then no multiplication
H°(C, K-A)® H°(C, L-A)—> H°(C, K + L-2A)is onto, for
any A e U. This is the statement of Proposition 2.1. We'll prove:

THEOREM 4.1. Let g > 4 be either 2s or2s + l, and let (C, L, A)
be a general choice of a smooth curve of genus g, and line bundles L
and A on C, with A e W}+2(C) an^ deg(L) > 3s + 10 if g = 2s and
deg(L) > 3s + 6 for g = 2s + 1. Then #°(C, K + A - L) = 0 and
section multiplication H°{C,K-A)®H° (C, L - A) —+ H° (C, K +
L — 2A) is surjectiυe.

Before proving the Theorem, let's remark that it implies the fol-
lowing

COROLLARY 4.1. Let C be a general curve of genus g > 8 ; with
g = 2s or g = 2s + l. Then if L is a general line bundle on C, with
deg(L) > 35 +10 when g = 2s and deg(L) > 35 + 6 when g = 2s + l
the Wahl map jκ,Lis onto.

From this we may deduce a result already contained in [BEL89]:

COROLLARY 4.2. Let C be a general curve of genus g > 8 as
before, and let N be a line bundle on C, satisfying deg(iV) > 55 + 12
when g — 2s and deg(JV) > 55 + 8 when g = 2s + 1. Then JK,N is
onto.

Proof. If B is a general line bundle on C of degree g + 2, we may
assume that B is spanned and that JK,N-B is onto, by virtue of
the previous corollary. Consider a pencil of section V C H°(C,B)
which generates V. We have a commutative diagram

) H°(C, 2K + N -B)®V

(12) I β

R(K,N) ^ ^ H°(C,2K + N)

By assumption, JK,N-B is onto, and the base point free pencil trick
shows that so is β. Hence ΎK,N is also onto. D



324 R. PAOLETTI

Proof of Theorem 4.1. Let us first consider the case g = 2s + 1.
The statement of the Theorem in this case will follow from the
following

PROPOSITION 4.1. Let C be a general curve of genus g > 3,
and let L be a general line bundle on C, with deg(L) > 3s + 4 if
g — 2s and deg(L) > 3s + 6 if g = 2s + 1. Then there exists
A e W}m.n(C) satisfying H°(C,K + A - L) = 0 and such that
H°(C, Km-A) ® H°(C, L-A)—>H°(C,K + L- 2 A) is onto.

Recall that dm[n = 5 + 1 when g = 2s + 1 and dmin = s + 2 when
g = 2s + 1 . The odd genus case of the Proposition is the same as the
odd genus case of the Theorem. The even genus case and the odd
genus case of the Proposition can be proved simultaneously with an
induction argument.

Proof of Proposition 4.1. We proceed by induction on g. To
begin with, if C is Petri general of genus g > 4 then by Riemann-
Roch and Brill-Noether number calculations one easily checks that,
\/A e Wjm.n(C),K — A is spanned for g > 4 and birationally very
ample for g > 3 (and very ample for g > 10). So let C be Petri
general of genus 4, so that deg(A) = 3 and K — A is spanned. In
fact, K — A G W£(C) and by the base point free pencil trick the
surjectivity of section multiplication follows if we have HX(C,L —
K) ~ H°(C, 2K — L)* = 0. But under the given assumptions
deg(2K — L) < 2 and a general choice of L does the job. On the
other hand deg(K + A - L) < 1 and so H°(C, K + A - L) = 0 can
also be arranged. One deals similarly with the case g = 5.

So now suppose given a general curve C, which we'll also assume
to be Petri general, of genus g = 2s > 4 and line bundles A and L on
C with A e W}+1(C) and deg(L) > 3s+4, satisfying the conclusions
of Proposition 4.1. We may assume without loss that L — A is very
ample, and we know that K — A is spanned and birationally very
ample. Therefore we have two nondegenerate morphisms ψκ-A -
C — y P 5 " 1 and ΨL-A C ^-± P', and hence a product embedding
φ : C <-> Ψs~ι x I*. Choose points P,Q e C generally and let
h C P " 1 and Z2 C P* meeting C nontangentially at P and Q and at
no other point. Identifying lχ and l2 the product embedding gives a
smooth rational curve Δ C P s - 1 x P* meeting φ(C) nontangentially
at P and Q. Define C =: C U Δ; then C" is a nodal curve, of
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genus g' — 2s + 1. The proof of the following lemma will be given
later: D

LEMMA 4.1. C can be smoothed in P s - 1 x P*.

Next let
A! =:KC'®Op-i (-1)

Then deg(A') = deg(A'|c) + deg(i4'|Δ) and so

deg(A') = 2g'-2- deg(Kc) + deg(A) - 1 = 5 + 2

and by Riemann-Roch

h\C\ A!) = h°(C\

= Λ°(C, K-A) + h°(F\OFi(l)) + 2 - 5 = 2.

Next define V on C by

V - A! = OΨι{\)\σ

so that

deg(L;) = deg{A!) + deg(L - A) + 1 = deg(L) + 2.

Let's first check that H°(C, Kσ + A! - V) = 0. This is equivalent
to /i°(C", L' - A') = deg(Z/ - A') + 1 - ^ . But the right hand side
is Λ°(C, L - A) + ^ ( P 1 , PPI(1)) - 2 = Λ0(C, L - A), while the left
hand side is deg(L — A) + I — g = h°(L — A). So this step of the
induction is reduced to the following:

LEMMA 4.2. #°(C", V - A1) ® H°(C, K' - A1) —> H°(C, K' +
L' - 2Af) is onto.

Let's postpone the proof of the above lemma and proceed to the
second part of the induction. So assume given a triple (C, L, A) with
C a Petri general curve of genus g = 2s + 1 and L, A line bundles
on C satisfying A G W^+2(C),deg(L) > 3s + 6, #°(C,X + A -
L) = 0 and such that the surjectivity statement of the proposition
holds. As before we may assume that L — A is very ample, and we
consider the product embedding ψκ-A x ΨL-A : C —> P 5 " 1 x P*;
however, we now consider a copy l\ C Fs~x of P1 embedding in
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degree two, and meeting φκ-A(C) nontangentially at ΨK-A(P)

ΨK-A{Q),P,Q £ C, and at no other point. Also, let l2 C P* be
a line meeting C nontangentially at ΨL-A(P) and ΨL-A{Q) and
at no other point. Again, we identify these two copies of P 1 and
call Δ the image under the product embedding in P 5 " 1 x P*. Let
φ =: ψκ-A x ΨL-A : C <-> Ψs~ι x Ϋι and define C =: C U Δ. Then
C is a nodal curve of genus g' = g + 1, and on it we consider the
line bundle A' =: Kc> ® Oψs-i(—l)|c By the same computation as
above one checks that deg(j4;) = s + 2 and h?(C, A') = 2. Defining
I! by L' - A! =: O p i ( - l ) | c we have deg(L') = deg(L) + 1. Exactly
as before one checks that dim \L' — A'\ has the expected value, and
so the induction step will be completed by providing a proof of
the corresponding variants of Lemmas 4.1 and 4.2. Furthermore,
observe that in passing from one odd genus to the next deg(L)
increases by three, and this is exactly what it takes to keep the
induction going. We now prove Lemmas 4.1 and 4.2.

Proof of Lemma 4.1. Let Y = P 5 " 1 x P/. The smoothability of
C" in Y will follow if we can show that Hλ(Cf, Nc>/γ) = 0 and that
H°(C',NC'/γ) —> T£, is onto. In fact, since C C Y is a local
complete intersection the first condition implies that the Hubert
scheme of Y is smooth at C", while the second says that there are
embedded first order deformations of C which smooth the nodes
(cf. [HH83]).

Recall that ψκ-A is birationally very ample, while ΨL-A is very
ample. On the other band, just by Petri generality we have
Hι(C,Tψ\c) = 0 in both cases. From this it is clear that

Next recall the exact sequence

0 -± Oσ -> Oc Θ OA -> OCΠA -> 0

from which we obtain the sequence

0 -> Tγ\σ -> Tγ\c Θ TY\Δ -> TY(P) Θ TY(Q) -> 0

where P and Q are the intersection points of Cand Δ. Since Tγ is
spanned, the latter sequence is exact on global sections, and so we
get that Hι(C,Tγ\a) = 0. Now the exact sequence

0 -> Tσ -> Tγ\σ -> Nc/Y ~> T& -> 0
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can be chopped off in two short exact sequences, and from this we
see that both of the above conditions are satisfied. •

Proof of Lemma 4.2. By assumption, on C we have the exact
sequence

0 -> R(K -A,L-A)^ H°(K -A)® H°(L - A)

where R(K - A,L - A) C H°(Y,OY) is the linear series of the
(l,l)-divisors containing φ(C). We have a similar sequence on C":

0 _> R(K' -A,L'- A!) -> H°(L' - A) ® H°(K' - A')

-> H°(K' + L'- 2A')

and one easily checks that h°(L - A) = h°(L' - A'), h°(K -A) =
h°(K' - A') and h°(K' + V - 2A1) = h°(K + L - 2A) + 1. Hence to
prove the statement it is sufficient to show that dim R(Kf — Ar,L' —
A1) < dim R(K — A,L — A), i.e. that there exist (1,1) divisors in
Y containing C but not Δ.

Let us first consider the case g = 2s, so that Δ has bidegree (1,1).
Observe that then Δ c F depends on the identification of the lines
l\ and I2. When we change this identification by an automorphism
of P 1 , the image of Δ sweeps the surface

where (,) denotes the line joining the given points in the appropiate
spaces. The statement in this case follows from the following

CLAIM 4.1. Let C be a smooth curve, and let ψ\ : C —>• P m and
Ψ2 : C —> P n be nondegenerate morphisms. Define

Sec(C)=: U (φι(P),φi(Q))x(φ2(P),φ2(Q)).
P,Qec

Then Sec(C) is not contained in any (l,l)-diυisor O c Γ x P .

Proof of the Claim. Provisionally let Y = Fm xFn and for P G C
fixed consider the projections πx : P™ \ {ψι(P)} —> P™"1 and
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π 2 : P n \ {φ2(P)} —> P 7 1" 1, where F"1"1 and P 7 ^ 1 are two fixed
hyperplanes. We then have a product morphism

Let £>'=:£> n P m " 1 x P"" 1, C =: πP(C). I claim that

(13) DDS ec(C) = ^ U ' D S ec(C).

Note that by induction this reduces the proof of the Lemma to the
case where either m = 1 or n = 1, and then it is trivial.

In fact it is easily checked that πp(Sec(C)) C Sec(C) is a Zariski
dense open subset, so that a general point in the latter variety can
be written as ττp(Q), where

Q = (Qi,Q2) € fa

for suitable A,BEC. Assume that in this situation

(14) DD(φ1(P),Q1)x(φ2(P),Q2).

It then follows that

Ό D [<^i(P),gi> x (V2(p),g2>] n ( i r - 1 x

and this establishes (13).
It remains to prove (14). By assumption we have

D'D[(φι(P),φi(A))x(φ2(P),φ2(A))]

U[(φι(P),Ψl(B)) x (φ2(P),φ2(B))}

In other words, we have

D D (h x l2) U (n x r 2) U (5i x 52)

where Zi, ri, 5χ C P771 and I2,r2,s2 C P71 are triples of lines contained
in the same plane Λi and A2 respectively. Intersecting D with Λi >̂
Λ2 we are thus reduce to proving that a (l,l)-divisor in P 2 x P 2

cannot contain such a union of lines, and this is a well known fact.
A simpler version of the same argument deals with the case g =
25 + 1. D
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Let's now come to the even genus case of Theorem 4.1. Recall
that we want to prove the following statement: if (C, L, A) is a
general choice of a smooth curve of genus g = 2s and line bundles
L and A on C, with A e W}+2(C) and deg(L) > 3s + 10, then
H°(C,K + A-L) = Q and section multiplication H°(C, K - A) ®
H°(C,L- A) —> H°(C,K + L - 2A) is onto. Clearly the first
conclusion is true, and the second follows from a slight modification
of the previous degeneration argument, as follows. Let (C, L, A)
be a general choice of a curve of odd genus g = 2s + 1 and line
bundles L and A on it , satisfying both conclusions of Theorem
4.1. Such a choice exists by the argument above. Now apply the
same construction, but take Δ to be of bidegree (1,1). C has genus
g1 = 2^ + 1, and if we define A' and V in the same manner we
obtain deg(A') = s + 3 and ho(C',A') = 2; everything else stays
unchanged. D

One may also obtain the statement for genera divisible by 4 from
the following covering argument. Let ( C , Z/, A1) be a general choice
of a curve of genus g' = 2k + 1 and of line bundles V and A' on it
satisfying both conclusions of Theorem 3.1. Such a triple exists by
the argument above. Pick a general point P G C"; without loss of
generality, we may assume that if TV =: V + 3P, then H°(Cf, N —
A1) ® #°(C", K' - A') —+ H°(C, N + K1- 2A') is also onto, where
we have let K1 =: Kc' Also, we may assume C to be Petri general,
so that oίmin = k + 2.

Now consider the double cover C A C ramified along R = 6P.
Letting g be the genus of C, we have g = 2(g' +1) and so dm[n(C) +
1 = ^ + 3 = 2(A: + 2). Now let A =: π*(A'), so that deg(A) =
2deg(A') = 2(k + 2) and h°(A) = 2, and let L =: τr*(7V), so that
deg(L) > 3(#' +1) +10. Finally observe that the multiplication map
H(C, L- A)® H°(C,K - A) —» H°(C,L + K - 2 A) splits as the
direct sum of various section multiplications on C", two of which are
#°(C", K' - A1) ® H°{C, V - A1) —> #°(C", K' + V - 2A1) and
H"\C\K'-A')®H"{C\N'-A') —+H°(C',K' + N'-2A'). From
this is easy to deduce the statement.

5. The Wahl maps JL,N AS before, consider a smooth projec-
tive curve C and let L, N be two line bundles on it. Suppose A e

Then r ( L - A ) , r ( N - A ) > 0 when deg(L), deg(ΛΓ) > 3s + 2
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in case g = 2s and deg(L), deg(TV) > 3s + 3 when g = 2s + 1.
Define

U=:{Ae W}+2\hQ(C, K + A-L) = h°(K + A - L) = 0}

and consider the variant of diagram (2), where we let WA =:
Λ2H°(C,A):

(15)
Θ H°(L-A) ® # 0 ( N - 4 ) ® W^ > Θ H°(N+L-2A) ® WΛ

PROPOSITION 5.1. Let C be a Petri general curve and suppose
deg(L), deg(N) > 3s + 2 if g = 2s and deg(L), deg(Λ^) > 35 + 3 if
g = 25 + 1. T/iβn (̂  /rom diagram (4-2) z«s onίo.

Proo/. Write TV = # - # , where deg(Λ) < 5-4 if ^ = 25, deg(Λ) <
s - 3 if g = 2s + 1. We look at

φ* : ̂ ( C , Γc - (L - R)) -+ 0H\C, 2A-(L- R)).
Aeu

Consider the double cover π : C -> C ramified along the general
element S G |2(L —i?)|. The argument used in the proof of Theorem
2.1 goes over verbatim. D

COROLLARY 5.1. In the situation of the Proposition, if JL,N ^
not onto then no multiplication H°(C, L — A) ® H°(C, N — A) —>
H°(C, L + N -2A) is onto, for any AeU.

We can now prove

THEOREM 5.1. Let C be a general curve and L, N be two general
line bundles on it. Assume that

(i) deg(L) > 35+4 if g = 25; or that deg(L) > 35 + 5 if g = 25 + 1

(ii) deg(7V)>deg(L) + <7-2.
Then JL,N is onto. Furthermore, assume that L, TV are any two -

line bundles on C such that (2) holds anddeg(L) > 5s+ 7 if g = 2s
or deg(L) > 55 + 5 when g = 2s + 1. Then JL,N is onto.

Proof. Let's start with the first statement. For a general choice
of such an L and a general A € £/, L — A is spanned. Let V C



GENERALIZED WAHL MAPS AND ADJOINT LINE BUNDLES 331

H°(C, L — A) be a pencil spanning L — A, so that there is an exact
sequence 0-ϊA-L-+V®Oc->L-A-+0. Twisting by N - A
we get the exact sequence

and this exact on global sections because by condition (2) and the
assumed generality of L and N we may assume Hι(C, N — L) = 0.
The first statement follows.

To prove the second part of the theorem, observe that for general
line bundles B and D on C of degree g+lwe may assume that B and
D are spanned and that 'JN-D.L-B is onto, by the first statement
of this theorem. We may also assume that r(B) = r(D) = 1, so
that we have exact sequences 0 -> — B -> H°(C, B) —> B —> 0 and
0 -> -D -+ H°(C,D) -> D -y 0. Letting V =: H°{C,B),W =:
H°(C,D) we obtain the commutative diagram

(16)

R(L-B,N-C)®V®W ΊL-B>N-D

and using the above sequences it is easy to see that β is onto. The
theorem follows. D

6. Higher Wahl maps. Consider as before a smooth projective
curve C and line bundles L and N on it. The map 7L,JV that we
have been considering so far generalizes to a hierarchy of Wahl map
YLiN defined as follows (cf. [W88]). On the product CxC consider
the line bundle p*(L) <S>P2(N), which we'll abbreviate to L\ ® N2,
and let Δ C C x C denote the diagonal. Then H°(C x C,LX ®
N2) ~ #°(C, L)®H°(C, N) is filtered by the subspaces Λ/(L, N) =
H°(C x C , L i ® iV2(-/Δ)), I > 0. For each /, we have an exact
sequence o n C x C

0 ^ L1^N2(-(l

and we simply define

(17) yL>JV : ML, N) —> ff°(C, IKC + L + N)
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to be the induced map on global sections. Notice that i?j+i(Z/, N) =
Keτjι

LN. In particular, 7° ^ is just section multiplication, and η\^N

is the usual Wahl map. The approach used in the previous para-
graphs to deal with the first Wahl map can be generalized to ηι

L N,
as follows. As before, let's assume the genus of C is g = 25 or
g = 2s + 1, and let's denote W = W}+2. Let U =: {Au , A{) G
W x - x o l °ί

and define

=: H° (L -ΣAη® H° \N " Σ

and

=: iϊ° ί L + N - 2 £ Λ ) ® Λ2^^^!) ® ® Λ2//°(Λ)

and consider the following commutative diagram, which generalizes
(15):

(18)
Θ W(L,N;AU • • • ,At)

A)UXί- ,A,)€U (Alt- ,

4
Rι(L,N) - ^ > H°(

Assume that ^ is onto. Then, by the usual argument, if ηι

L^N is
not onto none of the multiplications

can be surjective. Now we can proceed inductively to draw the same
kind of conclusions as in the case of ηLiN

THEOREM 6.1. Assume that C is Petri general and that deg(L) +
deg(TV) > 2g - 2 + 2/(5 + 2). Then

φ: ( )
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is onto.

Proof. We have

φ* : H\{1 - 1)Γ - L - N) —> 0 # x ^2]Γ A{ + K - L - N\

given by u ι-» (Sm i ? ^ * RA1 . If W G Ker 0*, then u RA1

0, for every (j4χ, — - ,Aι) GW.

have deg(L + TV - if - ΣliZ\ 2J4<) > 2 deg(Λ). By Theorem 3.1, this
implies u i ? ^ RA^X — 0 f° r all (^i? " > -A/-1) G £/, and now the
statement follows by induction. D

COROLLARY 6.1. In the situation of Theorem 6.1, if j ι

L y N fails
to be surjectiυe then

iθ never surjective, for any (J4I, . . . , A/) G U.

THEOREM 6.2. i455ume ί/zαί L and N are two general line bundles
on C, with deg(L) > g + 1 + l(s + 2) and deg(N) > g - 2 + deg(L).
77ιen 7^ N is onto. If L and N are arbitrary and deg(L) > 2g + 2 +
l(s + 2) and deg(iV) > g - 2 + deg(L), then j ι

L ^ N is onto

Proof Use the same argument as in the proof of Theorem 5.1,
replacing L — A by L — £ j = 1 Aι and similarly for N — A. D
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