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We consider the Hilbert transform and maximal func-
tion associated to a curve I'(¢) = (t,7%2(t),... ,12(t)) in R". It
is well-known that for a plane convex curve I'(t) = (t,(t))
these operators are bounded on L?, 1 < p < o0, if 4’ dou-
bles. We give an n-dimensional analogue, n > 2, of this
result.

1. Introduction. Let I' : R — R" be a curve in R*, n > 2,
with I'(0) = 0. We define the associated Hilbert transform, Hr and
maximal function Mr by

Hef(@) =pv. [ fa-T0)T

and L
M f(@) = sup JEEEROIES

respectively. We use p. v. to indicate that we are taking a principal
value integral.

There has been considerable interest in finding conditions on I
which give L?(R")-boundedness or LP(R™)-boundedness, 1 < p <
0o, of Hr and My, when I is permitted to be flat (i.e. vanish to
infinite order) at the origin; the case of well-curved I" was dealt with
in the 1970’s, see for example [7].

The aim of this paper is to give an n-dimensional analogue of the
following well-known theorem for plane curves.

THEOREM 1.1. [1]. Let T : R — R2 T(t) = (t,7(t) be a
convez curve such that v € C?(0,00) is either even or odd and
v(0) = +4'(0) = 0. Suppose that 31 < A < oo such that Vt € (0, c0)

(1) 7(At) > 2v/(2).

383
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Then

[Hr fllp < Cllfllp
[IMrflly < CllFll, 1 <p < oo

Conditions such as (1) are known as doubling conditions; in this
case we say that -’ doubles.

In R™ we shall consider curves I'(¢) = (¢,72(¢), ...,V (¢)) which
are of class C™(0,00) and such that I'(0) = 0. The convexity hy-
pothesis for plane curves we replace by the “convexity” hypothesis
used in the n-dimensional results of [6] and [4].

So we define determinants D;, j=1,...,n by

I
O ,_yll . ,yll
Dj = det . :2 :]
0 ,Yéj) ’)’](-j)
and say that I' is “convex” if
(2) D;(t) > 0, j=2,...,n,t € (0,00).
We also introduce the determinants N;, j =1,...,n, given by
i 7 Y5
1 ,_yl ,YI
]\7.7 = det : :2 :J )
097D ... 46D
and as in [6] define functions h;, j=1,...,n, by
N;(t)
3 h;(t) = ——,
( ) J( ) Dj—l(t)

where we take Dy = 1.
In order to state our theorem we also introduce the differential
operators Ly, of [6], defined by

d
(4) Llf:d—J;
Lk+1f=—h5—(ka)’, k=1,...,n—1.

/
hlc+1
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It is also useful to have the following formula, proven via a Sylvester
determinant identity in [6]:

B f(t) _
(5) Ly f(t) = D) k=1,...,n,
where
1op(t) - o a(8) S
Eef(t) = det 2.(t) : ’Yk—.l(t) f'(@)

0798) - 1, (1) FO 1)

From this we can see, immediately, that

(6) Lyy;=0, j=1,...,k—1Lk=1,...,n
(7) Lk’)’k:]., kzl,...,n.
Our result is the following.

THEOREM 1.2. LetT' : R — R*, ['(t) = (¢, 72(t), .- . , 1a(t)), n >
2, be an odd curve in R*, of class C™(0,00) such that I'(0) = 0
and (2) is satisfied. Suppose that 3 A € GL(n,R) such that, with
T(t) = (t,7(t), ... ,3a(t)) := AT(t), T also satisfies (2) and

(8)  MmLA(=0 j=1,..,n-Lk=j+1,..,n

Suppose also that 31 < A < 0o such that, Vt € (0, 00),

(9) LiYes1(At) 2 204941 (t), k=1,...,n—1
Then

130 £llp < Clfllp,
IMefllp < Clifll,, 1<p<oo.

REMARKsS. (a) Since LP-boundedness of Hr and of Mr is a
GL(n,R) invariant property, in the proof we shall assume, without
loss of generality, that the initial curve I satisfies (8) and (9).

(b) For n = 2 our theorem is precisely Theorem 1.1.
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(c) It is easily checked that the “convexity” hypothesis, (2), is
equivalent to requiring that

(Lk’}’k+1)l>0, k=1, ,n—1.

Thus, for the class of “convex” curves our conditions are natural
analogues of the 7' doubling condition for plane convex curves (i.e.
those for which (L;vy)' > 0).

(d) The condition that I be odd is convenient but not essential;
it may be replaced by other conditions on I" giving suitable compat-
ibility of the two halves I'(¢), ¢ > 0 and I'(¢), t < 0. For example
each v,k = 2,... ,n may be either even or odd; this will be clear
from the proof.

(e) The role of (8) is to impose a certain ordering of the compo-
nents of the curve. Further, it follows easily from Lemma 3 of [6]
(see Lemma 3.1) that each L;; has at most £ — j zeros and at most
k — j —1 changes of monotonicity on (0, c0); the normalization con-
ditions (8) force the L;vyx to be positive and increasing, thus much
simplifying matters.

We note that if lim;_,o L;7;(t) exists forall 1 < j <k-1<n-1,
then we can find an A € GL(n,R) such that I' = AT satisfies (8).
To see this we first define an operator £ by

Lim(t) Lym(t) - -+ Lom(t)
Ly1ya(t) Lava(t) - -+ Lnya(t)

erg= |7 b
\Ll’)’n(t) LyYn(t) -+ Lnya(2)
( 1 0 0 0 0 0\
Ly7,(t) 1 0 0 0
| Lins() Lavs(?) 1 0 0
Lot () It () Lsvaa () -+ 1 0
\ Ll'Yn(t) L2'Yn(t) L3'7n(t) T Ln—l'Yn(t) 1)

using (6) and (7).

It is easily shown that if A € T_, the subgroup of GL(n,R) con-
sisting of lower triangular matrices with 1 in the top left-hand corner
and positive diagonal entries, then A preserves “convexity”, i.e. if
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I" satisfies (2) then so does AI'. Moreover, an easy calculation using
(5) shows that if A € T and has diagonal entries all equal to 1 then

L(AT) = A(LT).

We now let A = (limy_,o LT'(¢))!, where lim;_,o LT'(t) denotes the
matrix with entries lim; o L;jVx(t). Then I' = Al is “convex”
and lim;_,q £I‘( ) is the identity matrix, from which we see that
lime o LiAk(t) =0, j=1,...,n—-1;, k=j+1,...,n

Curves for which we do not have the existence of lim,_,o L;7x(t)
forall1 < j <k —1<n-—1 may still satisfy the hypotheses of our
theorem. Consider, for example the “convex” curve in R3, I'(t) =
(t,t3, —t%); in this case we have Lyy3(t) = —5;. However taking A

to be
10 0
00-1
010

we obtain the curve I'(t) = (¢,¢2,1%), which clearly satisfies the
" hypotheses (8) and (9).

(f) Theorem 1.1, after a technical adjustment to condition (1),
may also be seen to hold for curves which are not C?(0,00) but
convex and piecewise-linear. We say that a piecewise-linear y curve
is convex if

7(e) =(0) § 7(8) —(a)
c—b — b—a ’
Our method of proof of Theorem 1.2 allows us to extract the fol-
lowing result for piecewise-linear curves in R".

COROLLARY 1.3. LetT': R — R, T'(t) = (¢, 72(t), .- , Ta(t))
be an odd curve such that T'(0) = 0 and each v, k = 2,...,n,
is conver and piecewise-linear on [N, N1, j € Z, some A > 1
Suppose

0<a<b<e

N — V), V) = V)
Ye—1 (M) — o1 (V) ™ T ykm1 (W) — ye—1 (ML)’

Hr fllp < Cll Sl
IMrfll, < Cllfllp, 1 <p < o0
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2. Sketch of Proof. We define measures uy, ox on the curve I'
by
1 )‘k+1

/fdﬂk=m/)‘k f(I(¢)) dt  and

d
[rdo=[, .. 0OF

respectively. Then we have the associated Fourier multipliers

1 Ak-l—l

1 - _ iCT() gy
( O) /‘l'k(C) Ak(A — 1) Ak € d
and

o dt
~ — z(.F(t)___
(11) &:(C) /Akslt,w KOS

We adopt the standard approach of decomposing Hr as
HI‘ f = Z O * f
k

and majorizing Mr by
Mrf < ngp | * f].

From [4] the following theorem is easily extracted.

THEOREM 2.1. Let T' : R — R, T'(t) = (¢, 72(t),--- ,1a(t))
be an odd curve in R* T'(0) = 0. Suppose 3 a family of dilation
matrices {Ax} C GL(n,R) such that
(12) (a) 3 a such that HA,;LA;C“ <ax<l

(b) Agy,supp px C fized ball
(©) 13(€)] < ClAZC|™ for some e > 0.

Then

< Clifllp

P
IHefll, <Cllfll,, 1<p<oo

sup |k * £l
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In (8a) we use || - || to denote the operator (matrix) norm. We
note that the conditions of the theorem do not involve g;. This is
because, in view of the cancellation property,

/dO'kZO

and the fact that I' is odd, (12b) and (12c) give also analogous
statements for 0. Without the assumption that I' is odd we require
also that

Ap;1supp ox C fixed ball

and
|6(€)| < C|A;(|7* for some € > 0.

Condition (12a) is known as Riviére’s condition and enables a
Calderén-Zygmund theory with respect to balls {A;B}, for B the
unit ball in R*, and thence an “annular” Littlewood-Paley decom-
position to be developed.

Conditions (12b) and (12c) give decay estimates for ji; (and &%)
which may be combined with the Littlewood-Paley theory, along
with a bootstrapping argument, to give the result. In [4] the authors
find conditions on I' under which (12c) holds, (12a) and (12b) being
easily satisfied with an appropriate choice of the dilation matrices.

Our approach is to consider, for each k, the points ( € R® where
(12c) may fail and to develop a conical Littlewood-Paley decompo-
sition to deal with these “bad” ¢, in the spirit of [1] or [5].

In Section 3 we shall give some essential properties of “convex”
curves and define our choice of dilation matrices {Ax}. In Section
4 we consider the set of ( € R* where the required decay estimates
for jix, 6, may fail and show that these ( are contained in a cone
Cy. Next we give conditions on T, of which there are ;n(n — 1),
under which these Ci form a Littlewood-Paley decomposition and
show how they may be reduced to the n — 1 conditions, (9), in the
statement of our theorem. Finally in Section 5 we indicate how to
combine the conical Littlewood-Paley theory of Section 4 with the
“annular” Littlewood-Paley theory of Theorem 2.1 to complete the
proof.

3. “Convexity” and dilation matrices. Most of the conse-
quences of “convexity” that we shall need are dealt with in [6].
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First, from Lemma 2 of [6] we know that for a “convex” curve we
have, for k=2,... ,n, t € (0,00)

(13) he(t) >0 and hi.(t) > 0.

The tool we have for estimating oscillatory integrals such as /i is
Van der Corput’s lemma; in order to be able to use this we need to
know that (.I'" has a bounded number of changes of monotonicity
on each [\¥, \¥+1) This is given in Lemma 3 of [6].

LEMMA 3.1. (|6, Lemma 3]). Let I' € C™(0,00) be a “con-
vez” curve in R*, T'(t) = (¢,72(¢),...,(t)) such that I'(0) =
0. Then for ( = ((1,(,---,¢) € R*, L,(CT) = (., and for
J=12,...,n,Lj(C.I') has at most n — j zeros in (0,00), provided

Cn # 0.

The proof of this in [6] establishes the identity (5) mentioned
previously, the result then following easily. We shall also need the
following:

LEMMA 3.2. Let T € C™(0,00), T'(t) = (¢,72(t), ... ,7a(t), T :
R — R" be a “conver” curve in R, satisfying also (8), i.e.

%i_r)r(}kajH(t):O, j=k,...,n—-1,k=1,... ,n—1.
Then for t € (0, 00)
(14) (Lev;)' (1) >0 and  (Lgy;)(t) > 0,
=1,...,n—1,3=k+1,... ,n
In particular v{ >0, j=2,...,n.
Proof. We recall that, for k=1,... ,n—1,

h
Ly f = '—,—L(ka)'-
k41

So by (7) we have, for k=1,...,n—1, t € (0,00)

(L)) = 22 > 0
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using (13). Then (8) gives us also
Livks1(t) >0, k=1,...,n—1, t€ (0,00).

We now fix j € {k+ 1,...,n} and suppose that for some k €
{1,...,7} t €(0,00),

(Lk’)’j)’(t) >0 and Lk’y]'(t) > 0.
Then, for ¢t € (0, c0),
hi ()

Li_17;)'(t) = Livi(t) >0

( k 1’7]) ( ) hk—l(t) kr)']( ) > U,
using again (13). We also have Ly_17;(t) > 0, t € (0, 00), using (8).
The result now follows by induction. O

COROLLARY 3.3. Let I be as in the lemma. Suppose also that
['0)=0,v%(0)=0,k=2,...,n. Then fork=2,...,n

(a) 7, is increasing and non-negative on (0, 00)

(b) 7k is increasing and non-negative on (0, 00)

(©) MNVH) > Ap(N), Ve

Proof. Immediate from Lemma 3.2. O

LEMMA 3.4. Let " be as in Lemma 3.2. Then, fort € (0,00),

’
<Lk7]+l) (t)>0, V]:k,,n_]-?k:l”n_l
Ly,

Proof. We proceed by induction. Let k£ € {1,...,n— 1} be fixed.

Then Ly , y
k' Tk+1 ] k+1
— ] = (L = > 0.
< Lk’yk ) ( k7k+1) hvk

Now we suppose that

Lm7k+1)’
————— ] >0, forsome me{2,...,k}.
( Lm’)’k { }

Then

Lm’7k+1)’ ((Lm—1’7k+1)')’
15 =——"""] >0.
(15) (Lm7k (Lm—17k)’
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So by the Second Mean Value Theorem, if € € (0, ),

Lin-1Ye+1(t) = Lin—17k+1(€) _ (Lm-17k+1)"(n)
Lm—l’)’lc(t) - Lm—l')/k(g) (Lm—lf)’k),(n) ’

for some 7 € (0,t). Then, by (15) and (8),

Lm—17k+l(t) < ( m— 17k+1)’(t)
L7k (2) (Lm-1m)'(t)

Hence, using (16) and (14),
(Lm-l’)’k+1)’ _ (Lm-17k)’ {(Lm—1’)’k+1)' 3 Lm—1’)’k+1} -0
L1 (Ln-17) | (Lm-17)’ L 17
Thus, by induction, for each fixed k& € {1,... ,n — 1} we have

L 1
(—"’l’“—ﬂ) >0, Ym=1,...,k
Lm7k

(16)

O

We now turn to defining our dilation matrices {Ax}. The choice
of these is motivated by the fact that we are looking for a theory
which admits piecewise-linear curves; we want, therefore, the Ay to
have entries involving at most 1 derivetive of v, k=2,... ,n.

We define the diagonal matrix A by

R
o b lnld

and put A; = A(N), j € Z.
That these matrices satisfy (12a) and (12b) is trivial, using Corol-
lary 3.3.

4. A conical Littlewood-Paley decomposition. We wish to
consider the ( € R" where we cannot expect (12c) to hold. By
Lemma 3.1c) we know that ¢.I' has at most (n — 2) changes of
monotonicity in (0,00), thence must have a bounded number of
changes of monotonicity in each interval [\%, \k+1),
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So, by Van der Corput’s lemma, if
Cae
(17) CT' (0] > lAR¢] Ve e AR A,

then

| (Q)] < ClAKI™
We consider, therefore, the set of ( where (17) may fail, i.e.

U &
tE[)\k,/\k'H)
where .
Ct={cer 1B < el4icl)

Here ¢ > 0 may be as small as we like.

ProPOSITION 4.1. (a) Let [ be a “convez” C™(0,00) curve in
R™. Then 3 cones Cy such that

n—1

U C;é g Ck = U (Ckm U ékm)
te[Ak Ak+1) m=1
where
Clom = {C £ 20 GLm () <& 321G Lm;(XF) and
j=m j=m

Z Cij')’j(/\k-'-l) > —€ Z ICjILm’Yj()‘k+1)}
j=m

j=m

and ¢ € Cg <= —( € Cim.
(b) Let T be piecewise-linear on [X¥,\F*1] k € Z and v; conver,
j=2,...,n. Then

U ¢iccnu Cia,
te[Ak AE+1)

where Cr1, C1 are as defined in (a).
Proof. Let ¢ € U  C}. We suppose first that ¢.I" is monotone-
te[Ak AE+1)

increasing on [A¥, \F*1). Then V ¢ € [A¥, \k+1),
Li(C.T)M) = CTVO8) < C.IV(1) < C.TY (V1) = Ly (C.T) (k).
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Hence
(18) Li(¢T)(¥) < 5 14ic]
and
(19) Ly(¢ D)) > =z |4x¢l.

By Corollary 3.3 and the definition of the A; we have

1 * - / < /
SULUEP AT ED ETeap el
J=1

=1

which, together with (18) and (19), gives

S GLis () = L(¢ D))

i=1
<eg Z KJI"Y] /\k Z lLl'YJ
i=1
and
Y GLiy (A = Ly(¢ D) (A
Jj=1

> —¢ Z |C]|’)'J()\’chl —€ Z |1y (AR,

j=1

Thus, if ¢ - IV is monotone-increasing on [AF, \¥*1), then ¢ € Cy;.
Similarly, if ¢-I" is monotone-decreasing on [A¥, \¥+1) then ¢ € Cj;.
We note here that if I is piecewise-linear on [A¥, \*+1] then ¢ - I”
is constant on (A¥, \¥+1); by a suitable definition of ¢ - [V(\*) we
may take ¢ - I” to be constant on [A*¥, \**1) and thus (b) is proven.
We now suppose that ¢ -I"(t) is not monotone on [A\*, \¥+1). Then
3ty € [A¥, A1) such that ¢ - ["(to) = 0. Then

La(¢ - D)ltn) = ¢ T (t0) =0

If then Ly(¢ - T') is monotone-increasing on [\F, \F+1)]

Ly(¢-T)(WF) 0= Ly(¢ - D)(to) < La(¢-T)(AH)
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and so ¢ € Chy; similarly ¢ € Cys if Ly(¢-T) is monotone-decreasing
on [A¥, \¥*+1) | If L,(¢ - T') is not monotone on [A*, \¥+1)  then
3 t; € M, A1) such that (Lo(¢ - T))(t) = 0, from which we
obtain L3(¢-T')(t;) = 0 and so if L3(¢-T') is monotone on [A*, \k+1),
we obtain ( € Ciz U C’kg. We repeat this process iteratively. By
Lemma 3.1 L,(¢ - ')(t) = ¢, so it follows that L,_1(¢ - I') must
be monotone on [A*, \¥*1) and hence the final possibility is that
¢ € Ck(n-1) U Ck(n-1)- O

We now wish to find conditions on I' under which these cones
give a Littlewood-Paley decomposition for LP(R"). The next result,
in the same spirit as the lacunary Littlewood-Paley decomposition
of [5], leads to the choice of these conditions. First we give our
definition of lacunarity.

Definition 4.2. Let {&x(n, )} be a family of cones in R* given by

Ek(n,e) = {C eER: Y (< 5Zaﬂ(j| and
j=1

j=1

ZO‘LHCJ' > _5Zai+1|Cj|} ,

Jj=1 j=1
where ai are positive reals, j = 1,... ,n, k € Z and € > 0 is small.
If
o j-1
(20) > 9kl VkeZ, j=2,...,n,
o O

then the £ (n,¢e) are said to be lacunary.

We define “smoothed-out” characteristic functions ¥}** of the
cones & (n,€) as follows.

Let ¥™¢ be a C™ function away from 0, homogeneous of degree

zero such that
n

LY G <ed IGl
\I’n’E(C) — ]il 7=1 n
0 > ¢ >-2 ¢l
]=1 j=1

and put
V(O = U™ (s -+ 0Gn) U™ (=1 Gy -+ s =41 Gn)-
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Associated to these ¥} are operators T}, given by

——— A

(Te)(Q) = ¥ (OF (), keZ.

THEOREM 4.3. If {€(n,€)} is a lacunary family of cones in R™
then

<Clfllp, 1<p<oo.

()"

p

Proof. 1t suffices to show that 3, +U}* is a multiplier for L?(R"),
1 < p < o0, independently of the choice of +; the result then
follows by a standard Rademacher function argument. We use the

formulation of the Marcinkiewicz multiplier theorem given in [2].
So, we let ¢™ be a C§°(R™) function such that 0 < ¢™ <1 and

1 1<|¢Gl<2,5=1,...,n
0 off ; <|GI<4,i=1,...,n,

-
and define LZ(R") to be the n-parameter Sobolev space given by

22 = {o: ol = [ 1060 T+ ¢oa < .
Then, by Theorem A of [2], it suffices to show that

< 00,
L% (R™)

(21) sup

11 yeeesin

S EURA(2¢,...,27) 8" (€)

k

for some o > 1.

We show (21) for & = 1 and for convenience take € = 5=. Our
proof is by induction on n; the argument for n = 2 is contained in
the inductive step and therefore we omit it.

Suppose, therefore, that

< 00,
L2(Rn-1)

sup

il)'“ )in—l

S HUITIE(Q0G,LL, 2 1))
k

with &€ = 51—, under the hypothesis that

j -1
(2) s %k
o -

%

VkeZ, j=2,... ,n—1

)
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and consider

S ETP(24G,. .., 27G)9"(C)

k

_Sup

T1yeeesin

Y

L3(R")

assuming that (22) now holds also for j = n.
We suppose that, for some k, U3°(2¢y, ..., 2", ) 9™ () # 0, i.e.

Z (X'Z:2ij Cj < 2¢ Z %Zii KJ'

j=1 i=1
Z a’?cﬂzljgj > —2¢ Z ai+12z] €]
and

1 .
S<IGl<4, j=1n

Case 1. Suppose that for some j, € {1,... ,n}
0 1 & o
2% |Gol < > g 251G

=1

and | =

a1 250Gl < o > a1 291G

i=1

In this instance we find that

WP (24¢,... ,27C,) #0

= \I,;cl-11£(2il<1a <. 72ij0—1<]'0—17 2ij0+1Cj0+17 s 72inCn) # 0.

Taking 2% = 1, which we may by homogeneity of ¥™¢, the problem
is reduced to the (n — 1)-dimensional case and we are done, by the
inductive hypothesis.

Case 2. Suppose that for all j € {1,...,n} either

j i 1 & o
(23) 2G5 > ‘2—2‘,;2_‘1012]|€j|
j=
or

] i: 1 i ] i;
(24) 121G > E%ZaiH—IQJICjI'
i=1
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Let us suppose that
. 1 M
42l > 53 3 20 [Gl
]:

Then by the lacunarity conditions (20) we have

n—1

Gopm2™(Gal 223 0 1n291¢;| Vm > N, say.
j=1

Then if ¢, > 0 we find

n ) - ) n—-1 N
Z a{c+m22’ G > O‘Z+m21"lgn, - Z ai+m2z] €]
Jj=1

ij=1

CJOIP—‘

Z k+m2l |CJ
whilst if (,, < 0 we have

Zak+m21 G<—3 Zammzz Gl

j=1

Thus
(25) Ui (249G, ... ,2"¢) =0 Vm>N.

If we assume that (24) holds for j = n then the same argument
follows. Further, V ¢ with U}*(21¢y,...,2%(,) # 0, for each j, €
{1,...,n}, we have either

1+2€

1 Z afc 21] KJ

J#J

2% 1ol <

or
1+ 2¢

k+121 |<JO| 1 2

Z ai+12ij G-

J#ijo
This, together with (23), (24), lacunarity and ¢"(¢) # 0 gives that
2% ~ 1Vj = 1,...,n. So using (25) we obtain

sup > FUPE(2°¢,...,2"C)9"(()| < o0

Llgeeyin k



OPERATORS ALONG FLAT CURVES 399

It is trivial to check that differentiating with respect to any (; causes
no problem. This concludes the proof. O

Let us now see how may apply Theorem 4.3 to our cones Cy. It
is clear that if we have a Littlewood-Paley theory for each {Cjn},
{Ckm},m =1,... ,n— 1, where we consider Ci,, Cky as cones in
Re—™+1 then this will suffice to give a Littlewood-Paley theory for
the Ci. We define now

q)km(C) = @Z’E(Oa = 70a Cma Lm7m+1(Ak)<7’TL+1’ v ameyn()‘k)Cn)
X ‘I’Z’E(O, e 70, '—Cma _“Lm’)'m+1 (/\k+1)gm+17 ey ‘_Lm’)’n(/\k+1)<n)

and put

4(0) = 2 Bem(0):

we associate to @ the operator Sy given by

(26) Se(©) = 2(O) ().
PRroPOSITION 4.4. If

Lm71‘+1()‘k+1) > 2Lm7j+1()\k)
Ly (AR+L) = 7 Ly (M%) 7

VkeZ, j=m,...,n—1, m=1,...,n—1, then
1/2
“(Z|Skf|2)
k

Proof. If, for fixed m,

Lnvis1 (AR S 2Lm’Yj+1(/\k)
Loy;(AF+) =7 Ly (AF)

(27)

<Clfllp, 1<p<oo.

p

VkEZ, j=m,...,n

then the family of cones {Cim}, and hence also {Cin}, may be
considered as lacunary in R*™*! je. ¥, +®,(¢) is a multiplier
in LP(R*), 1 < p < oo. Thus if (27) is satisfied we have that
S Sl +£8,,,(¢) is a multiplier for LP(R"). This gives the re-
sult. d
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Thus, assuming (27), the cones C give a Littlewood-Paley de-
composition of R*. Let us now see how the %n(n — 1) conditions of
(27) relate to the conditions in the statement of our theorem, i.e.

(9)-

LEMMA 4.5. LetT' : R — R”® be a “convex” curve such that
I' e C*(0,00), T'(0) =0 and

(28)
%i_r)%meka(t):Oform:l,... ,n—1,k=m,... ,n—1.

Suppose 31 < A < oo such that
(29) Lives1(At) > 2Lyyea(t) k=1,...,n—1
Then 31 < pu < co such that

Lnve+1(pt) S Ly Ye+1(t)

(30) Lo (u) = ° Lonpelt)

m=1,...,n—-1, k=m,...,n—1.

Proof. Fix k. Clearly, by hypothesis (29), (30) holds for m = k,
with ¢ = A\. We now suppose that (30) holds for m = j and show
that it is then also true for m = 5 — 1. Now

Li_17(At)  Lj_17%-1(At)
L. =1 LA e L v (O
317 (N) Lj_1vk—1(At)  Lj_17k—2(At) 3=11()

Z 2Lj—17k(t)7

by Lemma 3.4 and (29). Then

1 Lisven (%) — Ljves (0%t)
2 Ljame(p3t) — Lj—1ve(p?t)
1
2

Lj_17k4+1(1t)
L1y (13t)

v

(Lj-17e1)' (%)
(Lj-1) (u?t)

\Y
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by the Second Mean Value Theorem and Lemma 3.4. Thus

1. Ly (1428)

2 Ljy(u?t)

> 2Lj’}’k+1(t)

T Liw(?)

_ o (Lim17k1)'(8)
(Lj—17)'(t)

> 2Lj—17k+1(t),
L 17k ()

Lj—17k+1(H3t)

>
Lj_awe(pt) —

, by inductive hypothesis

by Second Mean Value Theorem, Lemma 3.4 and hypothesis (28).
0

Lemma 4.5 and Proposition 4.4 together give us

PROPOSITION 4.6. Let I' : R — R™ be a “convexr” curve such
that T € C™(0,00),T'(0) = 0 and limyyoLyw(t) = 0, V j =
1,...,n—1;, k=j5+1,... ,n. Suppose that 3 1 < A < o0 such
that

Livea(At) > 2Lgvena(t), k=1,...,n—L

In view of Proposition 4.1 (b), which defines the cones for a
piecewise-linear curve, we also have a corresponding result for piece-
wise-linear curves if we replace the hypotheses of Proposition 4.6
with those of Corollary 1.3.

Then

(Z |5kf|2> "

k

< Clflp-

P

5. Proof of Theorem 1.2. We now have a family of dilation
matrices {Ax} satisfying

(31) J a such that |4} Akl < a < 1

(32) Ap;isupp g € fixed ball
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and a family of cones {C}} with associated operators Sy given by
(26) satisfying the Littlewood-Paley inequality
1/2
(Sisusr)
k

(33) < Clifll

4

and such that

(34) ¢ & Ce = |i(¢)] < ClAKCI ™

We let f = Sif + (I — Sk)f, k € Z, and consider first sup |ux *
fl- We use the standard technique of combining a bootstrapping
argument with the Littlewood-Paley theory to obtain an LP-result,
starting with just the L?-result. Now,

<

2
=A+B.

+

sup |uk * Sk.f]
k 2

sup lx * (I — Si) £l

sup | * f|
k 2

By (33), Plancherel’s theorem and the fact that the u; have unit
mass we immediately have

A< Clflfe-
For B we use comparison of u; with a measure v, given by
v(z) =p (A;ilx) det A},

where p € C§°, 0 < p<1and [p=1. It is easily verified that
supy, |V * f| is majorized by the Hardy-Littlewood maximal operator
associated to balls AyB, where B is the unit ball in R®, and thus,
by [3], Proposition 2.2,

(35) sgplz/k*fl <Clfllpy, 1<p<oo.
P
Then
B< s%p|(,uk—uk)*(I—Sk)f| 2-{- s%p|yk*f| 2
+ ||Isup |vk * Sk.f]| -
k 2
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Now, by the same argument as used for A,

< Clfll2,

2

SI;P v * Sk f]

so it remains to show that

< Cllfll2-

sup |(ux — vi) * (I — Sk)f]|
k 2

Taking into account (34) the proof of this is essentially contained in
the proof of Proposition 5.1, [3]. To pass from the L?-result to the
LP-result we have the following analogue of Proposition 5.1, [3].

PROPOSITION 5.1. Suppose

sup |ug * fl|| <C|fllz;  for some1 <p <2
k ~
¥4
Then
2p
sup |pe * fl| < C|fllp Vp>=——.
k » D+

Proof. First we note that, under the hypothesis of the proposition,

1/2 1/2
(36) (z e f|2) e (z lka) ,
k P k p
v —1’— <p< exactly as in [3]. Then
1/2 1/2
sup [ » (z e skf|2) " (z e skf|2)
k p k P k P
+ Jsup e x 71|+ Joup 10 — i) = (1 sk>f||
k » K »
=A+B+D+E.

Now (36) together with (33) gives suitable bounds for A and B, V;%?T
<p < , whilst D < C||f|l, V1 < p < o0, by (35). It remains,
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therefore, to bound E. Again the proof that £ < C||f||,, V;{Ll <p
is essentially contained in Proposition 5.1, [3].

Proposition 5.1 completes the proof of LP-boundedness of supy, |4 *
f| and thence of Mr. Noting that from (33) we may also obtain

, 1< p<oo,

> Skfx
%

<C
p

1/2
(z |skfk|2)

k

we may now deduce the result for Hr from that for My, following
the argument in [3].
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