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DENSITIES WITH APPLICATION TO ITERATED

CONVOLUTIONS

MARIUS JUNGE

A connection between volume estimates for a log-con-
cave, symmetric density of a probability measure on Rn

and its maximal value is established. As an application
we prove for an absolute constant CQ

m times

0. Introduct ion. Log-concave densities appear naturally in the
theory of convex sets. Besides the normal distributions a lot of infor-
mation is known about the cube Qn = [—1/2, l/2]n. In particular,
a modified form of Sudakow's inequality was proved by Carl and
Pajor, see [CP].

THEOREM 1. There is an absolute constant c\, such that for every
operator u: tV^-^Y with ιg(u) < m and all k G N

\\u{x)\\γdx.

Here d^e^ denotes the A -th Kolmogorov, entropy numbers, re-
spectively.lt is wellknown fact that the logarithmic factor can not
be removed.In this paper we are interested in generalizations of Su-
dakows estimate for an arbitrary log-concave density which is closely
related to upper bounds for the maximal value of a log-concave
densities.This observation, based on ideas of Hensley and Ball, is
contained in the following key

LEMMA 2. Let f :Rn -> R be a log-concave, symmetric density
of a probability measure on W1. There is an absolute constant CQ
such that for all 1 < p < 2n

- < /(O) inf
B convex

inf (/ \\x\\p

Bf(x)dx) vol(B)Vn < co.
vex body \JR J
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108 MARIUS JUNGE

A more elaborated version for entropy estimates can be found
in Chapter I. As an application Vaaler's and Ball's theorem about
estimates of sections of the cube

H a A -codimensional subspace in Kn can be deduced from Theorem
1 and Lemma 2 (with a worse constant). But this abstract approach
also applies for arbitrary completely symmetric convex bodies. For
this the definition of the constant of isotropy is needed for a prob-
ability measure μ on Rn.

Lμ := ((n!) * / / | det(xχ,... , xn) | 2 dμ{xλ) dμ(xn))
\ JRri Jftn J

l/2π

A probability measure μ is in isotropic position if it's covariance
matrix is a multiple of the identity for all θ in the euclidean sphere
one has

/ (x,θ) | 2 dμ(x) =

The usual Lebesque measure is denoted by λn. A symmetric, convex
body K is said to be in isotropic position if the measure χ # λ n is
in isotropic position. Its constant of isotropy is denoted by L#. It
was observed by Hensley that the volume of hyperplanes of a convex
body in isotropic position are merely constant. The same is true for
arbitrary sections of a completely symmetric convex body.

THEOREM 3. Let K C Rn be a symmetric, convex body in isotropic
position and symmetric with respect to all hyperplanes (x, βj) =
0 (j = 1,... ,n).There is an absolute constant CQ such that for
all k'Codimensional subspace H CW1 one has

Co

This result was obtained by Meyer and Pajor for the unit ball's of
£p, whereas for k = 1 and arbitrary K was observed by Milman and
Pajor. In Chapter II a symmetrization technique is used to prove
an extremal property of the normal distribution under symmetric
densities.



LOG-CONCAVE DENSITIES 109

THEOREM 4. Let f be a symmetric, bounded density of a prob-
ability measureμ — fλn on W1. Then there exists a matrix M with
|detM |= 1, such that for all a G Rm with | |α | | 2 = 1, for all Bi-
convex Banach space Y and all operator u \ t^ -ϊ Y we have

1/2

In particular, if f is the characteristic function of a convex body
with volume 1 this implies for all k-codimensional subspace H

\n-k(M(K) Π H)1/k < co(l + In k).

Here (gk)ι denotes a sequence of independent, normalized gaus-
sian variablies and K(Y) the if-convexity constant of Y. The gen-
eral formulation with an additional sequence a is motivated by the
following definition of a symmetric norm induced by a symmetric
probability measure μ on Rn and an arbitrary convex, symmetric
b o d y £ c R n .

\B :=fΓ...Γ Σ aixi

1/2

dμ(xι) - - dμ(xm) a e

Milman conjectured that this norm is comparable with the eu-
clidean norm, provided some reasonable condition on μ and B are
satisfied. We will prove a lower estimate.

THEOREM 5. Let μ = fλn be a symmetric measure on W1 then
we have for all symmetric, convex bodies B C W1 and all m G

(i)

(ϋ)
m times

Hh^cominίl + ln^ll/H^^l + lnm)1/2}



110 MARIUS JUNGE

(iii) // / is in addition log-concave one has for m > n

< c o[ίl,.. . , 1]]B vol(£) 1 / n , form > n.

m times

Theorem 5 improves results from [BMMP] where (i) was only
established for m > n and for (iii) additional cotype conditions were
needed. The proof of Theorem 5 is based on volume estimates for
the norm [[#]]#. Via the key Lemma 2 the result can be reformulate
in terms of iterated convolutions as folows.

COROLLARY 6. Let f : Rn —» R be a symmetric, log-concave
density of a probability measure on Rn. Then we have for allm G N

m times
/ \ n

(ii) / * •••*/(<))< ( — ^ = ) forallm>n

m times

(iii) If K CW1 is a symmetric, convex body with vol(K) = 1 then
we have for all m G N and a G Rm with euclidean norm 1

(XalK * * Xamκ(0))l/n < co(l + lnLK) Π I <*j I .

Most of the results are contaned in the author's PhD Thesis.

Preliminaries. In what follows c, Co, Ci,... denote various absolute
constants. A convex body K C Rn is a convex, compact, symmetric
set with 0 as an interior point. Its gauge functional is denoted by
|| \\κ := inf{ί > 0 I x G tK}. For a subset i c E " the outer
fc-dimensional Hausdorff measure is defined by

λk(A) := Urn inf j vk IΣ Tk d iam^ )* ) I A C ΰ ^

and diam(β J) < 5 > ,

where diam(jB) := sup{||x — y\\2 \ x, y G B} is the diameter of JB,
|| | | 2 denotes the usual euclidean norm in Rn, whose unit ball Bζ
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has volme υn. A set B is called \k~measurable if for all sets A
the equality

holds. Obviously A* defines a translationinvariant measure on E n

which is also invariant under orthogomal transformations. For 1 <
k < n and k 6 N the measure Xk induces the usual Lebesgue mea-
sure on all A -dimensional affine subspaces with the normalization

Xk{x 6 Rn I ||x||2 < l a n d ^ = Ofori > k} = υk = πk/2Γ(l+k/2)~\

where Γ denotes the Gamma function. For more precise information
see [FED].

A measure μ on Rn is called log-concave if for all compact sets
J4, B and all 0 < λ < 1 the following inequality is satisfied.

μ(XA + (1 - λ)B) > μ{A)xμ(B)ι-\

Here XA + (1 — λ)J5 denotes the Minkowski sum of two sets. A
positive function f : W1 —> M is called log-concave, if the inequality

f(λx + (1 - λ)y) > f(x)λf(y) l - λ

holds for all z, y e Rn and 0 < λ < 1 (with the convention 0 λ = 0).
As usual, a positive function / is a density for a measure μ if

μ(A) = ί f{x) dλn(x)
J A

is valid for all λn-measurable sets i d " . In this situation we sim-
ply write μ = /λ n . The connection between log-concave measures
and log-concave densities was discovered independently by Borell
and Prekopka, see [BOL], [PRE].

(1) Let μ b e a measure with density /, then μ is log-concave
if and only if there is a log-concave function /, such that μ = fλn

almost everywhere.
For two integrable functions f,g : W1 —>• R the convolution is

defined by ^

/ * g{y) := / f(y - χ)9(χ) dxn(χ)

Log-concave measure have important stability properties, which
were discovered by Borell, see [BOL, Theorem 4.3; Theorem 4.4],
and [DHK].
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(2) Let μ = fλn be a log-concave probability measure on Rn, 1 <
m <n and T : Rn -> Rm a linear operator, then the image measure

T-\μ)(A) := μ ί T " 1 ^ ) ) A λm - measurable

is again log-concave and admits a log-concave density.
(3) The convolution of two integrable positive log-concave func-

tions is again log-concave.
Now we will state some results from the so called theory of Ba-

nach spaces. For standard Banach space notations and informations
about s-numbers we refer to the monographs of Pietsch, [PI1] and
[PI2]. The presented exposition follows closely Pisier's book about
the volume of convex bodies, [PIS]. Let K\,K2 be two subsets of
a Banach space Y, we denote by N(Kι,K2) the smallest natural
number N such that K\ can be covered by translates of K2, i.e.
there are elements (y^ C Y with

K1CUyi + K2.

The unit ball of a Banach space X isdenoted by Bχ For an operator
T : X -» Y between two Banachspaces X, Y the rc-th Kolmogorov,
entropy and volume number are defined by

dn{T) := inf{| |QEΓ|| \EcY with dim E < n},

e n ( T ) : = i n f { ε > 0 | N(T(Bx),εBγ) < 2n" 1},

vH(T) :=inf { (λn(QET(Bx))/λn(Bγ/E))1/κn \

E CY with codim E = n \

where QE '• Y —>• y/5 1 denotes the usual quotient mapping and the
volume ratio is defined via an isomorphism between Kn and Y/E.
Here K is 1 in the real case and 2 in the complex case. The volume
numbers were studied by Dudley, Milman and Pisier and introduced
in its final form by Mascioni, see [MA]. By the surjectivity of the
entropy numbers one can immediately deduce the following inequal-
ity

vn(T) < 2en(T).

Accoding to a theorem of Carl, see [CP], entropy numbers and
Kolmogorov numbers can be compared as follows.
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(4) For 0 < α, β < oo there exists a constant c(α, β) such that
for all n G N and all operator Γ : X -» Y

<c(a,β) sup ka(\n(l +
ken

For an operator u : £% -ϊY the i-norm of u is defined by

wheτe(gk)ι a r e independent, normalized gaussian variables. By
trace duality the so called conjugate t-norm of an operator v :
Y —> 1% is defined by

t(v) : = Sup{| tτ(υu) \ \ ί(u) < 1}.

A Banach space Y is said to be K-convex if there is a constant c > 0
such that for all n G N and w.t^-^Y

ί{u) < ct{u*).

The best possible constant c is denotes by K(Y). In general the K-
convexity constant of n-dimensional Banach Y space is relatively
small, namely K(Y) < c(l + Inn). This can be deduced from the
following interpolation result due to Pisier.

(5) Let Y be a Banach space and H a Hubert space, such that
(Y,H) is an interpolation couple. Then the interpolation space
[y, H]e is K-convex and the if-convexity constant satisfies

K([Y,H]θ)<cθ-1.

Here we use the complex interpolation method, which can be applied
for Banach spaces over the reals after an appropriate complexifica-
tion. We will only formaly use the above theorem and exactly iiί
the same situation as in [PIS, Chapter 7]. Therefore we refer to
this book for precise definitions and a proof.

At the end of this preliminaries we want to sketch the prove of a
sort of converse inequality to (4).
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(6) Let n, ra £ NY an m-dimensional Banach space and u :
Y then we have for all 1 < k < n

(i) Vkdk(u) < c(l + lnm/fc)2sup j> j b / 1 6

(ii) dk(u) < cyjm/k(l + \nm/k)2v[k/i6](u).

Sketch of the proof. The first step is based on the iteration procedure
developed in [PIS, Chapter 9]. Since a similar result was proved in
[PAT] we omit a proof. For every if-convex Banach space Y and
u : £% -> Y one has

(i') Vkdk(u) < *K(Y) Σ

(ii')

In fact (ii3) can be deduced from (i5) by if-convexity arguments and
Alexandrov-Fenchels inequality, for similar arguments see [PAT].
Since the proof of (i) and (ii) is very similar and we will only prove
(i). Let Y be a m-dimensional Banach space, by Pisier's existence
proof of Milman's Ellipsoid, see [PIS], there is an isomorphism w :
e? ->Y with

supkdk(w *) < Com and s\ipkek(w) < Com.
k€N

We will first assume Y complex. W.l.o.g. we can even assume
that Y = (C1, || ||) and w is the formal identity. We consider the
interpolation space YQ := [Y,iζ]θ and the operator tg : Y —» YQ.
Then we have for j = 1,... , n, see [PI1] or [PIS],

and
ejite1) < 2(ej(ι^1))0 = 2(ej(w))θ < co(m/j)θ.

Now we apply (i') for the operator UQ := utβ1 : YQ ~> £%. Using
the multiplicativity of the volume numbers and (5) we deduce for
k := 3/4k
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j>k/8

SUP JjVj(u)
j>k/8

m

SUP yfjVj(u)

sup JjVj{u).
j>k/S

The multiplicativity of the Kolmogorov numbers now implies

Vkdk(u) <

sup
j>k/S

Now we choose 0" 1 := (1 + \nm/k) to obtain the result for some
new constant c3. In the real case we use a complexification and have
to spend another factor 1/2. D

1. Log-concave densities and entropy estimates. In the
following / : Rn -> R will be a positive density of a probability
measure μ = fλn on Rn. The essential supremum of / is defined by

sup f(x).

The following lemma is essentially contained in [MIPA], since it is
basic for our results we sketch a proof.

LEMMA 1.1. For all convex bodies B C Rn an all 0 < p < oo the
following inequality holds

\\x\\»Bf(x) dXn(

Proof. We can assume A := \\f\\oo < oo. Then we define g(x)
A~ιf(x). By [MIPA, Lemma 2.1] the function

dλn(x)J
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is increasing. The inequality F{p)ι+nlp > F(0)1+n/p implies with
ff(x)dλn(x) = l

D

Before we discuss applications of Lemma 1.1 we want to prove a
reverse inequality for log-concave densities.

PROPOSITION 1.2. Let f : Rn -> R be a log-concave, symmetric
density of a probability measure μ = f\n. For every 0 < p < oo
there exists a convex body Bp with

llτllp f(τ\ ή\ W \\f\\ln\ (R W n < rJλ 4- nlnλ
\\X\\BPJ\X) aΛn{X) ) ll/lloo λn\£>p) S ^0^1 -rp/Π).

Proof. By [BA, Theorem 5.5] the function

\\x\\r := (^°° f(tx)f dή "λl r+l xφO; \\0\\r := 0

defines a norm for all 0 < r < oo with unit ball Brj say. For
0 < p < oo we set r := p + n — 1. For x ψ 0 we deduce from
[BA, Theorem 5.3]

τ-\-\
f{tχ)tn-χ dή

Using polar coordinates this implies (S"1"1 is the unit sphere in
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Xn(Br) = VnXn^iS"-1)-1 Jsni

z oo \n/r+l

/ f(tx)f dt)
+ 1r(r + l

r poo

x / / f(tx)tn~ι

Jsn~ι Jo

+ l)-ιjRn_if(x)dλn(x).

Since μ = fXn is a probability measure we obtain

l/n ( ί λ 1/P

O r POO \ 1/p

' \\x\\* f(tx)t?+n-ιdtdXn^(x)
sn-χ Jo

r \
/ n-i " " r UΛn-.ι{X) I

< nι/pf(0)-ι/nΓ(r + l)ι'pT(n

= f(0)-1/nΓ{n

Elementary compulations show

Γ(p + n) <co{p + n)pΓ(n)

for some absolute constant Co, which implies

Γ(n + p)1/pΓ(n)-1/p(n\)-1/n < eco(l+p/n).

Since a symmetric log-concave density admits its maximum in 0 the
result is proved. D

As a consequence of Lemma 1.1 and proposition 1.2 we immedi-
ately get the key Lemma 2 from the introduction. In order to obtain
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satisfactory entropy estimates for a probability measure μ = /λ n it
is useful to consider the density of an orthogonal projection PH
onto a A -dimensional subspace H of Rn with orthogonal space HL.
Pubini's theorem guaranties that / # : H —>• R

Mv) := J f(x) dK-kix),

is a λjb-measurable density for the image measure

REMARK 1.3. Let μ be a probability measure in isotropic posi-
tion, the for all k-dimensional subspaces H C Rn one has

In particular, for H = Rn this means

1 <

Proof We apply Lemma 1.1 for /# and the euclidean unit ball
BH = B% ΓΊ H. Since the image measure μ# is also in isotropic
position we obtain the assertion

D

For the following we define for 1 < m < n

Sm:= sup sup H/
\<k<m HcRnAim H=k

The next theorem establishes the equivalence between upper esti-
mates for Sm and entropy estimates for processes induced by the
probability measure μ = fλn.

T H E O R E M 1.4. Let μ = fλn be a probability measure onRn, Y
a Banach space and u\ (^ -+Y an operator with rg(u) < m. Then
we have for all k 6 N

(i) Vkvk(u) < eSm exp (fRn In ||tι(a;)|| f(x) dλn(x)).
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(ϋ)

Vkmax{dk(u),ek(u),ek(u*)} <

co(ln(l + m/k)f Smexp ( j ^ In ||u(a;)|| f(x)

Vice versa, iff is in addition a log-concave density and c a constant
such that for all 1 < k < m, all Banach space Y and all operator
u : £% -+Y with rg(u) < k the inequality

Vkvk(u) < c Q k \\u(x)\\k

γf(x) dλn(x)J
ιlk

is satisfied, then we have Sm < coc.

Proof For the first part we have only to establish (i), because
(ii) follows immediately from (i) using (4) and (6). By the defini-
tion of the volume numbers we can assume u{ί^) = Y and Y is of
dimension k. Therefore there exists a A -dimensional subspace H
and an isomorphism u : H —> Y, such that u = UPH Clealy, we
define B := (^^(BY) C H and apply Lemma 1.1 to deduce for all
0 <p < oo

\\x\\%fH(x)

n \\PHx\\p

Bf{x) dλn(x)j Sm

O
f \ 1/P

I \\u(x)\\p

γf(x)dλn(x)) Sm,
where BH is the unit ball induced by euclidean norm on H. Sending
p to 0 implies (i). For the second part let / be a log-concave density
and H C Rn a fc-dimensional subspace. By (2) / # is again log-_
concave. Proposition 1.2 implies the existence of a convex body
B C H with

O r
r

H \\χ\\yH(χ)

ι/k
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Now we define Y := (if, || | | B ) and u := PH : £ζ -> Y which is of
rank k. Our assumption implies

Taking the supremum over all 1 < k < m yields the assertion.

D

Proof of Theorem 3. Let K C Rn in isotropic position and sym-
metric with respect to all hyperplanes (rr, βj) = 0. In this situation
the sequence of coordinate functionals xk : (K, λn) —> R; x H> (X, e^)
has the same distribution as the sequence (εkXk)ι ? where (εk)ι is a
sequence of independent Bernoulli variables on (D, v). By BorelΓs
lemma, see [MS, Appendix III.4] and a well-known symmetry ar-
gument, see [PIS2, proposition 3.2], we obtain for every operator

Lκ J Ylu{ek)εk dι/<coj \\u(x)\\γ dx.

With Theorem 1 we obtain the upper estimate from the second
part of Theorem 1.4

for al A -codimensional subspaces H C Rn. Since

attains its maximum in 0 by Brunn-Minkowski's inequality, see
[MS, Appendix III], the lower estimate follows immediately from
Remark 1.3.

2. Symmetrization In the following let / : Rn —> R be a
symmetric, bounded density of a probability measure μ = f\n. For
fc = l , . . . , n - l w e consider the function fk : R* —» R defined by

l, ,Xh) '= /
JRri-k
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We set fn — f. In addition to the conditional expectaton fk we need
the following midpoint functions mk : R*"1 —> R (k = 2,. . . , n)

mk{xu . . . , xk_x) := inf{ί G R |

fk(xu . . . , xfc_i, 5) ds

Clealy, fk and m^ are measurable functions. For completeness we
set 777-1 .'= 0. The following lemma enables us to construct Bernoulli
variables on (Rn,μ).

LEMMA 2.1. Let f be a symmetric density of a probability measure
μ onBI1, then the sequence (εk)ι defined on (R n ,/λ n ) by

εk(x) := si

is a sequence of independent Bernoulli variablies.

Proof. By induction on k one can easily prove that for all δ G Ώ)k

one has

μ(ε1 = δu... ,εk = δk) = 2'k.

In particular, we obtain that for k = n and A C D n we have

The next theorem ensures that the Bernulli sequence constracted
above is strongly correlated to the coordinate functionals.

THEOREM 2.2. Let f : Rn —> R be a symmetric, bounded density
of a probability measure on W1 then there exists a Bernoulli sequence
(εk)ι on (R n ,/λ n ) such that the matrix A = {aik)ik^ι

aik:= (x,ej)εk(x)f(x) dλn(x)

is a lower triangle matrix and

l/4e <| det A \ι'n
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Proof. The definition of the midpoint functions is choosen such
that for all xι,... , xk-i

roo

/ sign(t - mk(xu ... ,z*-i))Λ(zi, - ,Xk-i,t) dt = 0.
J—oo

For i < k this immediately implies α^ = 0 whereas for i — k > 1
we get

ί ί°°
= / sign(ί - mk(xu ... ,xk-ι))t

x fk{xu J%k-ι,t) dt dxu ... ,

mk(xu... ,xk-i) / sign(ί

-1 J-OO

x /fc(x - 1,... , Sfc-i, t) dί ώ b . . . , dxjb-i-

Therefore we have for all A; = 1,... , n

akk= \xk- rnk(xu . . . ,xk-i) \ f(x) d\n(x).

We define the volume preserving map T : Rn -> W1 by

For the density /of the image measure μr := T~ι(μ) we obtain

~ n

/(x) := /(x

By Lemma 1.1 we deduce for r = (α )̂™ and

1



LOG-CONCAVE DENSITIES 123

n/n+ 1 < (jfn \\x\\DABΌf(x) dλn(x

< L Σ«»\*k\fc) dλn(x) \\f\\Hn (f[akk) ^(n!)-1/"
J R n l \ l /

f U

< / Σlα^l^A: ~ rnfc(n: l5... ,xk^)\f{x) d\n{x)

D

Proof of Theorem 4. Let / be a symmetric, bounded density of
a probability measure μ = f\n and A be the matrix from Theorem
2.2. The assertion will be proved for M := | det yll^l"1. First we
want to show that for all operator w : ίψ1 -» Y and

m n n

we have

X ( / •••/ IH^l . i«m)| |yΦ(«l),. ι

For u : (% -> Y and o; with ||o;||2 = 1 we apply (*) to

1/2

i=i k=ι

the definition of the If-convexity implies

l(uM) < 4eJτ/2K(Y) \\f\\g"

x / . . . /
3=1

2 \ 1/2

rfμ(xχ) dμ(xm)
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If / is the characteristic function of a convex body the density
XM~1(K) is log-concave. In order to apply Theorem 1.4 we have
to establish entropy estimates for this density and orthorgonal pro-
jections of rank k. Since the K convexity constant of space with
dimension k is less than c0 (1 + In A;) the entropy estimates fol-
lows from the transformation formula and entropy estimates of the
^-norm proved by Pajor/Tomczak, see [PIS]. For simplicity let us
now assume m = 1. Let v : £ξ —> Y* with £(v) < 1. Then we deduce
from the comparison between Bernoulli and gaussian variables, see
[PIS2],

\tr((uA)*v)\ =
1 1
n n

f n

/ (u(x),Σ

W dμ(x)j (u(ei),v(ek))

dμ(x)

\u(x)\\2

Y

\\u(x)\\2y

D

For the following we want to assume that / is a symmetric density
of a probability measure μ = fλn in isotropic position and ||/||oo =
1. The next lemma studies the singular numbers of the matrix A
defined by Theorem 2.2.

LEMMA 2.3. For 1 < k < n we have dk{A~ι) <

Proof. By Theorem 4 and the isotropic position we have l(A) <
1/2. From (4) we deduce en(A) < c2Lμ and we set ε :=

(c2Lκ)~ι By [GKS] we can compare the singular numbers of A"1

with covering numbers of A'1. Applying this and a well known
maximality argument, see [PAT, Lemma 3.2] we obtain
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dk(A'1) <

<3 n / *2 n / *(2 n |det

D

Now we can prove a simular estimate as in Theorem 4 with the
only difference that the Lμ constant instead of the if-convexity con-
stant is involved.

PROPOSITION 2.4. Let f a symmetric density of a probability
measure μ = /λ n in isotropic position with \\f\\oo = 1? A the matrix
from Theorem 2.2, meN anda£Rm with \\a\\2 = 1. Then for all
Banach space Y, all operator u : ί^-^Y and 1 < k < n we have

Vkdk(uA) < co(l \n/k(l + \nn/k)

2

JRn JRn Σ aMχί
3=1

1/2

dμ(xι) '• dμ(xm)

Proof Let 1 < k < n, by Lemma 2.3 we can find a subspace H C
Rn with eodim# < k and HPi/A"1!! < cl/kL^'k^k. For simplicity
let us assume m = 1. We denote by S the smallest constant c such
that for all u : £% -> Y the inequality

1/2

holds. Now let

1/2

\\u(x)\\γ dμ(x)\ — 1.

By the definition of 5 there is a subspace F cY with dim F < j
and

y/j\\QFuAPH\\ < S(l -
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We define Hi C H as the orthogonal complement of keτ(QFuAPH)
in H and H<i := A(i2i). Furthermore, we consider the convex body
B := AiQFuAPjyJ-^By/ir) Π H2 contained in H2 By EO,EX we
denote an appropriate complexification of (#2, || | |#), (#2, || Ih)-
Clealy, (J5Ό, E\) is an interpolation couple and E\ is a Hubert space.
Since μ is in isotropic position we obtain for E$ \— [EQ, Eι]$

α. 1/2

0/2

Now we denote uθ := Pff2 : ^ (C) -> -Be and i e " Eθ ^ EQ. By the
choice of F and i7 we have the following estimate for the norm of

\ι*\\1/β < Iki : E, ^ Foil < y/2\\QFuPH2\\ < V2\\QFuAPHA-ι\\

< 2ιl2\\QFuAPH\\\\PHA-'\\ < /

With Pajor/Tomczak's inequality, see [PIS], Theorem 4 and (5) we

obtain for u0 = PH2 : £% -ϊ Eo

| e(u0)

O r \ι/2

K\\PHΛ*)\\B. dK())

Now we choose θ~ι := 1 + In (2ιl2{m/jfl2S{cxLμ)
nlk). Passing

from the complex linear to the real linear operator and using the
additivity of the Kolmogorov numbers, see [PI2] we obtain

H) < τ/jd2j-l(QFuAPH) < yfjdjiuoA)

< c3(l + lnm/i)(l + ln{n/kLμS)).



LOG-CONCAVE DENSITIES 127

Passing from j to 3j — 2 we have proved

S < C3VS(1 + \n2){n/k) (l + In (jLμS

which is only possible if

S < c4(n/k)(l + lnn/A;)(l + lnLμ).

For an arbitrary operator u : £% ~~* Y w e aPPly this estimate for
j = A: and obtain

< Vkdk(uAPH)

< c 4(l + InLμ)(n/Λ)(1 + Inn/A:)2

\u(x)\\2

Y ή

D

The proof of Proposition 2.3 even shows that the random variable
H admits good entropy estimates in the sense of Theorem 1.4.

In the whole argument the symmetry of / is not really used. It
would be sufficent to assume that the hyperplane x\ = 0 divides the
measure space into equal parts.

3. Convolution and symmetric norms. In the following / :
Rn —> R will be a symmetric, bounded density of a probability mea-
sure μ = fμ. For a € Rm we denote by fa the density of the vector
valued random variable

Za:(R
nm, ® μ ) - > R n (xux2,... , * m ) H >

3~ι j=ι

If / is log-concave also /α, see (3). In this case the key Lemma
2 implies the equivalence between volume estimates for the norm
[[O\]B and upper estimates of fa. We start with an easy lemma.

LEMMA 3.1. Let B C Rn be a convex body. For the volume of

B?(B):=[(xι,x2,...,xm)eRnτn

3=1



128 MARIUS JUNGE

we have \nm{Bψ(B)) = Γ(l + nm/2)-ιT{l + n/2)mλn(B)

Proof. We use the formula

Xn(K) = Γ(l + n / 2 ) " 1 ^ exp(- | | x |β) dλn(x),

which was observed by Meyer and Pajor, see also [BA2, Lemma 7].
Hence we get

- 1

x / exp ( - V \\xj\\2

B dλn(xi),... t dλn(xm)

nm/2)-1 (jί^ exp(-||a;||2β) dλn(

n/2)mλn(B)m.

D

Proof of Theorem (5i), (6i). We will show that for all convex body
B cRn with λn(B) = 1 and for α = ( 1 , . . . , 1) € Km we have

For this we define the orthogonal m x m matrix M = (rrijk) A.̂ 1 by

mjk := 2(2ra + 1)"1/2 cos(2πjk/(2m + 1)).

Since we have |mjfc| < J2/m the unconditionality of the norm [[ ]]
implies
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Therefore we deduce from Lemma 1.1 and Lemma 3.1

2 1/2

dμ(xι) • • • dμ(xm)

B

= yj '•• JRn \\M ® IdRn(xu ... , a ; T O ) | | | m ( B )

s 1/2

x dμ(xι) dμ(xm) J

= 3-^(1 + mn/2)ι'nmT{\ + n/2)'l/n

D

Proof of Theorem (5iii), (6i). Let us denote by g the m-fold
convolution of /, which is again log-concave and symmetric. By the
key Lemma 2 it is sufficient to prove an upper estimate for g. We
set p = 2n. By proposition 1.2 there is a convex body B c K n with
λn(J3) = 1 and

, mn JRn Σ< dμ(xm)

B

We define the n-dimensional Banach space Y =
let us fix # ! , . . . , xm and consider the operator u :

by

Using Theorem 1 we obtain

Vnυn(u) < c0 (L
1/p

du{ε)

\B) Now
defined
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On the other hand the definition of the volume number and
Cauchy/Binet's determinant formula tell us

'jΊ det u*u\ι'2n

l/2π

>|det u*

Now we integrate over these two inequalities and obtain

l<ή< <»n<n

x dμ{xh) • dμ(xin)

x

dv(ε)dμ(xι).. .dμ(xm)

B

jRn JRn
dμ(xι) ...dμ(xm).

B

Where the last equality follows from the symmetry and indepen-
dence of the sequence (xj)™=ι. Finally we obtain

D

It is easy to see that the above estimate is sharp, when μ is in
isotropic position. As a corollary to Theorem (5iii) we want to
state entropy estimates for the m-fold convolution, showing how
fast iterated convolution leads to normal distributed variables.

COROLLARY 3.2. Let f be a symmetric, log-concave density of
a probability μ = fXn in isotropic position. Then for all operator
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u : (% -* y with fg(u) < m and 1 < k < rg(u) we have

Lμy/kdk(u) < co(l + \nrg{u)/kf

1 m

x /•••I \u{Xj)

1/2

dμ{xχ) dμ{xm)

Proof. Let us denote by g the m-fold convolution of /. By The-
orem 1.4 we have to show that for all 1 < k < m and all subspace
H with dim H = fc we have

LμgH(0)1/k < com-1/2.

Here gn is the density of the random variable

Therefore gπ is the m-fold convolution of the density / # of μ# =
(Pjfir)""

1(/i) which is also in isotropic position and has the same con-
stant of isotropy. An application of Theorem (5iii) yields the asser-
tion. D

Proof of Theorem (5ii), (6iii) W.l.o.g. we can assume that μ =
fλn is in isotropic position. Then we set r := | | / | | ^ n a n ^ d(x) :=

τng(rx). The constant of isotropy of the probability measure v =
gλn satisfies Lμ = τ~ιLμ. For a G Rm with norm 1 and a convex
body B C Rn we define Y := (Rn, || \\B) and take for u : ^ -> Y
the formal identity. Now we can apply proposition 2.3 to deduce
with (4)

V ^ M ) < c * ( l + I n ^

By Theorem 2.1 we have

ln <|det A-ψ
< 3(8πe)1/22en(uA)

< 6(8ire)1/2cto(l + I
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Now we turn to the logarithmic estimate in m. By symmetry

and unconditionality of the norm [[ ]]# we can assume that a is

a non increasing, positive sequence. For fixed 1 < k < m we de-

duce as in Theorem (5i) with the unconditionality of [[ ]]#, see

[LTI, Proposition I.e.7],

A;—times

Summing up over all k yields

| | α | | 3 < 16(1 + Inm) 1/ 2 [[a]]

If / is the characteristic function of a convex body with volume 1 we

consider the random variable Za from the beginning of this chapter.

Since / is log-concave the same is true for fa. From the key Lemma

2 we deduce

/α(0) 1 / n < C o min{l + I n L κ , (1 + lnm) 1 ' 2 } .

(6iii) follows after rewriting fa in terms of iterated convolutions.

D
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